

Boost your performance and confidence with these topic-based exam questions

Practice questions created by actual examiners and assessment experts

Detailed mark scheme

Suitable for all boards

Designed to test your ability and thoroughly prepare you

2. **Functions** 2.6 Transformations of Graphs

IB Maths DP

2. Functions
CONTENTS
2.1 Quadratic Functions & Graphs
2.1.1 Quadratic Functions
2.1.2 Factorising & Completing the Square
2.1.3 Solving Quadratics
2.1.4 Quadratic Inequalities
2.1.5 Discriminants
2.2 Linear Functions & Graphs
2.2.1 Equations of a Straight Line
2.3 Functions Toolkit
2.3.1 Language of Functions
2.3.2 Composite & Inverse Functions
2.3.3 Symmetry of Functions
2.3.4 Graphing Functions
2.4 Other Functions & Graphs
2.4.1 Exponential & Logarithmic Functions PRACTICE
2.4.2 Solving Equations
2.4.3 Modelling with Functions
2.5 Reciprocal & Rational Functions
2.5.1 Reciprocal & Rational Functions
2.6 Transformations of Graphs
2.6.1 Translations of Graphs
2.6.2 Reflections of Graphs
2.6.3 Stretches Graphs
2.6.4 Composite Transformations of Graphs
2.7 Polynomial Functions
2.7.1 Factor & Remainder Theorem
2.7.2 Polynomial Division
2.7.3 Polynomial Functions
2.7.4 Roots of Polynomials
2.8 Inequalities
2.8.1 Solving Inequalities Graphically

- 2.8.2 Polynomial Inequalities
- 2.9 Further Functions & Graphs
 - 2.9.1 Modulus Functions
 - 2.9.2 Modulus Transformations
 - 2.9.3 Modulus Equations & Inequalities
 - 2.9.4 Reciprocal & Square Transformations

2.1 Quadratic Functions & Graphs

2.1.1 Quadratic Fuctions

Quadratic Functions & Graphs

What are the key features of quadratic graphs?

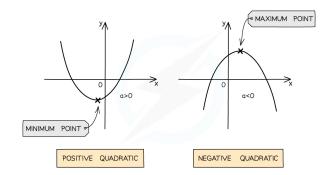
- A quadratic graph can be written in the form $y = ax^2 + bx + c$ where $a \neq 0$
- The value of a affects the shape of the curve
 - If a is **positive** the shape is **concave up** u
 - If a is **negative** the shape is **concave down** \cap
- The **y-intercept** is at the point (0, c)
- The zeros or roots are the solutions to $ax^2 + bx + c = 0$
 - These can be found by
 - Factorising
 - Quadratic formula
 - Using your GDC
 - These are also called the x-intercepts
 - There can be 0, 1 or 2x -int ercepts
 - This is determined by the value of the discriminant
- There is an **axis of symmetry** at $x = -\frac{b}{2}$
 - This is given in your formula booklet

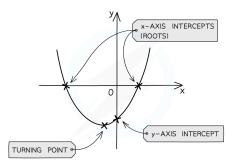
• If there are two *x*-intercepts then the axis of symmetry goes through the midpoint of them **FXAM PAPERS PRACTICE**

- The **vertex** lies on the axis of symmetry
 - It can be found by completing the square

• The x-coordinate is
$$x = -\frac{b}{2a}$$

- The y-coordinate can be found using the GDC or by calculating y when $x = -\frac{b}{2}$
- If a is **positive** then the vertex is the **minimum point**
- If a is negative then the vertex is the maximum point





What are the equations of a quadratic function?

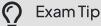
- $f(x) = ax^2 + bx + c$
 - This is the **general form**
 - \circ It clearly shows the *y*-intercept (0, c)
 - You can find the axis of symmetry by $x = -\frac{b}{2a}$
 - This is given in the formula booklet

•
$$f(x) = a(x-p)(x-q)$$

- This is the **factorised form**
- It clearly shows the roots (p, 0) & (q, 0)
- You can find the axis of symmetry by x = I
- $f(x) = a(x-h)^2 + k$
 - This is the **vertex form**
 - It clearly shows the vertex (*h*, *k*) DERS PRACTICE
 - The axis of symmetry is therefore x = h
 - It clearly shows how the function can be transformed from the graph $y = x^2$
 - Vertical stretch by scale factor a
 - Translation by vector $\begin{pmatrix} h \\ k \end{pmatrix}$

How do I find an equation of a quadratic?

- If you have the **roots** x = p and x = q...
 - Write in factorised form y = a(x-p)(x-q)
 - \circ You will need a third point to find the value of a
- If you have the **vertex** (h, k) then...
 - Write in vertex form $y = a(x h)^2 + k$
 - You will need a second point to find the value of a
- If you have **three random points** (*x*₁, *y*₁), (*x*₂, *y*₂) & (*x*₃, *y*₃) then...
 - Write in the general form $y = ax^2 + bx + c$
 - Substitute the three points into the equation
 - Form and solve a system of three linear equations to find the values of a, b & c

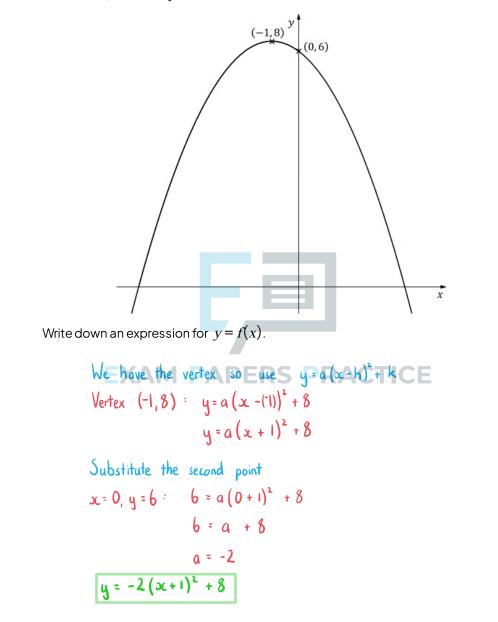


- Use your GDC to find the roots and the turning point of a quadratic function
 You do not need to factorise or complete the square
 - It is good exam technique to sketch the graph from your GDC as part of your working



The diagram below shows the graph of y = f(x), where f(x) is a quadratic function.

The intercept with the y-axis and the vertex have been labelled.



2.1.2 Factorising & Completing the Square

Factorising Quadratics

Why is factorising quadratics useful?

- Factorising gives roots (zeroes or solutions) of a quadratic
- It gives the x-intercepts when drawing the graph

How do I factorise a monic quadratic of the form $x^2 + bx + c$?

- A monic quadratic is a quadratic where the coefficient of the x^2 term is 1
- You might be able to spot the factors by inspection
 - Especially if c is a **prime number**
- Otherwise find two numbers *m* and *n*..
 - A sum equal to b

•
$$p+q=b$$

• A product equal to c

• pq = c

- Rewrite bx as mx + nx
- Use this to factorise $x^2 + mx + nx + c$
- A shortcut is to write:
 - $\circ (x+p)(x+q)$

How do I factorise a non-monic quadratic of the form $ax^2 + bx + c$?

- A non-monic quadratic is a quadratic where the coefficient of the x^2 term is not equal to 1
- If a, b & c have a common factor then first factorise that out to leave a quadratic with coefficients that have **no common factors**
- You might be able to spot the factors by inspection RACTICE
 - Especially if a and/or c are **prime numbers**
- Otherwise find two numbers m and n..
 - A sum equal to b
 - $\bullet m + n = b$
 - A product equal to ac

• mn = ac

- Rewrite bx as mx + nx
- Use this to factorise $ax^2 + mx + nx + c$
- A shortcut is to write:

(ax+m)(ax+n)

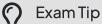
а

• Then factorise common factors from numerator to cancel with the *a* on the denominator

How do l use the difference of two squares to factorise a quadratic of the form $a^2x^2 - c^2$?

- The difference of two squares can be used when...
 - There is **no x term**
 - The constant term is a negative
- Square root the two terms $a^2 x^2$ and c^2
- The two factors are the **sum of square roots** and the **difference of the square roots**

- A shortcut is to write:
 - $\circ (ax+c)(ax-c)$

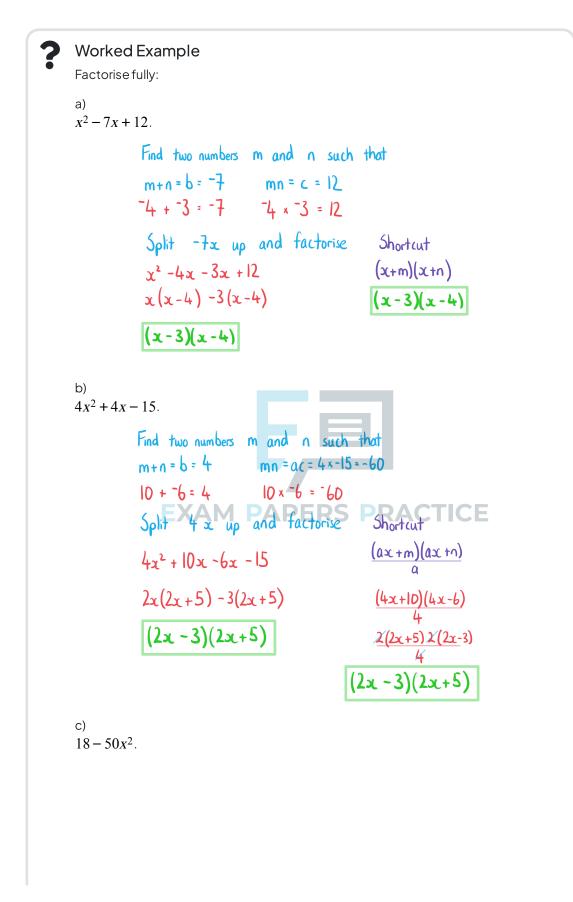


- You can deduce the factors of a quadratic function by using your GDC to find the solutions of a quadratic equation
 - Using your GDC, the quadratic equation $6x^2 + x 2 = 0$ has solutions

 $x = -\frac{1}{2}$ and $x = \frac{1}{2}$

- Therefore the factors would be (3x+2) and (2x-1)
- i.e. $6x^2 + x 2 = (3x + 2)(2x 1)$

EXAM PAPERS PRACTICE



Factorise the common factor
2(9-25z²)
Use difference of two squares
2(3-5x)(3+5x)

Completing the Square

Why is completing the square for quadratics useful?

- Completing the square gives the maximum/minimum of a quadratic function
 This can be used to define the range of the function
- It gives the **vertex** when drawing the graph
- It can be used to **solve quadratic equations**
- It can be used to derive the quadratic formula

How do I complete the square for a monic quadratic of the form $x^2 + bx + c$?

• Half the value of b and write $\begin{pmatrix} b \\ x + 2 \end{pmatrix}^2$

• This is because
$$\left(x + \frac{b}{2}\right)^2 = x^2 + bx + \frac{b^2}{4}$$

• Subtract the unwanted $\frac{b^2}{4}$ term and add on the constant c

$$\circ \left(x + \frac{b}{2}\right)^2 - \frac{b^2}{4} + c$$

How do I complete the square for a non-monic quadratic of the form $ax^2 + bx + c$?

• Factorise out the a from the terms involving x

$$\circ a\left(x^2 + \frac{b}{a}x\right) + x$$

• Leaving the calone will **avoid working with lots of fractions**

Complete the square on the quadratic term S PRACTICE

• Half
$$\frac{b}{a}$$
 and write $\left(x + \frac{b}{2a}\right)^2$
• This is because $\left(x + \frac{b}{2a}\right)^2 = x^2 + \frac{b}{a}x + \frac{b^2}{4a^2}$
• Subtract the unwanted $\frac{b^2}{4a^2}$ term

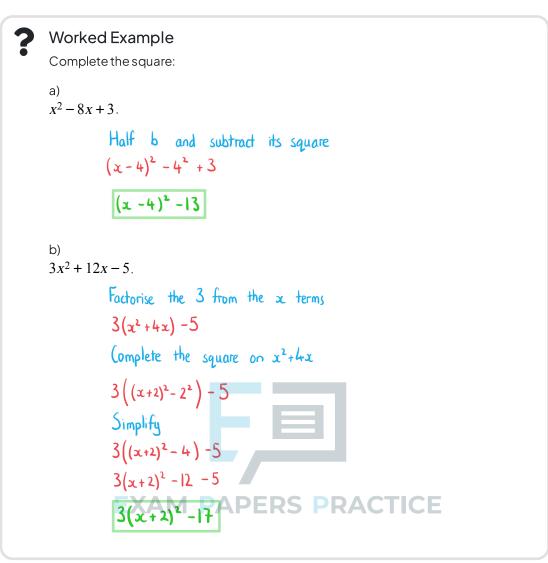
• Multiply by a and add the constant c

$$\circ a\left[\left(x+\frac{b}{2a}\right)^2 - \frac{b^2}{4a^2}\right] + c$$

$$\circ a\left(x+\frac{b}{2a}\right)^2 - \frac{b^2}{4a} + c$$

Exam Tip

Some questions may not use the phrase "completing the square" so ensure you can recognise a quadratic expression or equation written in this form
 a(x - h)² + k (= 0)



2.1.3 Solving Quadratics

Solving Quadratic Equations

How do I decide the best method to solve a quadratic equation?

- A quadratic equation is of the form $ax^2 + bx + c = 0$
- If it is a calculator paper then use your GDC to solve the quadratic
- If it is a non-calculator paper then...
 - you can always use the quadratic formula
 - you can factorise if it can be factorised with integers
 - you can always complete the square

How do I solve a quadratic equation by the quadratic formula?

- If necessary **rewrite** in the form $ax^2 + bx + c = 0$
- Clearly identify the values of a, b & c
- Substitute the values into the formula

$$\circ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

• This is given in the formula booklet

• Simplify the solutions as much as possible

How do I solve a quadratic equation by factorising?

- Factorise to rewrite the quadratic equation in the form a(x-p)(x-q) = 0
- Set each factor to zero and **solve**

$$\circ \ x - p = 0 \Rightarrow x$$

• $x-p=0 \Rightarrow x=p$ • $x-q=0 \Rightarrow x=q$ M PAPERS PRACTICE

How do I solve a quadratic equation by completing the square?

- Complete the square to rewrite the quadratic equation in the form $a(x h)^2 + k = 0$
- · Get the squared term by itself

$$\circ (x-h)^2 = -\frac{k}{a}$$

• If
$$\left(-\frac{k}{a}\right)$$
 is **negative** then there will be **no solutions**

• If $\begin{pmatrix} -k \\ -k \end{pmatrix}$ is **positive** then there will be two values for x - h

$$x - h = \pm \sqrt{-\frac{k}{a}}$$

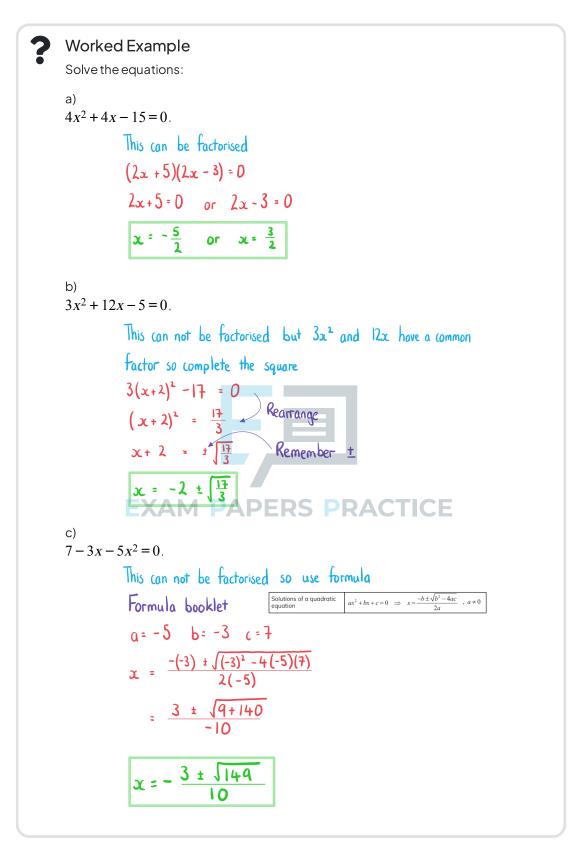
• Solve for x

$$\circ \quad x = h \pm \sqrt{-\frac{k}{a}}$$

Exam Tip

 \bigcirc

- When using the quadratic formula with awkward values or fractions you may find it easier to deal with the " $b^2 4ac$ " (**discriminant**) first
 - This can help avoid numerical and negative errors, improving accuracy



2.1.4 Quadratic Inequalities

Quadratic Inequalities

What affects the inequality sign when rearranging a quadratic inequality?

- The inequality sign is **unchanged** by...
 - Adding/subtracting a term to both sides
 - Multiplying/dividing both sides by a positive term
- The inequality sign **flips** (< changes to >) when...
 - Multiplying/dividing both sides by a negative term

How do I solve a quadratic inequality?

- STEP 1: Rearrange the inequality into quadratic form with a positive squared term
 - $\circ ax^2 + bx + c > 0$
 - $\circ ax^2 + bx + c \ge 0$
 - $ax^2 + bx + c < 0$
 - $\circ ax^2 + bx + c \le 0$
- STEP 2: Find the roots of the quadratic equation
 - Solve $ax^2 + bx + c = 0$ to get x_1 and x_2 where $x_1 < x_2$
- STEP 3: Sketch a graph of the quadratic and label the roots
 - As the squared term is positive it will be concave up so "U" shaped
- STEP 4: Identify the region that satisfies the inequality
 - If you want the graph to be **above the x-axis** then choose the region to be the **two intervals outside** of the two roots
 - If you want the graph to be **below the x-axis** then choose the region to be the **interval between** the two roots
 - For $ax^2 + bx + c > 0$
 - The solution is $x < x_1$ or $x > x_2$
 - For $ax^2 + bx + c \ge 0$
 - The solution is $x \le x_1$ or $x \ge x_2$
 - For $ax^2 + bx + c < 0$
 - The solution is $x_1 < x < x_2$
 - For $ax^2 + bx + c \le 0$
 - The solution is $x_1 \le x \le x_2$

How do I solve a quadratic inequality of the form $(x - h)^2 < n$ or $(x - h)^2 > n$?

- The safest way is by following the steps above
 - Expand and rearrange
- A common mistake is writing $x h < \pm \sqrt{n}$ or $x h > \pm \sqrt{n}$
 - This is **NOT correct**!
- The correct solution to $(x h)^2 < n$ is
 - $|x-h| < \sqrt{n}$ which can be written as $-\sqrt{n} < x h < \sqrt{n}$
 - The final solution is $h \sqrt{n} < x < h + \sqrt{n}$
- The correct solution to $(x h)^2 > n$ is

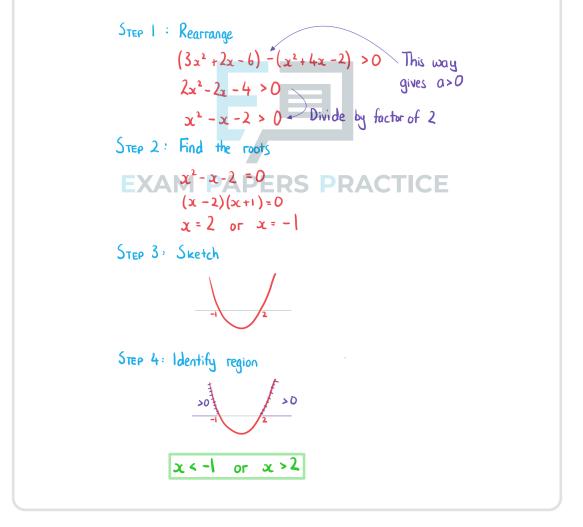
- $|x-h| > \sqrt{n}$ which can be written as $x h < -\sqrt{n}$ or $x h > \sqrt{n}$
- The final solution is $x < h \sqrt{n}$ or $x > h + \sqrt{n}$

Exam Tip

- It is easiest to sketch the graph of a quadratic when it has a positive x^2 term, so rearrange first if necessary
- Use your GDC to help select the correct region(s) for the inequality
- Some makes/models of GDC may have the ability to solve inequalities directly
 - However unconventional notation may be used to display the answer (e.g. 6 > x > 3 rather than 3 < x < 6)
 - The safest method is to **always** sketch the graph

Worked Example

Find the set of values which satisfy $3x^2 + 2x - 6 > x^2 + 4x - 2$.



2.1.5 Discriminants

Discriminants

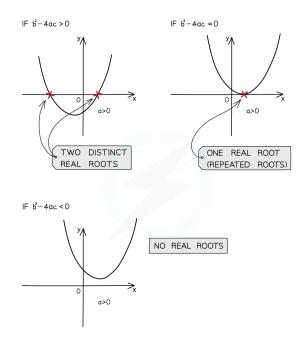
What is the discriminant of a quadratic function?

- The discriminant of a quadratic is denoted by the Greek letter∆(upper case delta)
- For the quadratic function the discriminant is given by
 - $\circ \ \Delta = b^2 4ac$
 - This is given in the **formula booklet**
- The discriminant is the expression that is square rooted in the **quadratic formula**

How does the discriminant of a quadratic function affect its graph and roots?

- If $\Delta > 0$ then $\sqrt{b^2 4ac}$ and $-\sqrt{b^2 4ac}$ are two distinct values
 - The equation $ax^2 + bx + c = 0$ has two distinct real solutions
 - The graph of $y = ax^2 + bx + c$ has two distinct real roots This means the graph crosses the x-axis twice
- If $\Delta = 0$ then $\sqrt{b^2 4ac}$ and $-\sqrt{b^2 4ac}$ are **both zero**
 - The equation $ax^2 + bx + c = 0$ has one repeated real solution
 - The graph of y = ax² + bx + c has one repeated real root
 This means the graph touches the x-axis at exactly one point
 This means that the x-axis is a tangent to the graph
- If $\Delta < 0$ then $\sqrt{b^2 4ac}$ and $-\sqrt{b^2 4ac}$ are **both undefined**
 - The equation $ax^2 + bx + c = 0$ has no real solutions
 - The graph of $y = ax^2 + bx + c$ has **no real roots**

This means the graph **never touches** the **x-axis** This means that graph is **wholly above** (or **below**) the **x-axis**



Forming equations and inequalities using the discriminant

- Often at least one of the coefficients of a quadratic is unknown • Questions usually use the letter k for the unknown constant
- You will be given a fact about the quadratic such as:
 - The number of solutions of the equation
 - The number of roots of the graph
- To find the value or range of values of k
 Find an expression for the discriminant

• Use $\Delta = b^2 - 4ac$

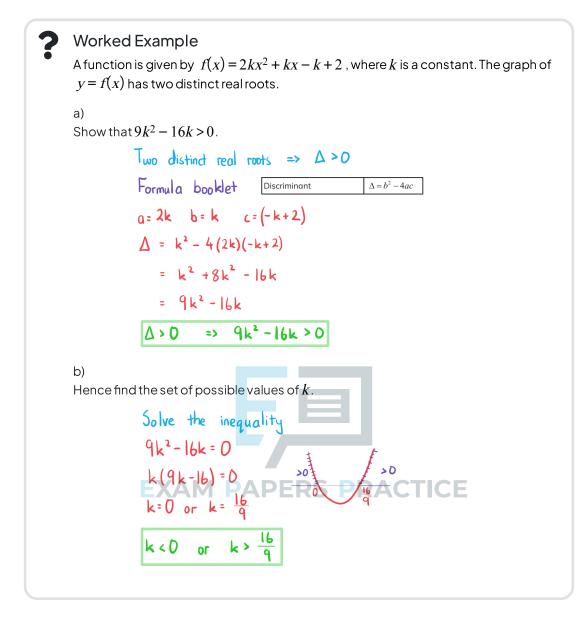
- Decide whether $\Delta > 0$, $\Delta = 0$ or $\Delta < 0$
 - If the question says there are **real roots** but does not specify how many then use Δ ≥0

PRACTICE

• Solve the resulting equation or inequality

Exam Tip

- Questions will rarely use the word discriminant so it is important to recognise when its use is required
 - Look for
 - a number of roots or solutions being stated
 - whether and/or how often the graph of a quadratic function intercepts the *x*-axis
- Be careful setting up inequalities that concern "two real roots" ($\Delta \ge 0$) as opposed to "two real distinct roots" ($\Delta > 0$)



2.2 Linear Functions & Graphs

2.2.1 Equations of a Straight Line

Equations of a Straight Line

How do I find the gradient of a straight line?

- Find two points that the line passes through with coordinates (x_1, y_1) and (x_2, y_2)
- The gradient between these two points is calculated by

$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

- This is given in the formula booklet
- The gradient of a straight line measures its **slope**
 - A line with gradient 1 will go up 1 unit for every unit it goes to the right
 - A line with gradient -2 will go down two units for every unit it goes to the right

What are the equations of a straight line?

- y = mx + c
 - This is the gradient-intercept form
 - It clearly shows the gradient *m* and the *y*-intercept (0, c)
- $y y_1 = m(x x_1)$
 - This is the point-gradient form PERS PRACTICE
 - It clearly shows the gradient m and a point on the line (x_1, y_1)
- ax + by + d = 0
 - This is the **general form**

• You can quickly get the x-intercept
$$\left(-\frac{d}{a},0\right)$$
 and y-intercept $\left(0,-\frac{d}{b}\right)$

How do I find an equation of a straight line?

- You will need the gradient
 - If you are given two points then first find the gradient
- It is easiest to start with the **point-gradient form**
 - then rearrange into whatever form is required
 - multiplying both sides by any denominators will get rid of fractions
- You can check your answer by using your GDC
 - Graph your answer and check it goes through the point(s)
 - If you have two points then you can enter these in the **statistics mode** and find the regression line y = ax + b

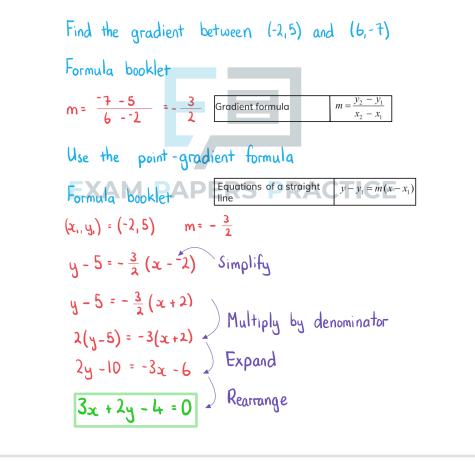
Exam Tip

- A sketch of the graph of the straight line(s) can be helpful, even if not demanded by the question
 - Use your GDC to plot them
- Ensure you state equations of straight lines in the format required
 - Usually y = mx + c or ax + by + d = 0
 - Check whether coefficients need to be integers (they usually are for ax + by + d = 0)

Worked Example

The line I passes through the points (-2, 5) and (6, -7).

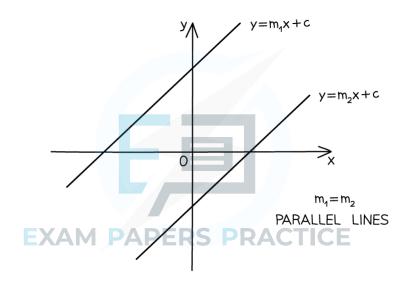
Find the equation of 1, giving your answer in the form ax + by + d = 0 where a, b and c are integers to be found.

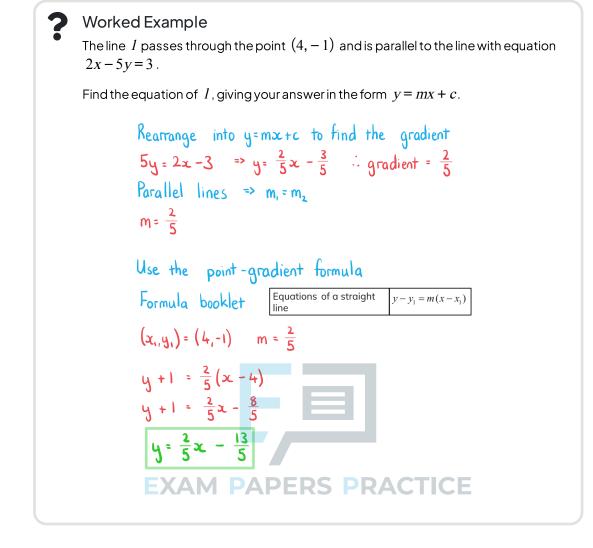


Parallel Lines

How are the equations of parallel lines connected?

- Parallel lines are always equidistant meaning they never intersect
- Parallel lines have the same gradient
 - If the gradient of line l_1 is m_1 and gradient of line l_2 is m_2 then...
 - $m_1 = m_2 \Rightarrow l_1 \& l_2$ are parallel
 - $l_1 \& l_2$ are parallel $\Rightarrow m_1 = m_2$
- To determine if two lines are parallel:
 - Rearrange into the gradient-intercept form y = mx + c
 - Compare the coefficients of *X*
 - If they are equal then the lines are parallel

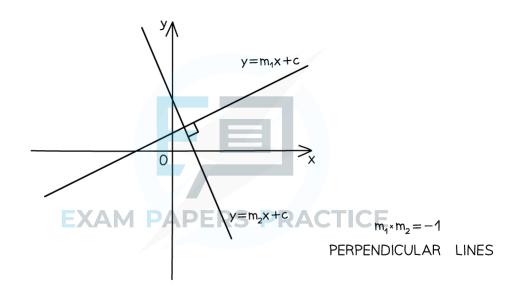




Perpendicular Lines

How are the equations of perpendicular lines connected?

- Perpendicular lines intersect at right angles
- The gradients of two perpendicular lines are negative reciprocals
 - If the gradient of line l_1 is m_1 and gradient of line l_2 is m_2 then...
 - $m_1 \times m_2 = -1 \Rightarrow l_1 \& l_2$ are perpendicular
 - $l_1 \& l_2$ are perpendicular $\Rightarrow m_1 \times m_2 = -1$
- To determine if two lines are perpendicular:
 - Rearrange into the gradient-intercept form y = mx + c
 - Compare the coefficients of X
 - If their product is -1 then they are perpendicular
- Be careful with horizontal and vertical lines
 - x = p and y = q are perpendicular where p and q are constants



Worked Example

The line I_1 is given by the equation 3x - 5y = 7.

The line I_2 is given by the equation $y = \frac{1}{4} - \frac{5}{3}x$.

Determine whether $\,I_1^{}$ and $\,I_2^{}$ are perpendicular. Give a reason for your answer.

Rearrange L, into y = mx + c form $5y = 3x - 7 \Rightarrow y = \frac{3}{5}x - \frac{7}{5}$ Identity gradients $m_1 = \frac{3}{5}$ $m_2 = -\frac{5}{3}$ $m_1 \times m_2 = -1 \Rightarrow$ Perpendicular lines $\frac{3}{5} \times -\frac{5}{3} = -1$ L, and L₂ are perpendicular as $m_1 \times m_2 = -1$

EXAM PAPERS PRACTICE

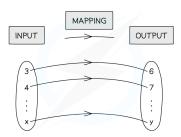
2.3 Functions Toolkit

2.3.1 Language of Functions

Language of Functions

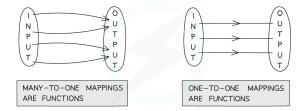
What is a mapping?

- A mapping transforms one set of values (inputs) into another set of values (outputs)
- Mappings can be:
 - One-to-one
 - Each input gets mapped to exactly one unique output
 - No two inputs are mapped to the same output
 - For example: A mapping that cubes the input
 - Many-to-one
 - Each input gets mapped to **exactly one** output
 - Multiple inputs can be mapped to the same output
 - For example: A mapping that squares the input
 - One-to-many
 - An input can be mapped to more than one output
 - No two inputs are mapped to the same output
 - For example: A mapping that gives the numbers which when squared equal the input
 - Many-to-many
 - An input can be mapped to more than one output CT CE
 - Multiple inputs can be mapped to the same output
 - For example: A mapping that gives the factors of the input



What is a function?

- A function is a mapping between two sets of numbers where **each input** gets mapped to **exactly one output**
 - The output does not need to be unique
- One-to-one and many-to-one mappings are functions
- A mapping is a function if its graph passes the **vertical line test**
 - Any vertical line will intersect with the graph at most once

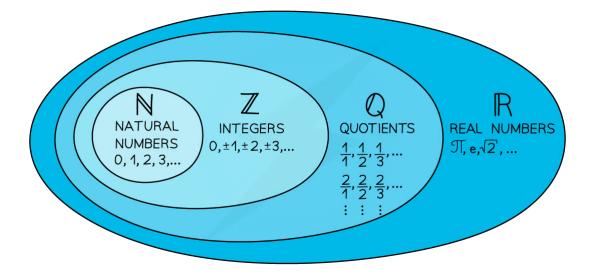


What notation is used for functions?

- Functions are denoted using letters (such as f, v, g, etc)
 - A function is followed by a variable in a bracket
 - This shows the input for the function
 - The letter *f* is used most commonly for functions and will be used for the remainder of this revision note
- f(x) represents an expression for the value of the function f when evaluated for the variable x
- Function notation gets rid of the need for words which makes it **universal**
 - f = 5 when x = 2 can simply be written as f(2) = 5

What are the domain and range of a function?

- The domain of a function is the set of values that are used as inputs
- A domain should be stated with a function
 - If a domain is not stated then it is assumed the domain is all the real values which would work as inputs for the function
 - Domains are expressed in terms of the input
 - x≤2EXAM PAPERS PRACTICE
- The **range** of a function is the set of values that are given as **outputs**
 - The range depends on the domain
 - Ranges are expressed in terms of the output
 - $f(x) \ge 0$
- To graph a function we use the **inputs as the x-coordinates** and the **outputs as the y- coordinates**
 - f(2) = 5 corresponds to the coordinates (2, 5)
- Graphing the function can help you visualise the range
- Common sets of numbers have special symbols:
 - $\circ \ \mathbb{R}$ represents all the real numbers that can be placed on a number line
 - $x \in \mathbb{R}$ means x is a real number
 - \mathbb{Q} represents all the rational numbers $\frac{a}{b}$ where a and b are integers and $b \neq 0$
 - \mathbb{Z} represents all the integers (positive, negative and zero)
 - \mathbb{Z}^+ represents positive integers
 - $\circ \mathbb{N}$ represents the natural numbers (0,1,2,3...)



What are piecewise functions?

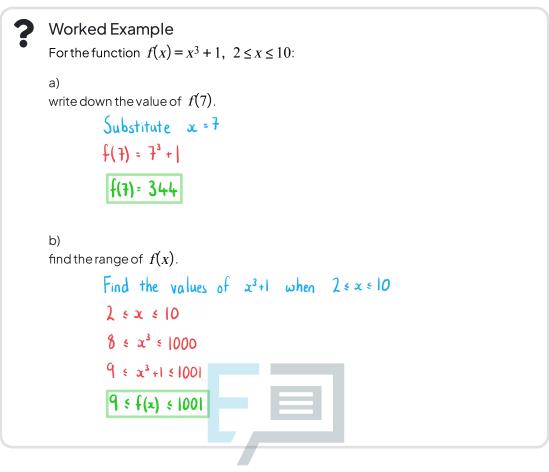
• **Piecewise functions** are defined by different functions depending on which interval the input is in

• E.g.
$$f(x) = \begin{cases} x+1 & x \le 5 \\ 2x-4 & 5 < x < 10 \\ x^2 & 10 \le x \le 20 \end{cases}$$

- The region for the individual functions cannot overlap
- To evaluate a piecewise function for a particular value x = k
 - Find which interval includes k
 - Substitute x = k into the corresponding function ACTICE
- The function may or may not be continuous at the ends of the intervals
 - In the example above the function is
 - continuous at x = 5 as 5 + 1 = 2(5) 4
 - not continuous at x = 10 as $2(10) 4 \neq 10^2$

Exam Tip

- Questions may refer to "the largest possible domain"
 - \circ This would usually be $x \in \mathbb{R}$ unless N, Z or Q has already been stated
 - There are usualy some exceptions
 - e.g. square roots; $x \ge 0$ for a function involving $\sqrt{}$
 - e.g. reciprocal functions; x ≠ 2 for a function with denominator (x - 2)



EXAM PAPERS PRACTICE

2.3.2 Composite & Inverse Functions

Composite Functions

What is a composite function?

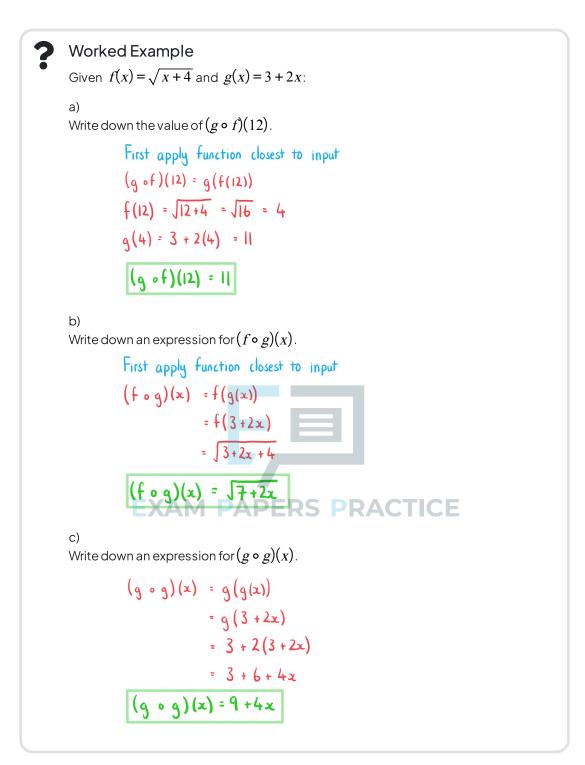
- A composite function is where a function is applied to another function
- A composite function can be denoted
 - $\circ (f \circ g)(x)$
 - $\circ fg(x)$
 - $\circ f(g(x))$
- The order matters
 - $(f \circ g)(x)$ means:
 - First apply g to x to get g(x)
 - Then apply f to the previous output to get f(g(x))
 - Always start with the function **closest to the variable**
 - $(f \circ g)(x)$ is not usually equal to $(g \circ f)(x)$

How do I find the domain and range of a composite function?

- The domain of $f \circ g$ is the set of values of x...
 - which are a **subset** of the **domain of g**
 - which maps g to a value that is in the **domain of f**
- The range of $f \circ g$ is the set of values of $x_{...}$
 - which are a **subset** of the **range of f**
 - found by **applying f** to the **range of g**
- To find the **domain** and **range** of $f \circ g$ **ERS PRACTICE**
 - First find the **range of g**
 - Restrict these values to the values that are within the domain of f
 - The domain is the set of values that produce the restricted range of g
 - The **range** is the set of values that are **produced using the restricted range** of g as the domain for f
- For example: let f(x) = 2x + 1, $-5 \le x \le 5$ and $g(x) = \sqrt{x}$, $1 \le x \le 49$
 - The range of g is $1 \le g(x) \le 7$
 - **Restricting** this to fit the **domain of** *f* results in $1 \le g(x) \le 5$
 - The **domain** of $f \circ g$ is therefore $1 \le x \le 25$
 - These are the values of x which map to $1 \le g(x) \le 5$
 - The range of $f \circ g$ is therefore $3 \le (f \circ g)(x) \le 11$
 - These are the values which f maps $1 \le g(x) \le 5$ to

Exam Tip

- Make sure you know what your GDC is capable of with regard to functions
 - You may be able to store individual functions and find composite functions and their values for particular inputs
 - You may be able to graph composite functions directly and so deduce their domain and range from the graph
- The link between the domains and ranges of a function and its inverse can act as a check for your solution
- ff(x) is not the same as $[f(x)]^2$



Inverse Functions

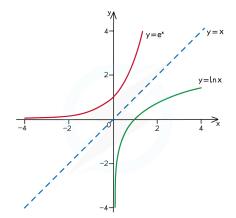
What is an inverse function?

- Only one-to-one functions have inverses
- A function has an inverse if its graph passes the horizontal line test
 Any horizontal line will intersect with the graph at most once
- The identity function id maps each value to itself
 - \circ id(x) = x
- If $f \circ g$ and $g \circ f$ have the same effect as the identity function then f and g are inverses
- Given a function f(x) we denote the **inverse function** as $f^{-1}(x)$
- An inverse function **reverses the effect** of a function
 - f(2) = 5 means $f^{-1}(5) = 2$
- Inverse functions are used to solve equations
 - The solution of f(x) = 5 is $x = f^{-1}(5)$
- A composite function made of f and f^{-1} has the same effect as the identity function $\circ (f \circ f^{-1})(x) = (f^{-1} \circ f)(x) = x$



What are the connections between a function and its inverse function?

- The domain of a function becomes the range of its inverse
- The range of a function becomes the domain of its inverse
- The graph of $y = f^{-1}(x)$ is a **reflection** of the graph y = f(x) in the line y = x
 - Therefore solutions to f(x) = x or $f^{-1}(x) = x$ will also be solutions to $f(x) = f^{-1}(x)$
 - There could be other solutions to $f(x) = f^{-1}(x)$ that don't lie on the line y = x



How do I find the inverse of a function?

- STEP 1: Swap the x and y in y = f(x)
 - If $y = f^{-1}(x)$ then x = f(y)
- STEP 2: **Rearrange** x = f(y) to make y the subject
- Note this can be done in any order
 - Rearrange y = f(x) to make x the subject
 - Swap x and y

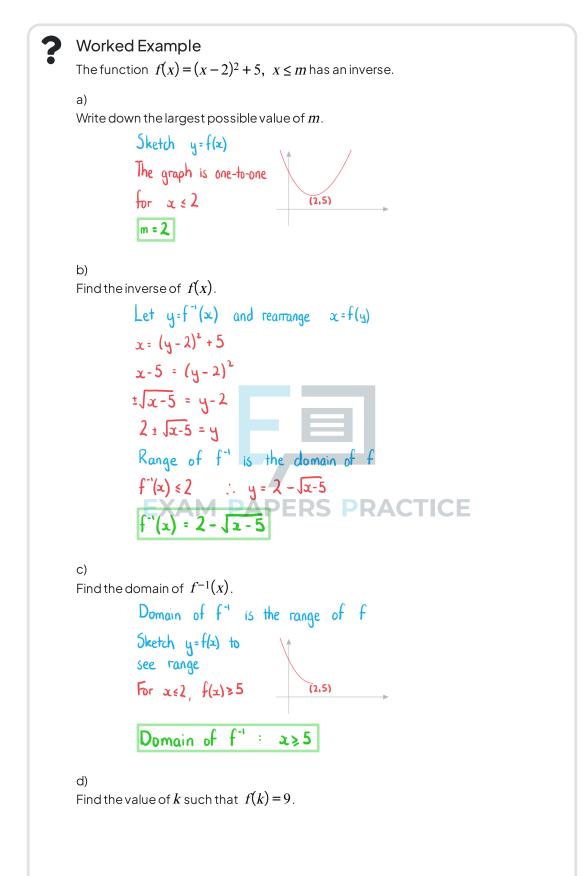
Can many-to-one functions ever have inverses?

- You can restrict the domain of a many-to-one function so that it has an inverse
- Choose a subset of the domain where the function is one-to-one
 - $\circ~$ The inverse will be determined by the restricted domain
 - Note that a many-to-one function can **only** have an inverse if its domain is restricted first
- For quadratics use the vertex as the upper or lower bound for the restricted domain
 - For f(x) = x² restrict the domain so 0 is either the maximum or minimum value
 For example: x ≥ 0 or x ≤ 0
 - For $f(x) = a(x h)^2 + k$ restrict the domain so h is either the maximum or minimum value
 - For example: $x \ge h$ or $x \le h$
- For trigonometric functions use part of a cycle as the restricted domain
 - For $f(x) = \sin x$ restrict the domain to half a cycle between a maximum and a minimum
 - For example: $-\frac{\pi}{2} \le x \le \frac{\pi}{2}$
 - For $f(x) = \cos x$ restrict the domain to half a cycle between maximum and a minimum
 - For example: $0 \le x \le \pi$
 - For $f(x) = \tan x$ restrict the domain to one cycle between two asymptotes
 - For example: $-\frac{\pi}{2} < x < \frac{\pi}{2}$

How do I find the inverse function after restricting the domain?

- The range of the inverse is the same as the restricted domain of the original function
- The inverse function is determined by the restricted domain
 - Restricting the domain differently will change the inverse function
- Use the range of the inverse to help find the inverse function
 - Restricting the domain of $f(x) = x^2$ to $x \ge 0$ means the range of the inverse is $f^{-1}(x) \ge 0$
 - Therefore $f^{-1}(x) = \sqrt{x}$
 - Restricting the domain of $f(x) = x^2$ to $x \le 0$ means the range of the inverse is $f^{-1}(x) \le 0$
 - Therefore $f^{-1}(x) = -\sqrt{x}$

- Remember that an inverse function is a reflection of the original function in the line v = x
 - Use your GDC to plot the function and its inverse on the same graph to visually check this
- $f^{-1}(x)$ is not the same as $\frac{1}{f(x)}$



Use inverse
$$f(a) = b \iff a = f^{-1}(b)$$

 $k = f^{-1}(q) = 2 - \sqrt{q - 5}$
 $k = 0$

2.3.3 Symmetry of Functions

Odd & Even Functions

What are odd functions?

• A function f(x) is called **odd** if

• f(-x) = -f(x) for all values of x

- Examples of odd functions include:
 - Power functions with **odd powers**: x^{2n+1} where $n \in \mathbb{Z}$ For example: $(-x)^3 = -x^3$
 - Some trig functions: sinx, cosecx, tanx, cotx For example: $\sin(-x) = -\sin x$
 - Linear combinations of odd functions

For example:
$$f(x) = 3x^5 - 4\sin x + \frac{6}{x}$$

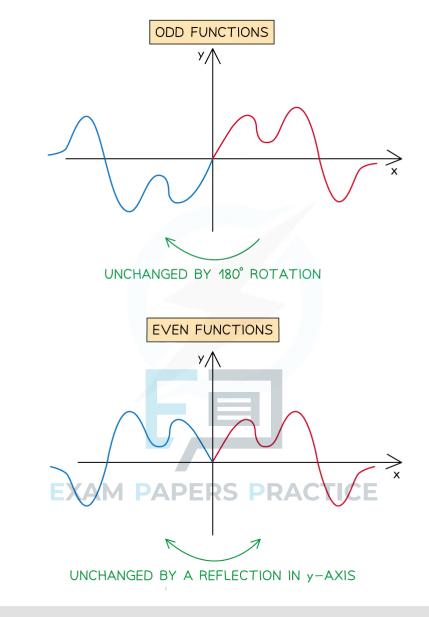
What are even functions?

- A function f(x) is called **even** if
- f(-x) = f(x) for all values of x
- Examples of even functions include:
 - Power functions with **even powers**: x^{2n} where $n \in \mathbb{Z}$ For example: $(-x)^4 = x^4$
 - Some trig functions: cosx, secx For example: $\cos(-x) = \cos x$

 - Modulus function: |x|
 Linear combinations of even functions For example: $f(x) = 7x^6 + 3|x| - 8\cos x$

What are the symmetries of graphs of odd & even functions?

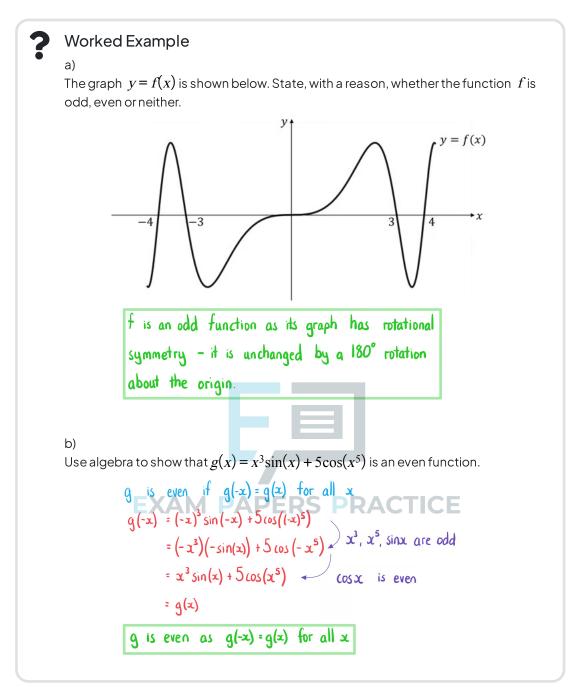
- The graph of an odd function has rotational symmetry
 - The graph is unchanged by a 180° rotation about the origin
- The graph of an even function has reflective symmetry
 - The graph is unchanged by a reflection in the y-axis



Exam Tip

 \mathbf{C}

- Turn your GDC upside down for a quick visual check for an odd function!
 - Ignoring axes, etc, if the graph looks exactly the same both ways, it's odd



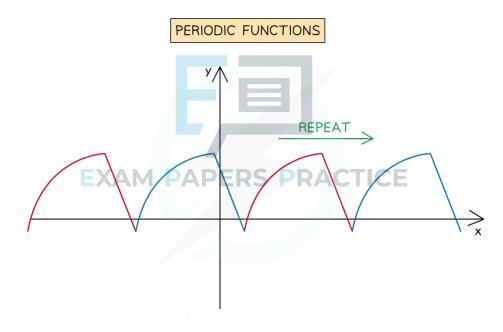
Periodic Functions

What are periodic functions?

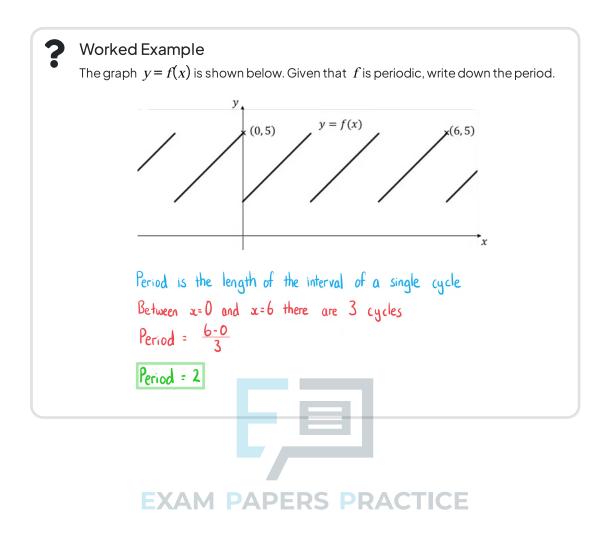
- A function f(x) is called **periodic**, with **period** k, if
 - f(x+k) = f(x) for all values of x
- Examples of periodic functions include:
 - $\sin x \& \cos x$: The period is 2π or 360°
 - $\tan x$: The period is π or 180°
 - Linear combinations of periodic functions with the same period
 - For example: $f(x) = 2\sin(3x) 5\cos(3x+2)$

What are the symmetries of graphs of periodic functions?

- The graph of a periodic function has translational symmetry
 - The graph is unchanged by translations that are integer multiples of
 - The means that the graph appears to repeat the same section (cycle) infinitely



- There may be several intersections between the graph of a periodic function and another function
 - i.e. Equations may have several solutions so only answers within a certain range of *x*-values may be required
 - e.g. Solve $\tan x = \sqrt{3}$ for $0^{\circ} \le x \le 360^{\circ}$
 - $x = 60^{\circ}, 240^{\circ}$
 - Alternatively you may have to write **all** solutions in a general form
 - e.g. $x = 60(3k+1)^\circ$, $k = 0, \pm 1, \pm 2$,



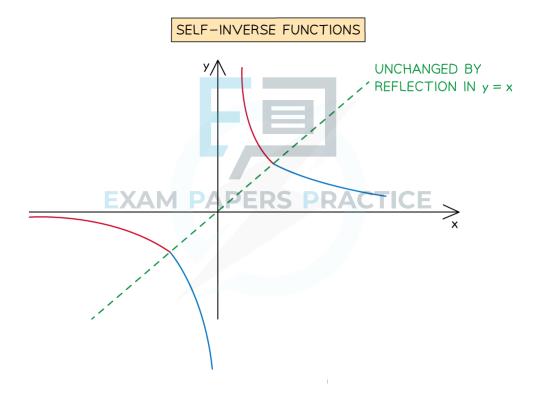
Self-Inverse Functions

What are self-inverse functions?

- A function f(x) is called **self-inverse** if
 - $(f \circ f)(x) = x$ for all values of x
 - $\circ \quad f^{-1}(x) = f(x)$
- Examples of self-inverse functions include:
 - Identity function: f(x) = x
 - Reciprocal function: $f(x) = \frac{1}{x}$
 - Linear functions with a gradient of -1: f(x) = -x + c

What are the symmetries of graphs of self-inverse functions?

- The graph of a self-inverse function has reflective symmetry
 - The graph is unchanged by a **reflection** in the line y = x

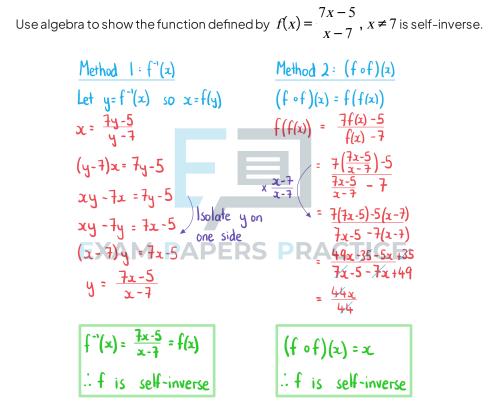


Exam Tip

- If your expression for $f^{-1}(x)$ is not the same as the expression for f(x) you can check their equivalence by plotting both on your GDC
 - $\circ~$ If equivalent the graphs will sit on top of one another and appear as one
 - This will indicate if you have made an error in your algebra, before trying to simplify/rewrite to make the two expressions identical
- It is sometimes easier to consider self inverse functions geometrically rather than algebraically

Worked Example

7



2.3.4 Graphing Functions

Graphing Functions

How do I graph the function y = f(x)?

- A point (a, b) lies on the graph y = f(x) if f(a) = b
- The horizontal axis is used for the domain
- The vertical axis is used for the range
- You will be able to graph some functions by hand
- For some functions you will need to use your GDC
- You might be asked to graph the sum or difference of two functions
 - Use your GDC to graph y = f(x) + g(x) or y = f(x) g(x)
 - Just type the functions into the graphing mode

What is the difference between "draw" and "sketch"?

- If asked to sketch you should:
 - Show the general shape
 - Label any key points such as the intersections with the axes
 - Label the axes
- If asked to draw you should:
 - Use a pencil and ruler
 - Draw to scale
 - Plot any points **accurately**



- Label any key points such as the intersections with the axes
 Label the axes
- Label the axes AM PAPERS

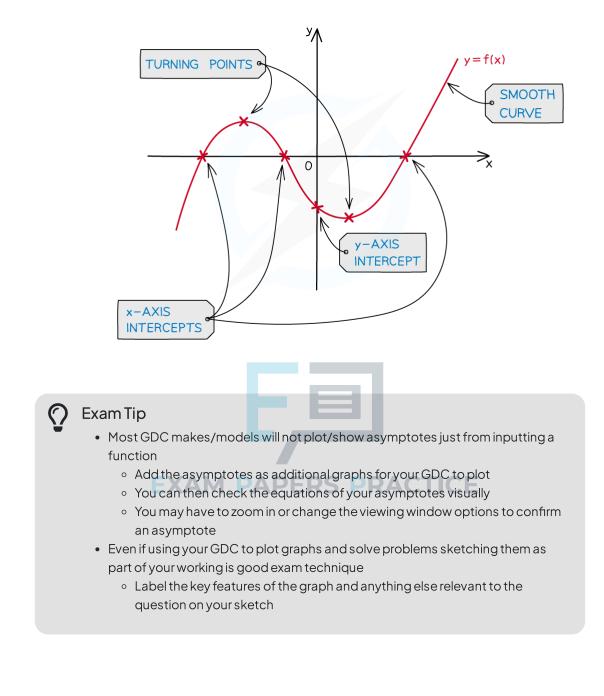
How can my GDC help me sketch/draw a graph?

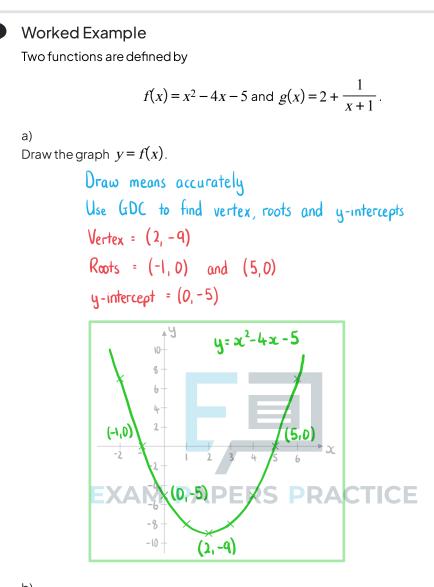
- You use your GDC to plot the graph
 - Check the scales on the graph to make sure you see the full shape
- Use your GDC to find any key points
- Use your GDC to check specific points to help you plot the graph

Key Features of Graphs

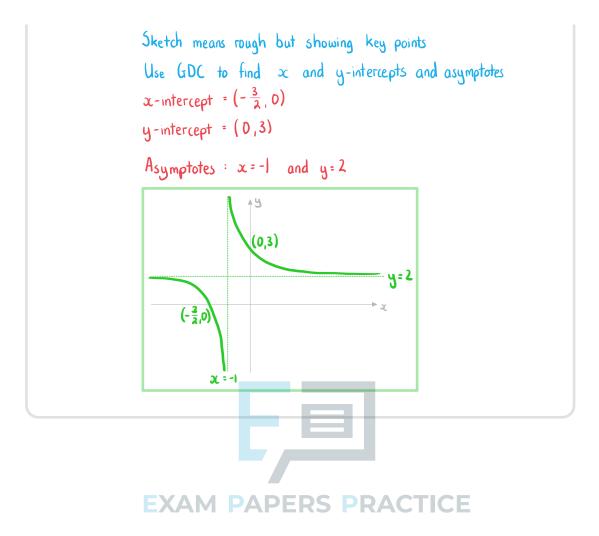
What are the key features of graphs?

- You should be familiar with the following key features and know how to use your GDC to find them
- Local minimums/maximums
 - $\circ~$ These are points where the graph has a minimum/maximum for a small region
 - They are also called **turning points**
 - This is where the graph changes its direction between upwards and downwards directions
 - A graph can have multiple local minimums/maximums
 - A local minimum/maximum is not necessarily the minimum/maximum of the whole graph
 - This would be called the **global** minimum/maximum
 - For quadratic graphs the minimum/maximum is called the **vertex**
- Intercepts
 - y intercepts are where the graph crosses the y-axis
 - At these points x = 0
 - x intercepts are where the graph crosses the x-axis
 - At these points y = 0
 - These points are also called the **zeros of the function** or **roots of the equation**
- Symmetry
 - Some graphs have lines of symmetry
 - A quadratic will have a vertical line of symmetry
- Asymptotes
 - These are lines which the graph will get closer to but not cross
 - These can be horizontal or vertical
 - Exponential graphs have horizontal asymptotes
 - Graphs of variables which vary inversely can have vertical and horizontal asymptotes





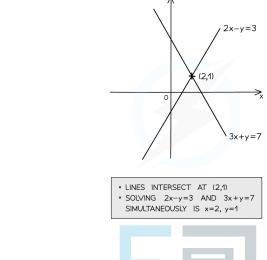
b) Sketch the graph y = g(x).



Intersecting Graphs

How do I find where two graphs intersect?

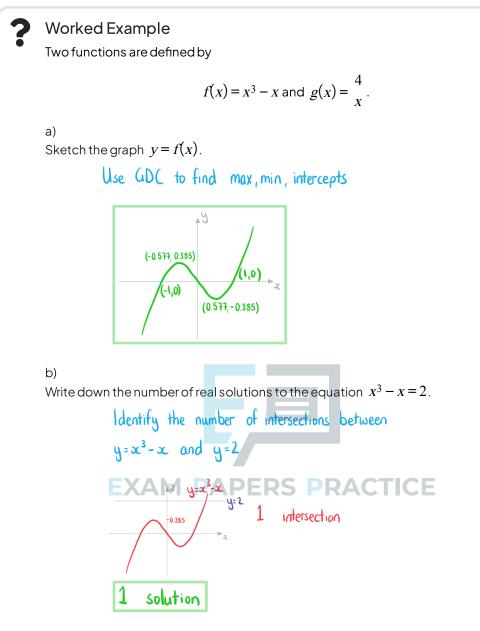
- Plot both graphs on your GDC
- Use the intersect function to find the intersections
- Check if there is more than one point of intersection



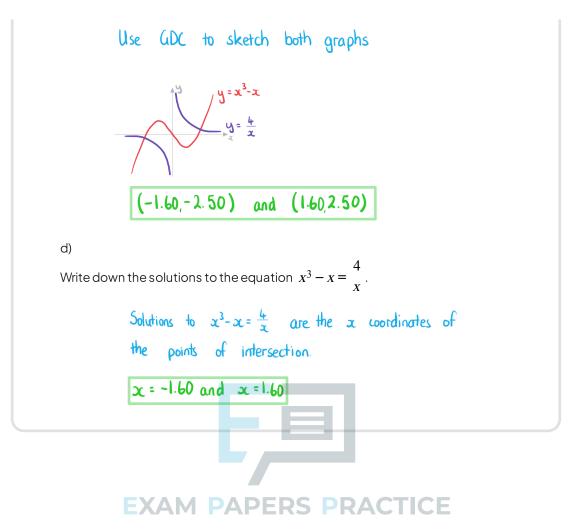
How can luse graphs to solve equations?

- One method to solve equations is to use graphs
- To solve f(x) = a
 - Plot the two graphs y = f(x) and y = a on your GDC
 - Find the points of intersections PERS PRACTICE
 - $\circ~$ The x-coordinates are the solutions of the equation
- To solve f(x) = g(x)
 - Plot the two graphs y = f(x) and y = g(x) on your GDC
 - Find the points of intersections
 - The x-coordinates are the solutions of the equation
- Using graphs makes it easier to see how many solutions an equation will have

- You can use graphs to solve equations
 - Questions will not necessarily ask for a drawing/sketch or make reference to graphs
 - Use your GDC to plot the equations and find the intersections between the graphs



Find the coordinates of the points where y = f(x) and y = g(x) intersect.



2.4 Other Functions & Graphs

2.4.1 Exponential & Logarithmic Functions

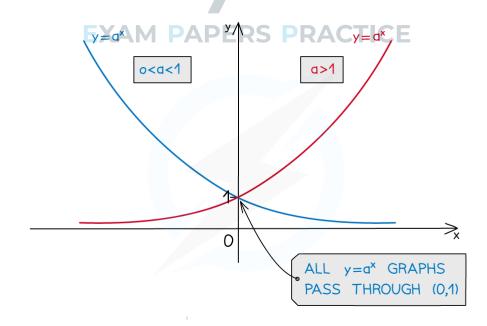
Exponential Functions & Graphs

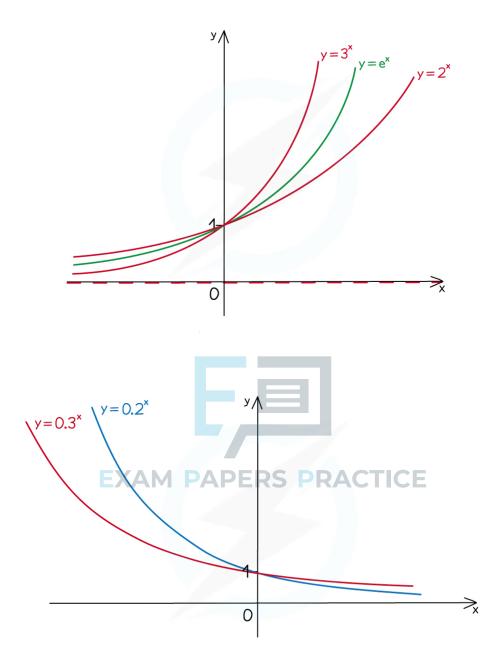
What is an exponential function?

- An exponential function is defined by $f(x) = a^x$, a > 0
- Its domain is the set of all real values
- Its range is the set of all positive real values
- An important exponential function is $f(x) = e^x$
 - Where e is the mathematical constant 2.718...
- Any exponential function can be written using e
- $a^x = e^{x \ln a}$
 - This is given in the formula booklet

What are the key features of exponential graphs?

- The graphs have a y-intercept at (0, 1)
- The graphs do not have any roots
- The graphs have **a horizontal asymptote** at the x-axis: y=0
 - For *a* > 1 this is the limiting value when *x* tends to negative infinity
 - For **0** < *a* < **1** this is the **limiting value** when *x* tends to **positive infinity**
- The graphs do not have any minimum or maximum points





Logarithmic Functions & Graphs

What is a logarithmic function?

- A logarithmic function is of the form $f(x) = \log_a x$, x > 0
- Its domain is the set of all positive real values
 - You can't take a log of zero or a negative number
- Its range is set of all real values
- $\log_a x$ and a^x are **inverse** functions
- An important logarithmic function is $f(x) = \ln x$
 - This is the natural logarithmic function $\ln x \equiv \log_a x$
 - This is the inverse of e^x

 $\ln e^x = x$ and $e^{\ln x} = x$

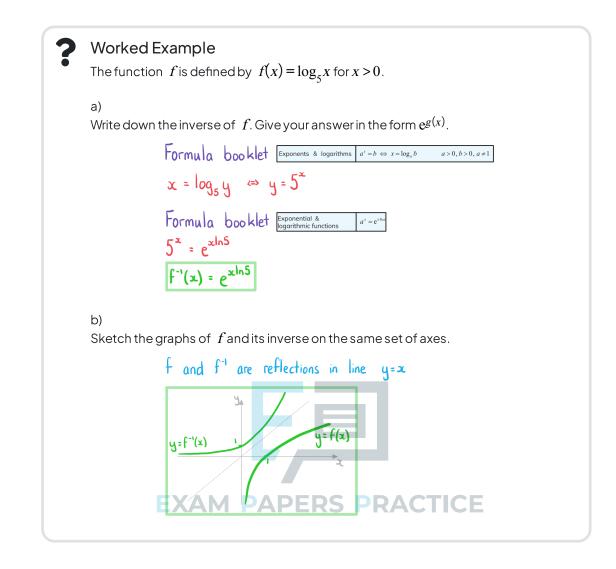
• Any logarithmic function can be written using In

• $\log_a x = \frac{\ln x}{\ln a}$ using the change of base formula

What are the key features of logarithmic graphs?

- The graphs **do not have a y-intercept**
- The graphs have **one root** at (1, 0)
- The graphs have a **vertical asymptote** at the *y*-axis: *x* = 0
- The graphs do not have any minimum or maximum points

EXAM PAPERS PRACTICE



2.4.2 Solving Equations

Solving Equations Analytically

How can I solve equations analytically where the unknown appears only once?

- These equations can be solved by rearranging
- For one-to-one functions you can just apply the inverse
 - Addition and subtraction are inverses

 $y = x + k \iff x = y - k$

• Multiplication and division are inverses

$$y = kx \iff x = \frac{y}{k}$$

• Taking the reciprocal is a self-inverse

$$y = \frac{1}{x} \Leftrightarrow x = \frac{1}{y}$$

• Odd powers and roots are inverses

$$y = x^n \iff x = \sqrt[n]{y}$$

$$y = x^n \iff x = y$$

• Exponentials and logarithms are inverses

п

$$y = a^x \iff x = \log_a y$$

$$y = e^x \Leftrightarrow x = \ln y$$

- For many-to-one functions you will need to use your knowledge of the functions to find
 - the other solutions AM PAPERS PRAC
 - Even powers lead to positive and negative solutions

$$y = x^n \Leftrightarrow x = \pm \sqrt[n]{y}$$

• Modulus functions lead to positive and negative solutions

$$y = |x| \Leftrightarrow x = \pm y$$

• Trigonometric functions lead to infinite solutions using their symmetries

 $y = \sin x \Leftrightarrow x = 2k\pi + \arcsin y$ or $x = (1 + 2k)\pi - \arcsin y$

$$y = \cos x \Leftrightarrow x = 2k\pi \pm \arccos y$$

$$y = \tan x \Leftrightarrow x = k\pi + \arctan y$$

- Take care when you apply **many-to-one functions** to **both sides** of an equation as this can create **additional solutions** which are incorrect
 - For example: squaring both sides
 - x + 1 = 3 has one solution x = 2

$$(x+1)^2 = 3^2$$
 has two solutions $x = 2$ and $x = -4$

• Always check your solutions by substituting back into the original equation

How can I solve equations analytically where the unknown appears more than once?

- Sometimes it is possible to **simplify expressions** to make the **unknown appear only once**
- Collect all terms involving x on one side and try to simplify into one term
 - For exponents use

$$a^{f(x)} \times a^{g(x)} = a^{f(x) + g(x)}$$

$$\frac{a^{f(x)}}{a^{g(x)}} = a^{f(x) - g(x)}$$

$$(a^{f(x)})^{g(x)} = a^{f(x) \times g(x)}$$

$$a^{f(x)} = e^{f(x) \ln a}$$
For **logarithms** use
$$\log_a f(x) + \log_a g(x) = \log_a (f(x) \times g(x))$$

$$\log_a f(x) - \log_a g(x) = \log_a \left(\frac{f(x)}{g(x)}\right)$$

$$n \log_a f(x) = \log_a (f(x))^n$$

How can I solve equations analytically when the equation can't be simplified?

- Sometimes it is not possible to simplify equations
- Most of these equations cannot be solved analytically
- A **special case** that can be solved is where the equation can be **transformed into a quadratic** using a substitution
 - These will have three terms and involve the same type of function
- Identify the suitable substitution by considering which function is a square of another
 - For example: the following can be transformed into $2y^2 + 3y 4 = 0$

$$2x^{4} + 3x^{2} - 4 = 0 \text{ using } y = x^{2}$$

$$2x + 3\sqrt{x} - 4 = 0 \text{ using } y = \sqrt{x}$$

$$\frac{2}{x^{6}} + \frac{3}{x^{3}} - 4 = 0 \text{ using } y = \frac{1}{x^{3}}$$

$$2e^{2x} + 3e^{x} - 4 = 0 \text{ using } y = e^{x}$$

$$2 \times 25^{x} + 3 \times 5^{x} - 4 = 0 \text{ using } y = 5^{x}$$

$$2^{2x+1} + 3 \times 2^{x} - 4 = 0 \text{ using } y = 2^{x}$$

$$2(x^{3} - 1)^{2} + 3(x^{3} - 1) - 4 = 0 \text{ using } y = x^{3} - 1$$

• To solve:

0

- Make the substitution y = f(x)
- Solve the quadratic equation $ay^2 + by + c = 0$ to get $y_1 \& y_2$
- Solve $f(x) = y_1$ and $f(x) = y_2$

Note that some equations might have zero or several solutions

Can I divide both sides of an equation by an expression?

- When dividing by an expression you must consider whether the expression could be zero
- Dividing by an expression that could be zero could result in you **losing solutions to the** original equation
 - For example: (x + 1)(2x 1) = 3(x + 1)If you divide both sides by (x + 1) you get 2x - 1 = 3 which gives x = 2

However x = -1 is also a solution to the original equation

- To ensure you **do not lose solutions** you can:
 - Split the equation into two equations

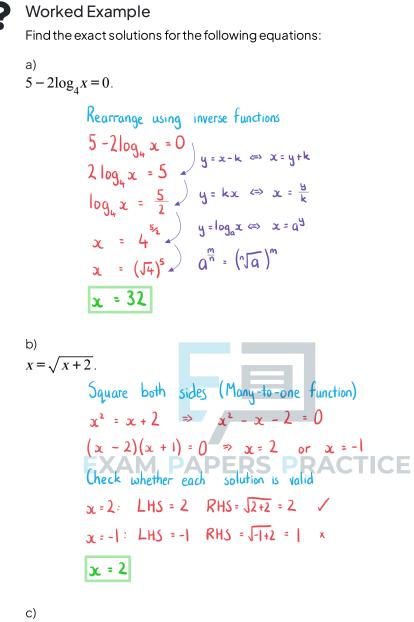
One where the dividing expression equals zero: x + 1 = 0

- One where the equation has been divided by the expression: 2x 1 = 3
- Make the equation equal zero and factorise
 - (x+1)(2x-1) 3(x+1) = 0

(x+1)(2x-1-3) = 0 which gives (x+1)(2x-4) = 0

Set each factor equal to zero and solve: x + 1 = 0 and 2x - 4 = 0

- A common mistake that students make in exams is applying functions to each term rather than to each side
 - For example: Starting with the equation $\ln x + \ln(x 1) = 5$ it would be incorrect to write $e^{\ln x} + e^{\ln(x-1)} = e^5$ or $x + (x 1) = e^5$
 - Instead it would be correct to write $e^{inx + in(x-1)} = e^5$ and then simplify from there



 $e^{2x} - 4e^x - 5 = 0$.

Notice
$$e^{2x} = (e^{x})^2$$
, let $y = e^x$
 $y^2 - 4y - 5 = 0 \Rightarrow (y+1)(y-5) = 0$
 $y = -1$ or $y = 5$
Solve using $y = e^x$
 $e^x = -1$ has no solutions as $e^x > 0$
 $e^x = 5 \therefore x = \ln 5$
 $x = \ln 5$

Solving Equations Graphically

How can I solve equations graphically?

- To solve f(x) = g(x)
 - One method is to **draw the graphs** y = f(x) and y = g(x)
 - The solutions are the x-coordinates of the points of intersection
 - Another method is to **draw the graph** y = f(x) g(x) or y = g(x) f(x)
 - The ${\rm solutions}$ are the ${\rm roots}$ (${\rm zeros}$) of this graph

This method is sometimes quicker as it involves **drawing only one graph**

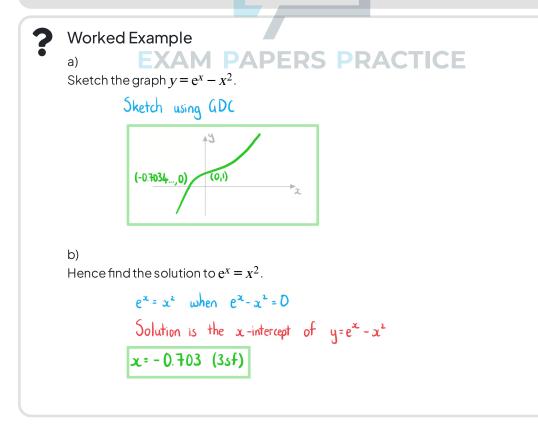
Why do I need to solve equations graphically?

- Some equations cannot be solved analytically
 - Polynomials of degree higher than 4

 $x^5 - x + 1 = 0$

• Equations involving different types of functions $e^x = x^2$

- On a calculator paper you are allowed to solve equations using your GDC unless the question asks for an algebraic method
- If your answer needs to be an exact value then you might need to solve analytically to get the exact value



2.4.3 Modelling with Functions

Modelling with Functions

What is a mathematical model?

- A **mathematical model** simplifies a real-world situation so it can be described using mathematics
 - The model can then be used to make predictions
- Assumptions about the situation are made in order to simplify the mathematics
- Models can be **refined** (improved) if further information is available or if the model is compared to real-world data

How do I set up the model?

- The question could:
 - give you the equation of the model
 - tell you about the relationship
 - It might say the relationship is linear, quadratic, etc
 - ask you to suggest a **suitable model**
 - Use your knowledge of each model
 - E.g. if it is compound interest then an exponential model is the most appropriate
- You may have to determine a **reasonable domain**
 - Consider real-life context
 - E.g. if dealing with hours in a day then
 - E.g. if dealing with physical quantities (such as length) then
 - Consider the possible ranges DEDC DDA

If the outcome cannot be negative then you want to choose a domain which corresponds to a range with no negative values

Sketching the graph is helpful to determine a suitable domain

Which models might I need to use?

- You could be given any model and be expected to use it
- Common models include:
 - Linear

Arithmetic sequences

Linear regression

• Quadratic

- Projectile motion The height of a cable supporting a bridge Profit
- Exponential
 - Geometric sequences Exponential growth and decay Compound interest
- Logarithmic
 - Richter scale for the magnitude of earthquakes
- Rational

Temperature of a cup of coffee

 \circ Trigonometric

The depth of a tide

How do I use a model?

- You can use a model by substituting in values for the variable to **estimate outputs**
 - For example: Let h(t) be the height of a football t seconds after being kicked
 h(3) will be an estimate for the height of the ball 3 seconds after being kicked
- Given an ${\it output}$ you can ${\it form}\, an\, equation$ with the model to ${\it estimate}\, the\, input$
 - For example: Let P(n) be the profit made by selling n items
 Solving P(n) = 100 will give you an estimate for the number of items needing to be
 sold to make a profit of 100
- If your variable is **time** then substituting t = 0 will give you the **initial value** according to the model
- Fully understand the **units for the variables**
 - If the units of P are measured in **thousand dollars** then P = 3 represents \$3000
- Look out for **key words** such as:
 - Initially
 - Minimum/maximum
 - Limiting value

What do I do if some of the parameters are unknown?

- A general method is to form equations by substituting in given values
 - You can form **multiple equations** and **solve them simultaneously** using your GDC
 - This method works for all models
- The initial value is the value of the function when the variable is 0
 - This is normally one of the parameters in the equation of the model

Worked Example

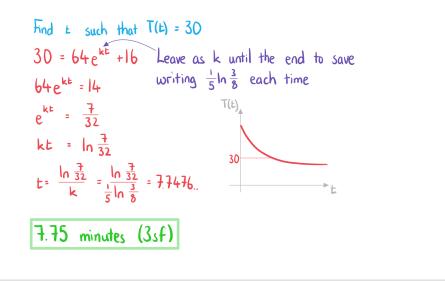
The temperature, $T^{\circ}C$, of a cup of coffee is monitored. Initially the temperature is 80°C and 5 minutes later it is 40°C. It is suggested that the temperature follows the model:

$$T(t) = Ae^{kt} + 16, t \ge 0.$$

where *t* is the time, in minutes, after the coffee has been made.

a) State the value of A. Initially temperature is 80°C T(t) T(0) = 80 80 $Ae^{-k(0)} + 16 = 80$ 16 A + 16 = 80A= 64 b) Find the exact value of k. E=5 T=40 T(t) 40 $e^{5k} = \frac{3}{8}$ $5k = \ln \frac{3}{8}$ $k = \frac{1}{5} \ln \frac{3}{8}$

Find the time taken for the temperature of the coffee to reach 30°C.



2.5 Reciprocal & Rational Functions

2.5.1 Reciprocal & Rational Functions

Reciprocal Functions & Graphs

What is the reciprocal function?

- The reciprocal function is defined by $f(x) = \frac{1}{x}, x \neq 0$
- Its domain is the set of all real values except 0
- Its range is the set of all real values except 0
- The reciprocal function has a self-inverse nature
 - $\circ \quad f^{-1}(x) = f(x)$

$\circ (f \circ f)(x) = x$

What are the key features of the reciprocal graph?

- The graph does not have a y-intercept
- The graph does not have any roots
- The graph has two asymptotes
 - A horizontal asymptote at the x-axis: y=0
 - This is the **limiting value** when the absolute value of x gets very large
 - A vertical asymptote at the y-axis: x = 0
 - This is the value that causes the **denominator to be zero**
- The graph has two axes of symmetry ERS PRACING
 - $\circ y = x$
 - $\circ y = -x$
- The graph does not have any minimum or maximum points

Linear Rational Functions & Graphs

What is a rational function with linear terms?

- A (linear) rational function is of the form $f(x) = \frac{ax+b}{cx+d}, x \neq -\frac{d}{c}$
- Its domain is the set of all real values except $-\frac{a}{2}$
- Its range is the set of all real values except
- The reciprocal function is a special case of a rational function

What are the key features of linear rational graphs?

- The graph has a **y-intercept** at $\begin{pmatrix} 0, \\ d \end{pmatrix}$ provided $d \neq 0$
- The graph has **one root** at $\left(-\frac{b}{a}, 0\right)$ provided $a \neq 0$
- The graph has two asymptotes
 - A horizontal asymptote: $y = {c \choose c}$

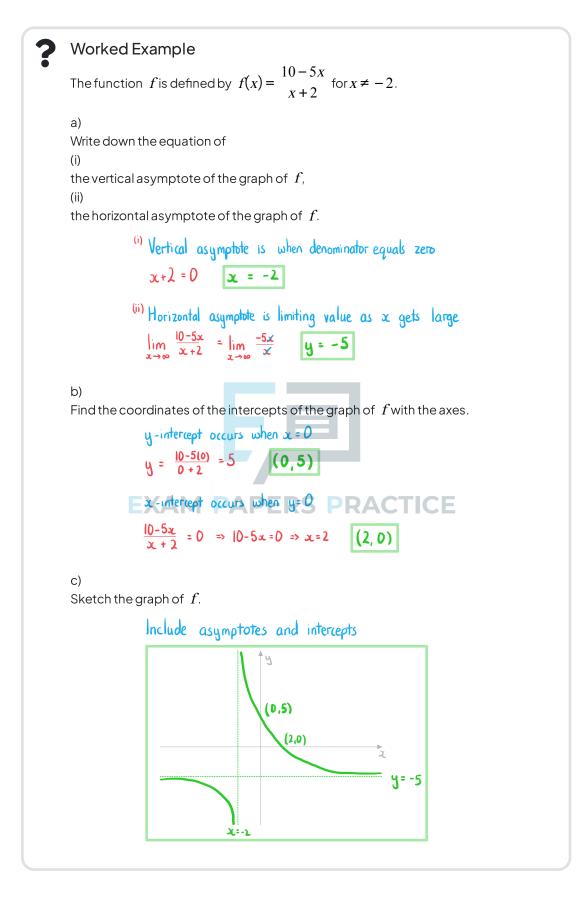
This is the **limiting value** when the absolute value of *x* gets very large

• A vertical asymptote: $x = -\frac{d}{c}$

This is the value that causes the **denominator to be zero**

- The graph does not have any minimum or maximum points
- If you are asked to sketch or draw a rational graph: DACT
 - Give the coordinates of any intercepts with the axes
 - Give the **equations** of the **asymptotes**

- If you draw a horizontal line anywhere it should only intersect this type of graph once at most
- The only horizontal line that should not intersect the graph is the horizontal asymptote
 - This can be used to check your sketch in an exam



Quadratic Rational Functions & Graphs

How do I sketch the graph of a rational function where the terms are not linear?

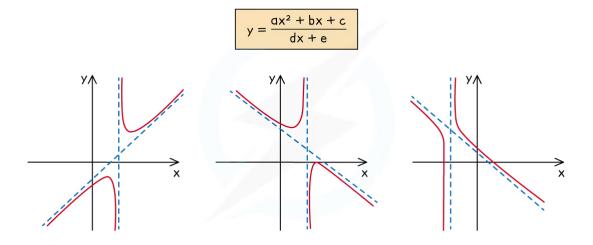
- A rational function can be written $f(x) = \frac{g(x)}{h(x)}$
 - \circ Where g and h are polynomials
- To find the **y-intercept** evaluate $\begin{array}{c} g(0) \\ h(0) \end{array}$
- To find the x-intercept(s) solve g(x) = 0
- To find the equations of the **vertical asymptote(s)** solve h(x) = 0
- There will also be an **asymptote** determined by what f(x) tends to as x approaches infinity
 In this course it will be either:

Horizontal

- Oblique (a slanted line)
- This can be found by writing g(x) in the form h(x)Q(x) + r(x)
 - You can do this by p**olynomial division** or **comparing coefficients**
- The function then tends to the curve y = Q(x)

What are the key features of rational graphs: quadratic over linear?

- For the rational function of the form $f(x) = \frac{ax^2 + bx + c}{dx + e}$
- The graph has a **y-intercept** at $\begin{pmatrix} c \\ 0, \\ e \end{pmatrix}$ provided $e \neq 0$
- The graph can have **0**, **1 or 2 roots** • They are the solutions to $ax^2 + bx + c = 0$
- The graph has one vertical asymptote $x = -\frac{e}{d}$
- The graph has an **oblique asymptote** y = px + q
 - Which can be found by writing $ax^2 + bx + c$ in the form (dx + c)(px + q) + rWhere p, q, r are constants
 - This can be done by **polynomial division** or **comparing coefficients**

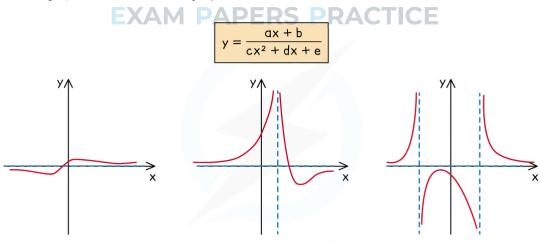


What are the key features of rational graphs: linear over quadratic?

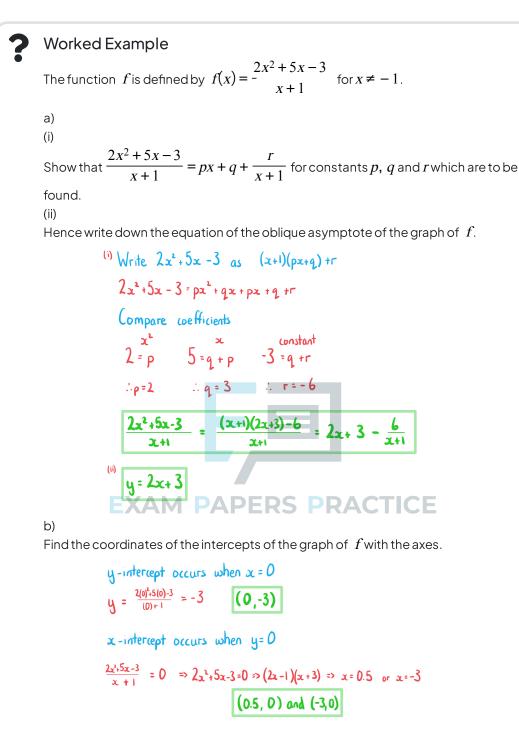
- For the rational function of the form $f(x) = \frac{ax+b}{cx^2+dx+c}$
- The graph has a **y-intercept** at $\begin{pmatrix} 0, \\ e \end{pmatrix}$ provided $e \neq 0$
- The graph has **one root** at x = -
- The graph has can have 0, 1 or 2 vertical asymptotes
 They are the solutions to cx² + dx + c = 0

я

• The graph has a horizontal asymptote



- If you draw a horizontal line anywhere it should only intersect this type of graph twice at most
 - This idea can be used to check your graph or help you sketch it



c) Sketch the graph of f.

Vertical asymptote when denominator is zero x = -1Include asymptotes and intercepts

4=2×13 94 (-3₁0) (0.5,0) х (0,-3) X=-1

2.6 Transformations of Graphs

2.6.1 Translations of Graphs

Translations of Graphs

What are translations of graphs?

- When you alter a function in certain ways, the effects on the graph of the function can be described by **geometrical transformations**
- For a translation:
 - the graph is **moved** (up or down, left or right) in the xy plane Its position **changes**
 - the shape, size, and orientation of the graph remain unchanged
- A particular translation (how far left/right, how far up/down) is specified by a translation

vector

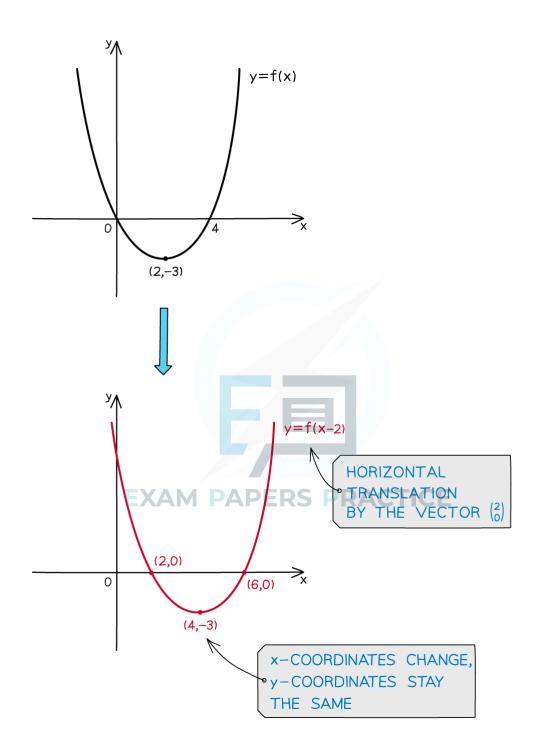
- x is the horizontal displacement
 - Positive moves right
 - Negative moves left
- y is the **vertical** displacement
 - Positive moves up Negative moves down
 - EXAM PAPERS PRACTICE

What effects do horizontal translations have on the graphs and functions?

• A horizontal translation of the graph y = f(x) by the vector $\begin{pmatrix} a \\ 0 \end{pmatrix}$ is represented by

www.exampaperspractice.co.uk

- $\circ \quad y = f(x a)$
- The x-coordinates change
 - The value *a* is **subtracted** from them
- The y-coordinates stay the same
- The coordinates (x, y) become (x + a, y)
- Horizontal asymptotes stay the same
- Vertical asymptotes change
 - x = k becomes x = k + a

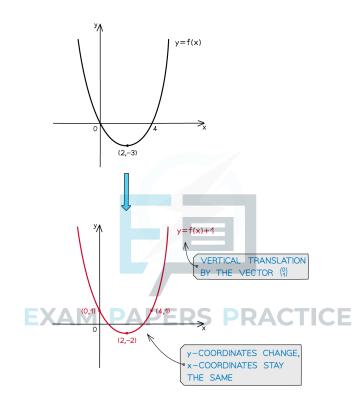


What effects do vertical translations have on the graphs and functions?

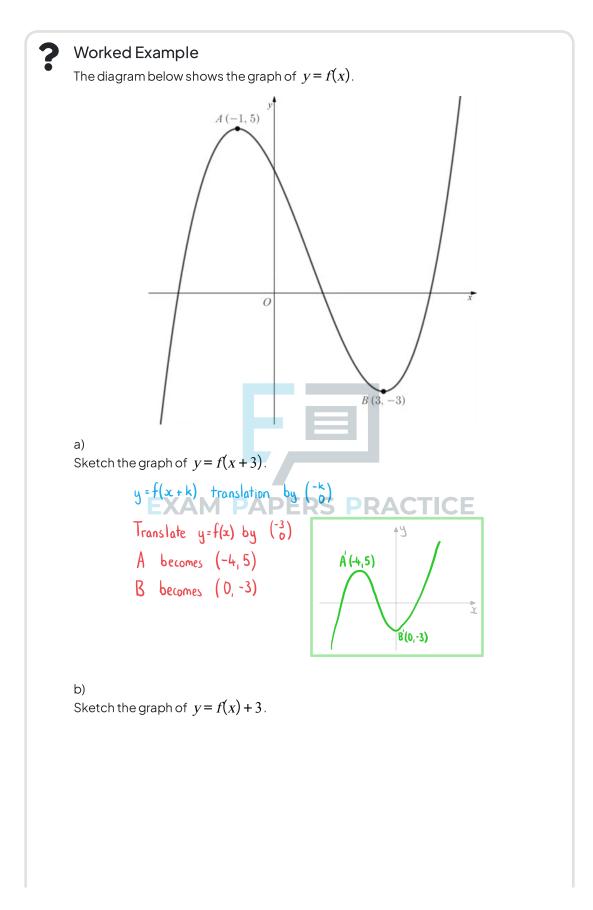
• A vertical translation of the graph y = f(x) by the vector $\begin{pmatrix} 0 \\ b \end{pmatrix}$ is represented by

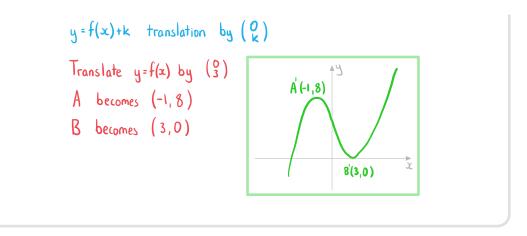
$$\circ \quad y-b=f(x)$$

- This is often rearranged to y = f(x) + b
- The x-coordinates stay the same
- The y-coordinates change
 - The value b is **added** to them
- The coordinates (x, y) become (x, y+b)
- Horizontal asymptotes change
 - y = k becomes y = k + b
- Vertical asymptotes stay the same



- To get full marks in an exam make sure you use correct mathematical terminology
 - For example: Translate by the vector





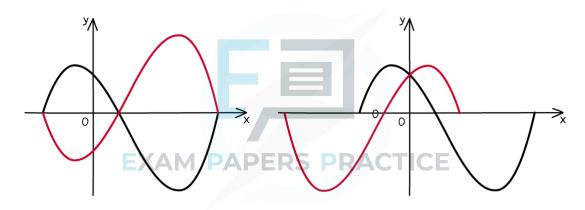
2.6.2 Reflections of Graphs

Reflections of Graphs

What are reflections of graphs?

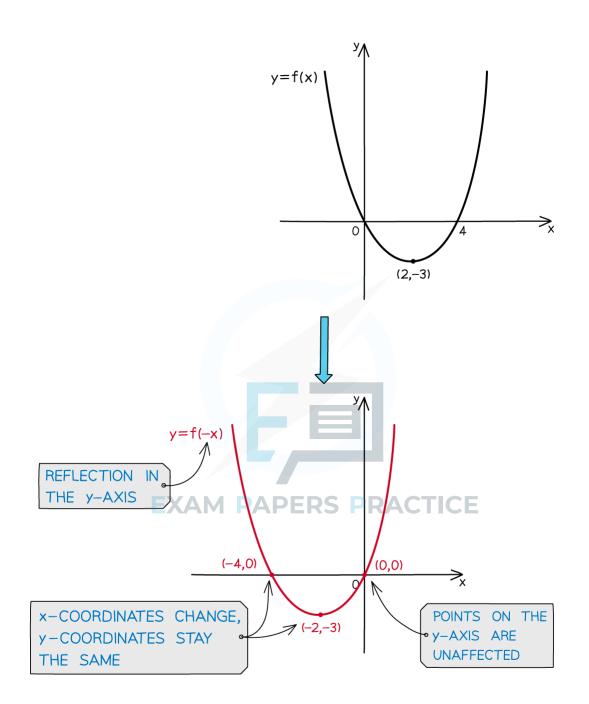
- When you alter a function in certain ways, the effects on the graph of the function can be described by **geometrical transformations**
- For a **reflection**:
 - the graph is **flipped** about one of the coordinate axes Its orientation **changes**
 - the size of the graph remains **unchanged**
- A particular reflection is specified by an **axis of symmetry**:
 - $\circ y=0$
 - This is the *x*-axis
 - $\circ x = 0$

This is the y-axis



What effects do horizontal reflections have on the graphs and functions?

- A horizontal reflection of the graph y = f(x) about the y-axis is represented by • y = f(-x)
- The x-coordinates change
 - Their sign changes
- The y-coordinates stay the same
- The coordinates (x, y) become (-x, y)
- Horizontal asymptotes stay the same
- Vertical asymptotes change
 - x = k becomes x = -k



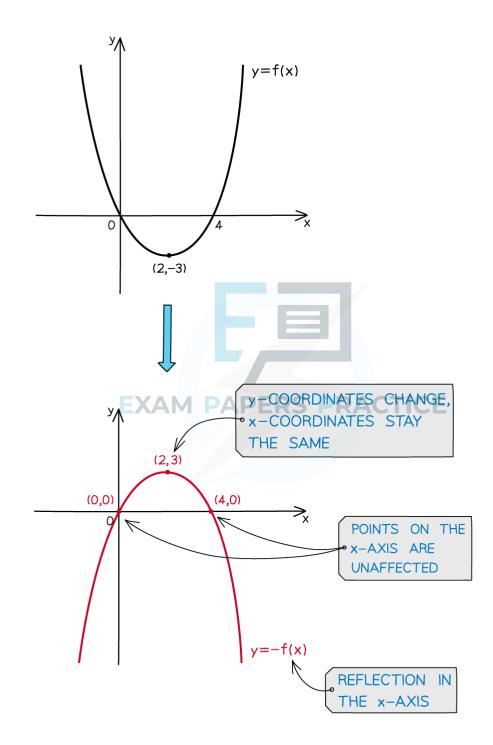
What effects do vertical reflections have on the graphs and functions?

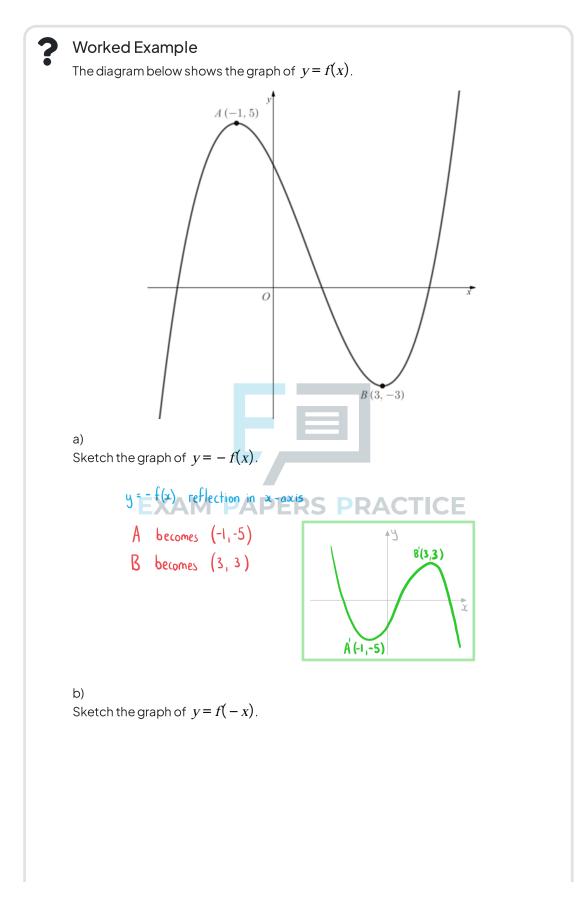
• A vertical reflection of the graph y = f(x) about the x-axis is represented by

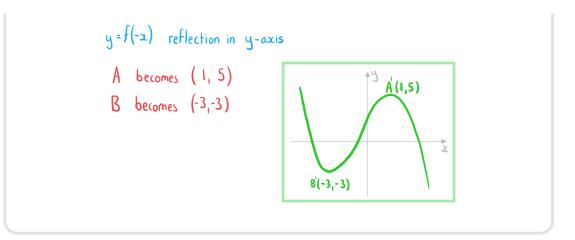
$$\circ \quad -y = f(x)$$

- This is often rearranged to y = -f(x)
- The x-coordinates stay the same
- The y-coordinates change
 - Their **sign** changes

- The coordinates (x, y) become (x, -y)
- Horizontal asymptotes change
 - y = k becomes y = -k
- Vertical asymptotes stay the same







2.6.3 Stretches Graphs

Stretches of Graphs

What are stretches of graphs?

- When you alter a function in certain ways, the effects on the graph of the function can be described by **geometrical transformations**
- For a **stretch**:
 - the graph is **stretched** about one of the coordinate axes by a scale factor Its size **changes**
 - the orientation of the graph remains unchanged
- A particular stretch is specified by a coordinate axis and a scale factor:
 - The distance between a point on the graph and the specified coordinate axis is multiplied by the constant scale factor
 - The graph is stretched in the direction which is parallel to the other coordinate axis
 - For scale factors **bigger than 1**
 - the points on the graph get further away from the specified coordinate axis
 - For scale factors **between 0 and 1**

the points on the graph get **closer** to the **specified coordinate axis** This is also sometimes called a **compression** but in your exam you must use the term **stretch** with the appropriate scale factor

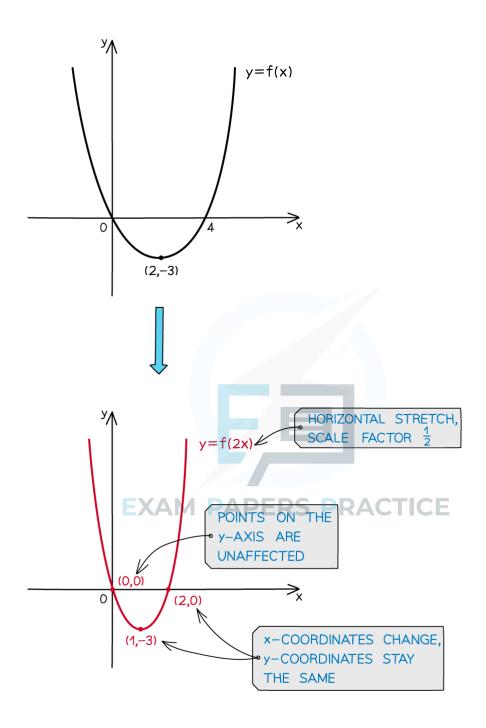


What effects do horizontal stretches have on the graphs and functions?

• A **horizontal stretch** of the graph y = f(x) by a scale factor q centred about the y-axis is represented by

$$\circ \quad y = f \begin{pmatrix} x \\ q \end{pmatrix}$$

- The x-coordinates change
 - They are **divided** by q
- The y-coordinates stay the same
- The coordinates (x, y) become (qx, y)
- Horizontal asymptotes stay the same
- Vertical asymptotes change
 - x = k becomes x = qk



What effects do vertical stretches have on the graphs and functions?

• A vertical stretch of the graph y = f(x) by a scale factor p centred about the x-axis is represented by

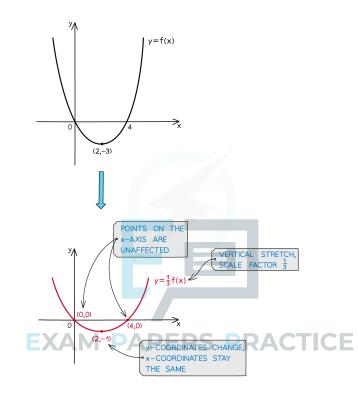
$$\circ \quad \frac{y}{p} = f(x)$$

• This is often rearranged to y = pf(x)

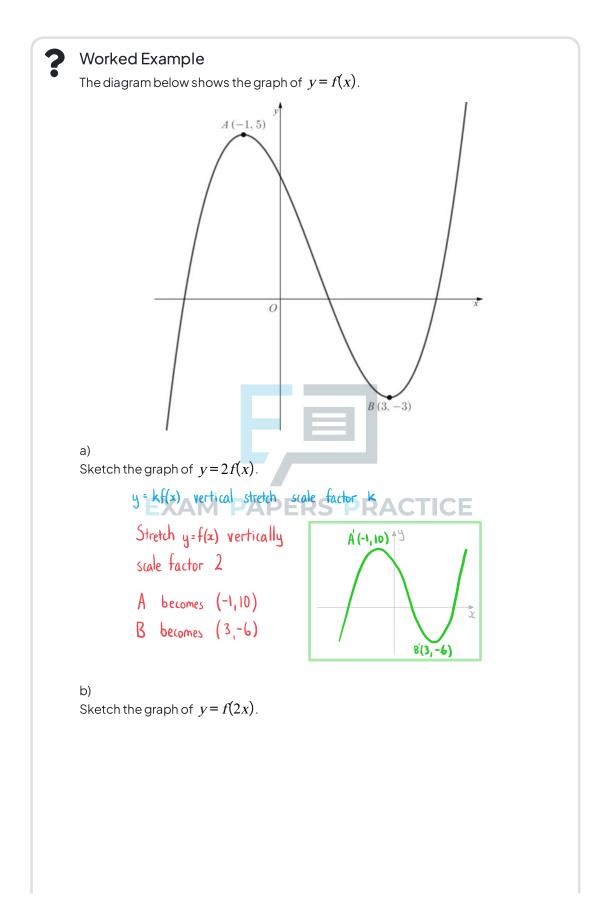
- The x-coordinates stay the same
- The y-coordinates change
 - They are **multiplied** by p
- The coordinates (x, y) become (x, py)
- Horizontal asymptotes change

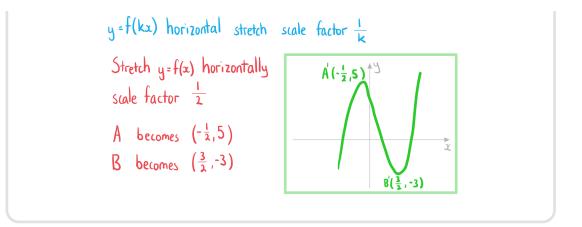
• y = k becomes y = pk

• Vertical asymptotes stay the same



- To get full marks in an exam make sure you use correct mathematical terminology
 - For example: Stretch vertically by scale factor ¹/₂
 - Do not use the word "compress" in your exam





2.6.4 Composite Transformations of Graphs

Composite Transformations of Graphs

What transformations do I need to know?

- y = f(x + k) is horizontal translation by vector $\begin{pmatrix} -k \\ 0 \end{pmatrix}$
 - If k is **positive** then the graph moves **left**
 - If k is **negative** then the graph moves **right**
- y = f(x) + k is vertical translation by vector $\begin{pmatrix} 0 \\ k \end{pmatrix}$
 - If k is **positive** then the graph moves **up**
 - If k is **negative** then the graph moves **down**
- y = f(kx) is a **horizontal stretch** by scale factor $\frac{1}{k}$ centred about the y-axis
 - If *k* > 1 then the graph gets **closer** to the *y*-axis
 - If **0 < k < 1** then the graph gets **further** from the *y*-axis
- y = kf(x) is a **vertical stretch** by scale factor k centred about the x-axis
 - If *k* > 1 then the graph gets further from the *x*-axis
 - If **0 < k < 1** then the graph gets **closer** to the x-axis
- y = f(-x) is a horizontal reflection about the y-axis
 - A horizontal reflection can be viewed as a special case of a horizontal stretch
- y = -f(x) is a **vertical reflection** about the x-axis
 - A vertical reflection can be viewed as a special case of a vertical stretch

How do horizontal and vertical transformations affect each other?

- Horizontal and vertical transformations are independent of each other
 - The horizontal transformations involved will need to be applied in their correct order
 - The vertical transformations involved will need to be applied in their correct order
- Suppose there are **two horizontal** transformation **H**₁**then H**₂ and **two vertical** transformations **V**₁**then V**₂ then they can be applied in the following orders:
 - Horizontal then vertical:

 $H_1H_2V_1V_2$

• Vertical then horizontal:

 $V_1V_2H_1H_2$

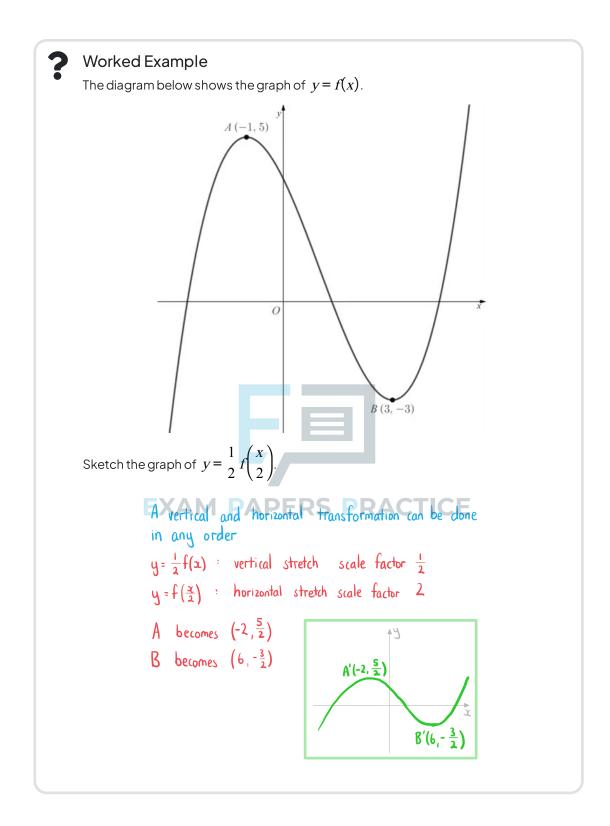
• Mixed up (provided that H_1 comes before H_2 and V_1 comes before V2):

 $H_1V_1H_2V_2$ $H_1V_1V_2H_2$ $V_1H_1V_2H_2$

 $V_1H_1H_2V_2$

Exam Tip

• In an exam you are more likely to get the correct solution if you deal with one transformation at a time and sketch the graph after each transformation



Composite Vertical Transformations af(x)+b

How do I deal with multiple vertical transformations?

- Order matters when you have more than one vertical transformations
- If you are asked to find the equation then **build up the equation** by looking at the transformations in order
 - A vertical stretch by scale factor *a* followed by a translation of $\begin{pmatrix} 0 \\ b \end{pmatrix}$

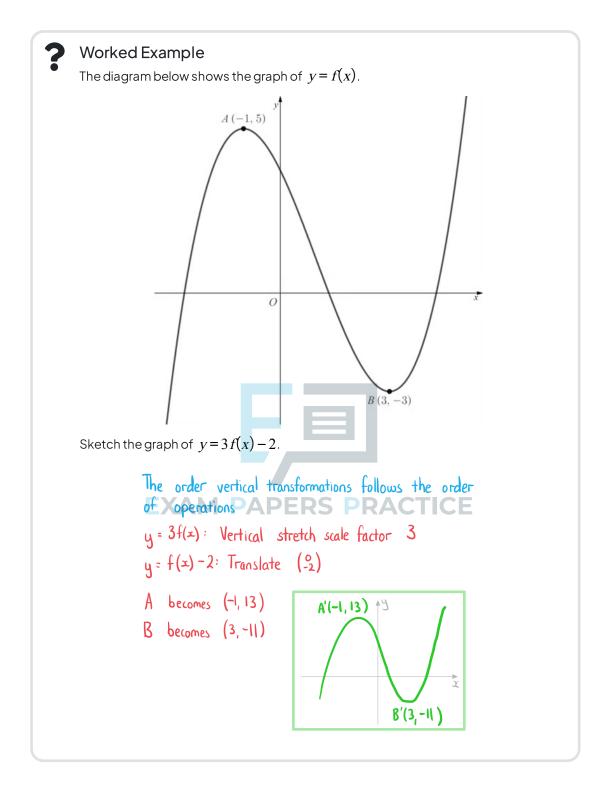
Stretch: y = af(x)Then translation: y = [af(x)] + bFinal equation: y = af(x) + b• A translation of $\begin{pmatrix} 0 \\ b \end{pmatrix}$ followed by a vertical stretch by scale factor aTranslation: y = f(x) + bThen stretch: y = a[f(x) + b]Final equation: y = af(x) + ab• If you are asked to determine the order

- The order of vertical transformations follows the order of operations
- First write the equation in the form y = af(x) + b
 - First stretch vertically by scale factor a

If a is negative then the **reflection and stretch** can be **done in any order**

Then translate by $\begin{pmatrix} 0 \\ b \end{pmatrix}$

EXAM PAPERS PRACTICE



Composite Horizontal Transformations f(ax+b)

How do I deal with multiple horizontal transformations?

- Order matters when you have more than one horizontal transformations
- If you are asked to find the equation then **build up the equation** by looking at the transformations in order

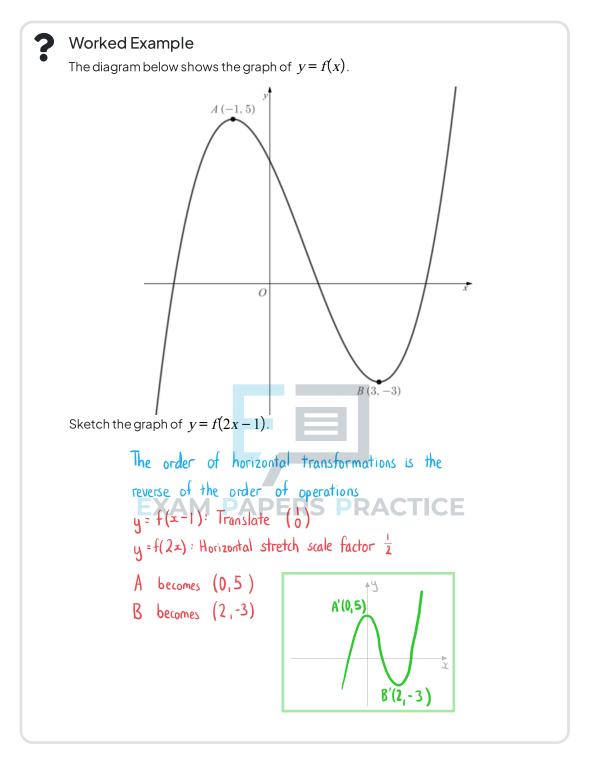
• A horizontal stretch by scale factor $\frac{1}{a}$ followed by a translation of $\begin{pmatrix} -b \\ 0 \end{pmatrix}$ Stretch: y = f(ax)Then translation: y = f(a(x + b))Final equation: y = f(ax + ab)• A translation of $\begin{pmatrix} -b \\ 0 \end{pmatrix}$ followed by a horizontal stretch by scale factor $\frac{1}{a}$ Translation: y = f(x + b)Then stretch: y = f((ax) + b)Final equation: y = f(ax + b)• If you are asked to determine the order • First write the equation in the form y = f(ax + b)

• The order of horizontal transformations is the reverse of the order of operations

First translate by $\begin{pmatrix} -b \\ 0 \end{pmatrix}$

Then stretch by scale factor

If a is negative then the **reflection and stretch** can be **done in any order**



2.7 Polynomial Functions

2.7.1 Factor & Remainder Theorem

Factor Theorem

What is the factor theorem?

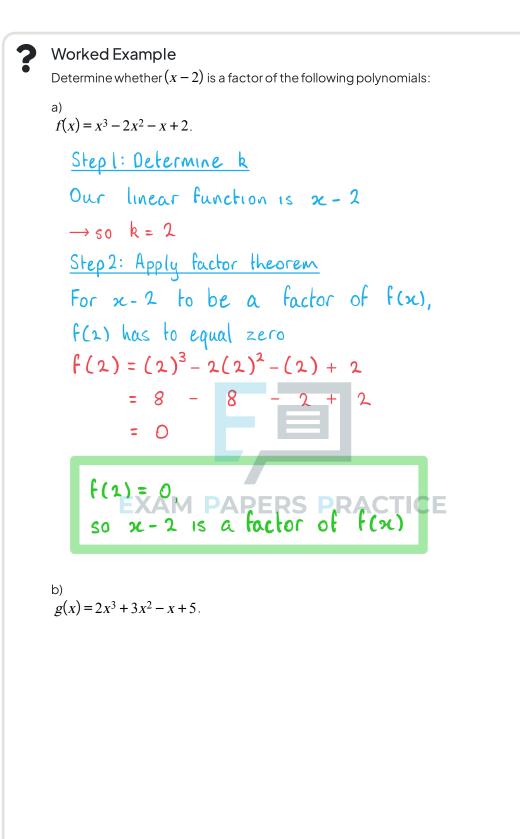
- The factor theorem is used to find the linear factors of polynomial equations
- This topic is closely tied to finding the **zeros** and **roots** of a **polynomial** function/equation
 - As a rule of thumb a **zero** refers to the polynomial function and a **root** refers to a polynomial equation
- For any **polynomial** function *P*(*x*)
 - (x-k) is a **factor** of P(x) if P(k) = 0
 - P(k) = 0 if (x k) is a factor of P(x)

How do l use the factor theorem?

- Consider the polynomial function $P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$ and (x k) is a **factor**
 - Then, due to the factor theorem $P(k) = a_n k^n + a_{n-1} k^{n-1} + \dots + a_1 k + a_0 = 0$
 - $P(x) = (x k) \times Q(x)$, where Q(x) is a **polynomial** that is a factor of P(x)
 - Hence, P(x) = Q(x), where Q(x) is another factor of P(x) x - k PAPERS PRACTICE
- If the linear factor has a **coefficient of x** then you must first factorise out the coefficient

• If the linear factor is
$$(ax - b) = a\left(x - \frac{b}{a}\right) \rightarrow P\left(\frac{b}{a}\right) = 0$$

- A common mistake in exams is using the incorrect sign for either the root or the factor
- If you are asked to find integer solutions to a polynomial then you only need to consider factors of the constant term



Step 1: Determine k Our linear function is x - 2 $\rightarrow so k = 2$ Step 2: Apply factor theorem For x - 2 to be a factor of g(x), g(2) has to equal zero $g(2) = 2(2)^3 + 3(2)^2 - (2) + 5$ = 16 - 12 - 2 + 5 = 7 g(2) = 7, so x - 2 is not a factor of g(x)

It is given that (2x - 3) is a factor of $h(x) = 2x^3 - bx^2 + 7x - 6$. c) Find the value of b.

Step 1: Determine k Our linear function is 2x-3 $\rightarrow so k = \frac{3}{2}$ Step 2: Apply factor theorem to find b Since 2x-3 is a factor of h(x), $h\left(\frac{3}{2}\right) = 0$ $0 = 2\left(\frac{3}{2}\right)^3 - b\left(\frac{3}{2}\right)^2 + 7\left(\frac{3}{2}\right) - 6$ $= \frac{54}{8} - \frac{9}{4}b + \frac{21}{2} - 6$ b=5

EXAM PAPERS PRACTICE

Remainder Theorem

What is the remainder theorem?

- The **remainder theorem** is used to find the remainder when we divide a **polynomial** function by a linear function
- When any polynomial *P*(*x*) is divided by any linear function (*x k*) the value of the remainder *R* is given by *P*(*k*) = *R*
 - Note, when P(k) = 0 then (x k) is a factor of P(x)

How do I use the remainder theorem?

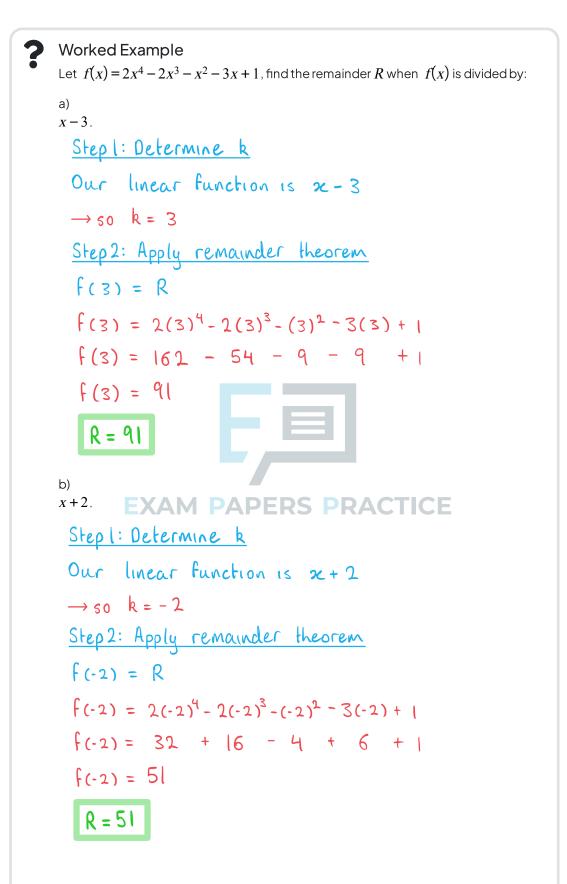
- Consider the polynomial function $P(x) = a_n x^n + a_{n-1} x^{n-1} + ... + a_1 x + a_0$ and the linear function (x k)
 - Then, due to the remainder theorem $P(k) = a_n k^n + a_{n-1} k^{n-1} + \dots + a_1 k + a_0 = R$

•
$$P(x) = (x - k) \times Q(x) + R$$
, where $Q(x)$ is a **polynomial**

- Hence, $\frac{P(x)}{x-k} = Q(x) + \frac{R}{x-k}$, where *R* is the remainder
- If the linear factor has a **coefficient of x** then you must first factorise out the coefficient

• If the linear factor is
$$(ax - b) = a\left(x - \frac{b}{a}\right) \rightarrow P\left(\frac{b}{a}\right) = R$$

EXAM PAPERS PRACTICE



The remainder when
$$f(x)$$
 is divided by $(2x + k)$ is $\frac{893}{8}$.
c)
Given that $k > 0$, find the value of k .
Step 1: Apply remainder theorem
 $2\pi + k = 2(\pi + \frac{k}{2})$ $f(-\frac{k}{2}) = \frac{893}{8}$
 $\frac{893}{8} = 2(-\frac{k}{2})^4 - 2(-\frac{k}{2})^3 - (-\frac{k}{2})^2 - 3(-\frac{k}{2}) + 1$
Step 2: Solve for k using your GOC
 $k = 5$

2.7.2 Polynomial Division

Polynomial Division

What is polynomial division?

- Polynomial division is the process of dividing two polynomials
 - This is usually only useful when the **degree of the denominator** is **less than or equal** to the **degree of the numerator**
- To do this we use an algorithm similar to that used for division of integers
- To divide the polynomial $P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$ by the polynomial

$$D(x) = b_k x^k + b_{k-1} x^{k-1} + \dots + b_1 x + b_0$$
 where $k \le n$

Divide the leading term of the polynomial P(x) by the leading term of the divisor D(x)

$$:\frac{a_n x^n}{b_b x^k} = q_m x^m$$

• STEP 2

Multiply the divisor by this term: $D(x) \times q_m x^m$

• STEP 3

Subtract this from the original polynomial P(x) to cancel out the leading term: $R(x) = P(x) - D(x) \times q_m x^m$

• Repeat steps 1 - 3 using the new polynomial R(x) in place of P(x) until the subtraction results in an expression for R(x) with degree less than the divisor

The quotient Q(x) is the **sum of the terms** you multiplied the divisor by:

$$Q(x) = q_m x^m + q_{m-1} x^{m-1} + \dots + q_1 x + q_0$$

The remainder R(x) is the polynomial after the final subtraction

Division by linear functions

• If P(x) has degree n and is divided by a linear function (ax + b) then

•
$$\frac{P(x)}{ax+b} = Q(x) + \frac{R}{ax+b}$$
 where
 $ax+b$ is the **divisor** (degree 1)
 $Q(x)$ is the **quotient** (degree n - 1)
R is the **remainder** (degree 0)
• Note that $P(x) = Q(x) \times (ax+b) + R$

• Note that
$$P(x) = Q(x) \times (ax + b) + R$$

Division by quadratic functions

• If P(x) has degree n and is divided by a quadratic function $(ax^2 + bx + c)$ then

$$\circ \frac{P(x)}{ax^2 + bx + c} = Q(x) + \frac{cx + f}{ax^2 + bx + c}$$
 where
$$ax^2 + bx + c \text{ is the divisor (degree 2)}$$

Q(x) is the **quotient** (degree n - 2)

ex + f is the **remainder** (degree less than 2)

- The remainder will be **linear** (degree 1) if $e \neq 0$, and **constant** (degree 0) if e = 0
- Note that $P(x) = Q(x) \times (ax^2 + bx + c) + ex + f$

Division by polynomials of degree $k \le n$

• If P(x) has degree n and is divided by a polynomial D(x) with degree $k \le n$

•
$$\frac{P(x)}{D(x)} = Q(x) + \frac{R(x)}{D(x)}$$
 where

D(x) is the **divisor** (degree k)

Q(x) is the **quotient** (degree n - k)

R(x) is the **remainder** (degree less than k)

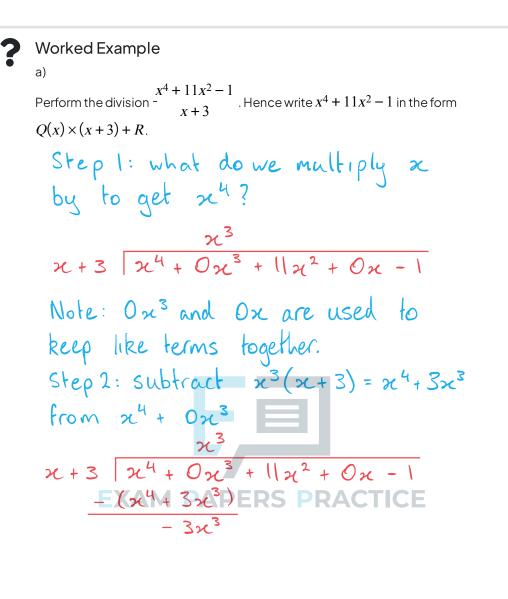
• Note that $P(x) = Q(x) \times D(x) + R(x)$

Are there other methods for dividing polynomials?

- **Synthetic division** is a faster and shorter way of setting out a division when dividing by a linear term of the form
 - To divide $P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$ by (x c): Set $b_n = a_n$ Calculate $b_{n-1} = a_{n-1} + c \times b_n$ Continue this iterative process $b_{i-1} = a_{i-1} + c \times a_i$ The quotient is $Q(x) = b_n x^{n-1} + b_{n-1} x^{n-2} + \dots + b_2 x + b_1$ and the remainder is $r = b_0$
- You can also find quotients and remainders by **comparing coefficients**
 - Given a polynomial $P(x) = a_n x^n + a_{n-1} x^{n-1} + ... + a_1 x + a_0$
 - And a divisor $D(x) = d_k x^k + d_{k-1} x^{k-1} + \dots + d_1 x + d_0$
 - Write $Q(x) = q_{n-k}x^{n-k} + \dots + q_1x + q_0$ and $R(x) = r_{k-1}x^{k-1} + \dots + r_1x + r_0$
 - Write P(x) = Q(x)D(x) + R(x)
 Expand the right-hand side
 Equate the coefficients
 Solve to find the unknowns q's & r's

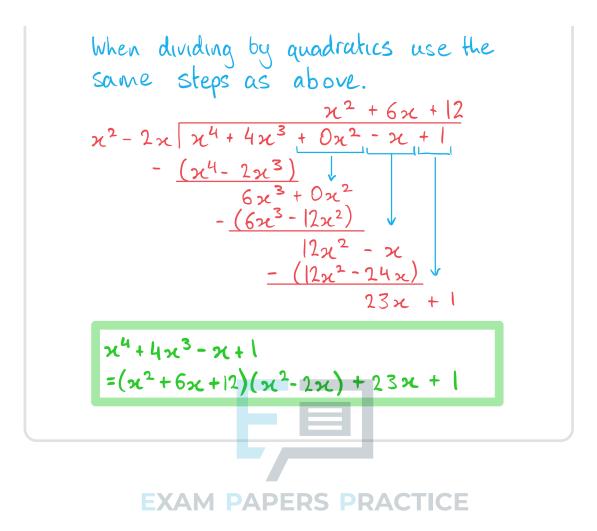
Exam Tip

• In an exam you can use whichever method to divide polynomials - just make sure your method is written clearly so that if you make a mistake you can still get a mark for your method!



Step 3: bring the
$$11x^{2}$$
 down and
return to step 1.

 $x^{3} - 3x^{2} + 20x - 60$
 $x + 3 [x^{4} + 0x^{3} + 11x^{2} + 0x] - 1$
 $-(x^{4} + 3x^{3}) + 11x^{2} + 0x] - (-3x^{3} - 9x^{2} + 0x] - (-20x^{2} + 60x) - (-(-60x - 160)) - (-60x - 1) - (-(-60x - 160)) - (-60x - 160)) - (-60x - 1) - (-(-60x - 160)) - (-60x - 160) - (-60x - 160)) - (-60x - 160) - (-60x - 160)$



2.7.3 Polynomial Functions

Sketching Polynomial Graphs

In exams you'll commonly be asked to sketch the graphs of different polynomial functions with and without the use of your GDC.

What's the relationship between a polynomial's degree and its zeros?

- If a **real polynomial** *P*(*x*) has **degree** *n*, it will have *n* **zeros** which can be written in the form *a* + *bi*, where *a*, *b* ∈ ℝ
 - For example:
 - A quadratic will have 2 zeros
 - A cubic function will have 3 zeros
 - A quartic will have 4 zeros
 - Some of the zeros may be **repeated**
- Every real polynomial of odd degree has at least one real zero

How do I sketch the graph of a polynomial function without a GDC?

- Suppose $P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$ is a real polynomial with degree n
- To sketch the graph of a polynomial you need to know three things:
 - The y-intercept
 - Find this by **substituting x** = **0** to get **y** = **a**₀
 - The **roots**

You can find these by **factorising** or solving **y** = **0**

• The **shape** This is determined by the **degree** (n) and the sign of the **leading coefficient** (a_n)

How does the multiplicity of a real root affect the graph of the polynomial?

- The **multiplicity** of a root is the number of times it is **repeated** when the polynomial is factorised
 - If x = k is a root with **multiplicity** m then $(x k)^m$ is a **factor** of the polynomial
- The graph either **crosses** the *x*-axis or **touches** the *x*-axis at a **root** *x* = *k* where *k* is a real number
 - If x = k has multiplicity 1 then the graph crosses the x-axis at (k, 0)
 - If x = k has **multiplicity 2** then the graph has a **turning point** at (k, 0) so **touches** the x-axis

If x = k has odd multiplicity $m \ge 3$ then the graph has a stationary point of inflection at (k, 0) so crosses the x-axis

If x = k has **even multiplicity** $m \ge 4$ then the graph has a **turning point** at (k, 0) so **touches** the x-axis



How do I determine the shape of the graph of the polynomial?

- Consider what happens as x tends to ±∞
 - If *a_n* is **positive** and *n* is **even** then the graph **approaches from the top left** and **tends** to the top right

 $\lim_{x \to -\infty} f(x) = \lim_{x \to +\infty} f(x) = +\infty$

• If a_n is **negative** and n is **even** then the graph **approaches from the bottom left** and **tends to the bottom right APERS PRACTICE** $\lim_{x \to \infty} f(x) = \lim_{x \to \infty} f(x) = +\infty$

$$\lim_{X \to -\infty} I(X) \quad \lim_{X \to +\infty} I(X) \quad i$$

• If a_n is positive and n is odd then the graph approaches from the bottom left and tends to the top right

 $\lim_{x \to -\infty} f(x) = -\infty \text{ and } \lim_{x \to +\infty} f(x) = +\infty$

• If a_n is **negative** and *n* is **odd** then the graph **approaches from the top left** and **tends** to the bottom right

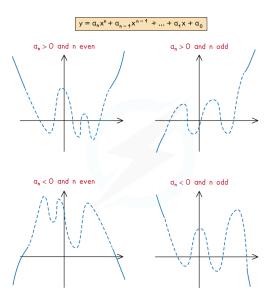
 $\lim_{x \to -\infty} f(x) = +\infty \text{ and } \lim_{x \to +\infty} f(x) = -\infty$

- Once you know the **shape**, the **real roots** and the **y-intercept** then you simply connect the points using a **smooth curve**
- There will be at least one turning point in-between each pair of roots
 - If the degree is *n* then there is **at most** *n* **1 stationary points (**some will be **turning points**)

Every real polynomial of **even degree** has **at least one turning point** Every real polynomial of **odd degree bigger than 1** has **at least one point of inflection**

• If it is a calculator paper then you can use your GDC to find the coordinates of the turning points

• You won't need to find their location without a GDC unless the question asks you to



Exam Tip

- If it is a calculator paper then you can use your GDC to find the coordinates of any turning points
- If it is the non-calculator paper then you will not be required to find the turning points when sketching unless specifically asked to

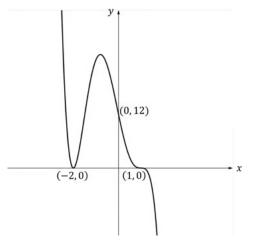
EXAM PAPERS PRACTICE

a) The function f is defined by $f(x) = (x + 1)(2x - 1)(x - 2)^2$. Sketch the graph of y = f(x). Find the y-intercept $x = 0 = y = (1)(-1)(-2)^4 = -4$ Find the roots and determine if graphs (rosses or touches the x-axis $(x + 1)(2x - 1)(x - 2)^4$ $(-1, 0) (\frac{1}{2}, 0) (2, 0)$ cross cross touch Determine the shape by looking at the leading term Leading term is $(x)(2x)(x)^4 = 2x^4$

As
$$x \to -\infty$$
 $y \to +\infty$
As $x \to +\infty$ $y \to +\infty$

b)

The graph below shows a polynomial function. Find a possible equation of the polynomial.



Touches at
$$(-2,0)$$
 $(x+2)^2$ is a factor
Point of inflection at $(1,0)$ $(x-1)^3$ is a factor
Write in the form of: $y = a (x+2)^2 (x-1)^3$
Use the y-intercept to find a
 $12 = a (2)^2 (-1)^3 = -4a = 12$ $\therefore a = -3$
 $y = -3 (x+2)^2 (x-1)^3$

Solving Polynomial Equations

What is "The Fundamental Theorem of Algebra"?

- Every real polynomial with degree n can be factorised into n complex linear factors
 - Some of which may be **repeated**
 - This means the polynomial will have *n* zeros (some may be repeats)
- Every real polynomial can be expressed as a product of real linear factors and real irreducible quadratic factors
 - An irreducible quadratic is where it does not have real roots
 The discriminant will be negative: b² 4ac < 0
- If $a + bi(b \neq 0)$ is a zero of a real polynomial then its complex conjugate a bi is also a zero
- Every real polynomial of odd degree will have at least one real zero

How do I solve polynomial equations?

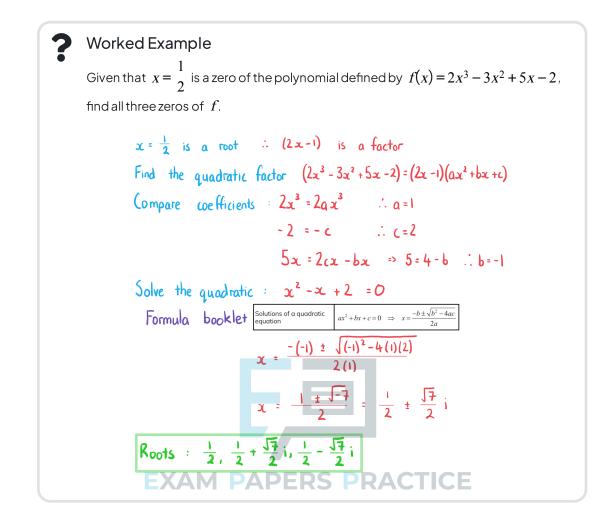
- Suppose you have an equation P(x) = 0 where P(x) is a real polynomial of degree n
 P(x) = a_nxⁿ + a_{n-1}xⁿ⁻¹ + ... + a₁x + a₀
- You may be given one zero or you might have to find a zero x = k by substituting values into P(x) until it equals 0
- If you know a **root** then you know a **factor**
 - If you know x = k is a root then (x k) is a factor
 - If you know x = a + bi is a root then you know a quadratic factor (x (a + bi))(x (a bi))

Which can be written as ((x - a) - bi)((x - a) + bi) and **expanded quickly using** difference of two squares

- You can then **divide** *P*(x) by this factor to get **another factor**
 - For example: dividing a cubic by a linear factor will give you a quadratic factor
- You then may be able to factorise this new factor

Exam Tip

- If a polynomial has three or less terms check whether a substitution can turn it into a quadratic
 - For example: $x^6 + 3x^3 + 2$ can be written as $(x^3)^2 + 3(x^3) + 2$



2.7.4 Roots of Polynomials

Sum & Product of Roots

How do I find the sum & product of roots of polynomials?

• Suppose $P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$ is a **polynomia**l of **degree** *n* with *n*

roots $\alpha_1, \alpha_2, ..., \alpha_n$

• The polynomial is written as $\sum_{r=0}^{n} a_r x^r = 0$, $a_n \neq 0$ in the **formula booklet**

- $\circ a_n$ is the coefficient of the **leading term**
- a_{n-1} is the coefficient of the xⁿ⁻¹ term
 Be careful: this could be equal to zero
- a₀ is the **constant term**

Be careful: this could be equal to zero

• In factorised form:
$$P(x) = a_n(x - \alpha_1)(x - \alpha_2)...(x - \alpha_n)$$

• Comparing coefficients of the *xⁿ⁻¹* term and the constant term gives

$$a_{n-1} = a_n (-\alpha_1 - \alpha_2 - \dots - \alpha_n)$$

$$a_0 = a_n (-\alpha_1) \times (-\alpha_2) \times \dots \times (-\alpha_n)$$

• The **sum** of the roots is given by:

$$\circ \quad \alpha_1 + \alpha_2 + \dots + \alpha_n = -\frac{\alpha_1}{\alpha_2}$$

• The product of the roots is given by:

•
$$\alpha_1 \times \alpha_2 \times \frac{\sum_{n=1}^{n} (-1)^n a_0}{a_n}$$
 PERS PRACTICE

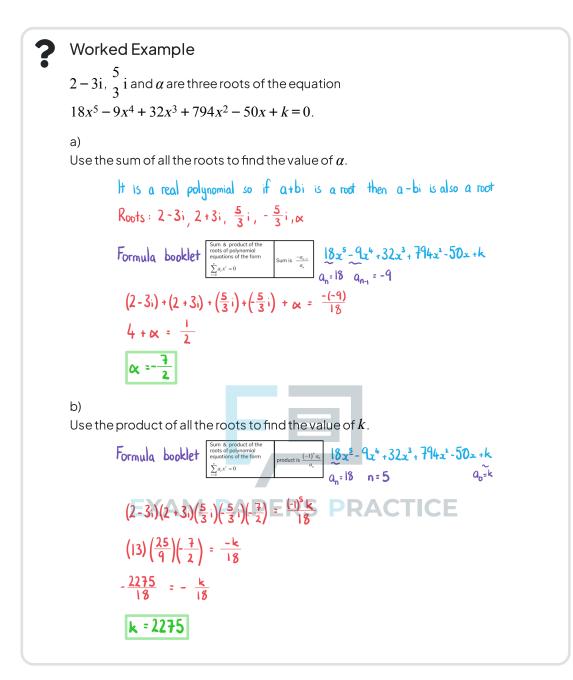
both of these formulae are in your formula booklet

How can I find unknowns if I am given the sum and/or product of the roots of a polynomial?

- If you know a complex root of a real polynomial then its **complex conjugate** is **another root**
- Form two equations using the roots
 - One using the **sum of the roots formula**
 - One using the product of the roots formula
- **Solve** for any unknowns

Exam Tip

- Examiners might trick you by not having an x^{n-1} term or a constant term
- To make sure you do not get tricked you can write out the full polynomial using 0 as a coefficient where needed
 - For example: Write $x^4 + 2x^2 5x$ as $x^4 + 0x^3 + 2x^2 5x + 0$



2.8 Inequalities

2.8.1 Solving Inequalities Graphically

Solving Inequalities Graphically

How can I solve inequalities graphically?

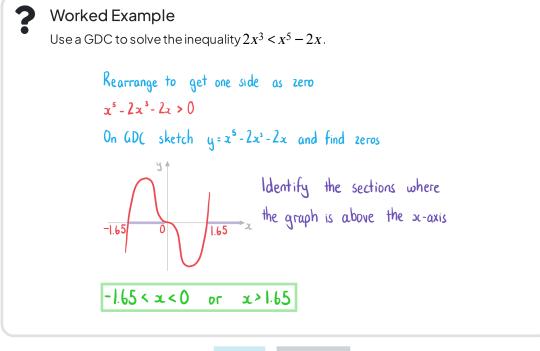
- Consider the inequality $f(x) \le g(x)$, where f(x) and g(x) are functions of x
 - if we move g(x) to the LHS we get
 - $f(x)-g(x)\leq 0$
- Solve **f(x) g(x) = 0 to** find the **zeros** of f(x) g(x)
 - These correspond to the x-coordinates of the points of intersection of the graphs y = f(x) and y = g(x)
- To solve the inequality we can use a graph
 - Graph y = f(x) g(x) and labelits zeros
 - Hence find the intervals of x that satisfy the inequality $f(x) g(x) \le 0$
 - These are the intervals which satisfies the original inequality $f(x) \le g(x)$
 - This method is particularly useful when finding the intersections between the functions is difficult due to needing large x and y windows on your GDC

Be careful when rearranging inequalities!

- Remember to **flip the sign** of the inequality when you **multiply or divide** both sides by a **negative** number
 - e. $1 < 2 \rightarrow [$ times both sides by (-1) $] \rightarrow -1 > -2 ($ sign flips)
- Never multiply or divide by a variable as this could be positive or negative
 - You can only multiply by a term if you are certain it is always positive (or always negative)
 - Such as x^2 , |x|, e^x
- Some functions reverse the inequality
 - Taking reciprocals of positive values

$$0 < x < y \Rightarrow \frac{1}{x} > \frac{1}{y}$$

- Taking logarithms when the base is 0 < a < 1 $0 < x < y \Rightarrow \log_{a}(x) > \log_{a}(y)$
- The safest way to rearrange is simply to add & subtract to move all the terms onto one side



2.8.2 Polynomial Inequalities

Polynomial Inequalities

How do I solve polynomial inequalities?

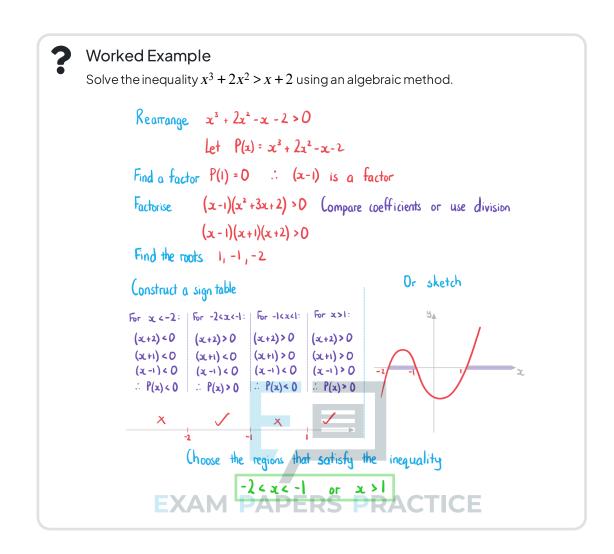
- STEP 1: Rearrange the inequality so that one of the sides is equal to zero
 - For example: $P(x) \le 0$
- STEP 2: Find the roots of the polynomial
 - You can do this by factorising or using GDC to solve P(x) = 0
- STEP 3: Choose one of the following methods:
- Graph method
 - Sketch a graph of the polynomial (with or without a GDC)
 - Choose the intervals for *x* corresponding to the sections of the graph that satisfy the inequality
 - For example: for $P(x) \le 0$ you would want the sections below the x-axis

Sign table method

- If you are unsure how to sketch a polynomial graph then this method is best
- **Split the real numbers** into the possible **intervals** using the roots If the roots are *a* and *b* then the intervals would be *x*<*a*, *a*<*x*<*b*, *x*>*b*
- **Test a value** from each interval using the inequality
 - Choose a value within an interval and substitute into P(x) to determine if it is positive or negative
- Alternatively if the polynomial is factorised you can **determine the sign of each factor** in each interval
 - An odd number of negative factors in an interval will mean the polynomial is negative on that interval
- If the value satisfies the inequality then that interval is part of the solution

Exam Tip

In exams most solutions will be intervals but some could be a single point
 For example: Solution to (x − 3)² ≤ 0 is x = 3



2.9 Further Functions & Graphs

2.9.1 Modulus Functions

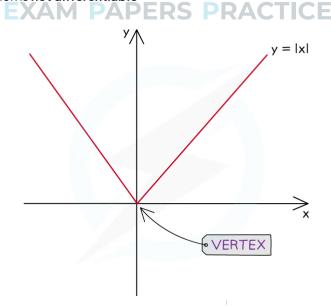
Modulus Functions & Graphs

What is the modulus function?

- The modulus function is defined by f(x) = |x|
 - $\circ |x| = \sqrt{x^2}$
 - Equivalently it can be defined $|x| = \begin{cases} x & x \ge 0 \\ -x & x < 0 \end{cases}$
- Its domain is the set of all real values
- Its range is the set of all real non-negative values
- The modulus function gives the **distance** between 0 and x
 - This is also called the **absolute value** of x

What are the key features of the modulus graph: y = |x|?

- The graph has a y-intercept at (0, 0)
- The graph has **one root** at (0, 0)
- The graph has a **vertex** at (0, 0)
- The graph is **symmetrical** about the **y-axis**
- At the origin
 - The function is **continuous**
 - The function is **not differentiable**



What are the key features of the modulus graph: y = a|x + p| + q?

• Every **modulus grap**h which is formed by **linear transformations** can be written in this form using key features of the modulus function

- |ax| = |a||x|For example: $|2x+1| = 2\left|x+\frac{1}{2}\right|$
- |p x| = |x p|For example: |4 - x| = |x - 4|
- The graph has a **y-intercept** when x = 0
- The graph can have 0, 1 or 2 roots
 - $\circ~$ If a and q have the same sign then there will be 0 roots
 - If q = 0 then there will be **1 root** at (-p, 0)
 - If a and q have different signs then there will be 2 roots at $\left(-p \pm \frac{q}{a}, 0\right)$
- The graph has a **vertex** at (-p, q)
- The graph is **symmetrical** about the line x = -p
- The value of a determines the **shape** and the **steepness** of the graph
 - \circ If *a* is **positive** the graph looks like V
 - If a is **negative** the graph looks like Λ
 - The larger the value of |a| the steeper the lines
- At the **vertex**
 - The function is **continuous**
 - The function is **not differentiable**

EXAM PAPERS PRACTICE

2.9.2 Modulus Transformations

Modulus Transformations

How do I sketch the graph of the modulus of a function: y = |f(x)|?

- STEP 1: Keep the parts of the graph of y = f(x) that are on or above the x-axis
- STEP 2: Any parts of the graph below the x-axis get reflected in the x-axis anything

How do I sketch the graph of a function of a modulus: y = f(|x|)?

- STEP 1: Keep the graph of y = f(x) only for $x \ge 0$
- STEP 2: Reflect this in the y-axis

What is the difference between y = |f(x)| and y = f(|x|)?

- The graph of y = |f(x)| never goes below the x-axis
 It does not have to have any lines of symmetry
- The graph of y = f(|x|) is always symmetrical about the y-axis
 - It can go below the y-axis

When multiple transformations are involved how do I determine the order?

- The transformations **outside the function** follow the **same order** as the **order of operations**
 - $\circ y = |af(x) + b|$

Deal with the a then the b then the modulus

•
$$y = a|f(x)| + b$$

Deal with the modulus then the *a* then the *b*

- The transformations inside the function are in the reverse order to the order of operations
 - $\circ y = f(|ax+b|)$

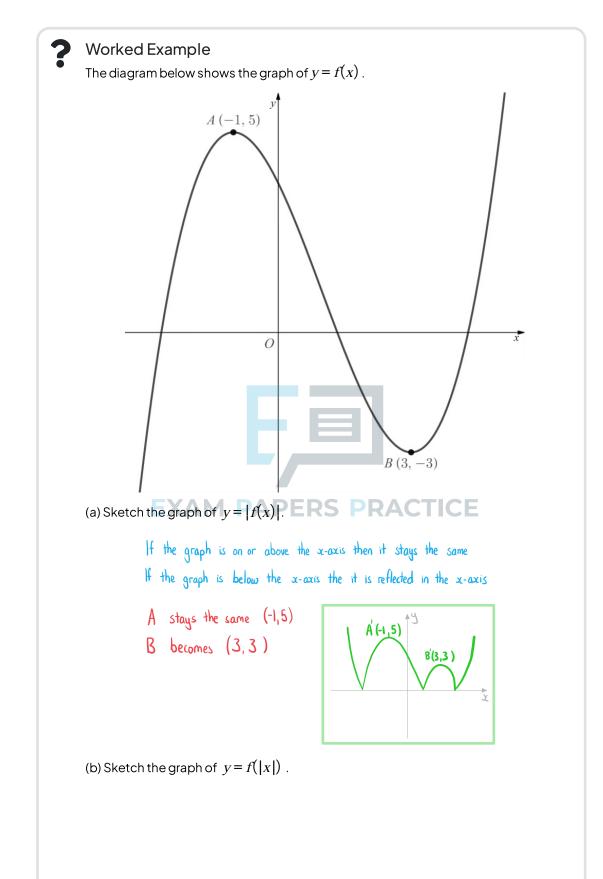
Deal with the modulus then the b then the a

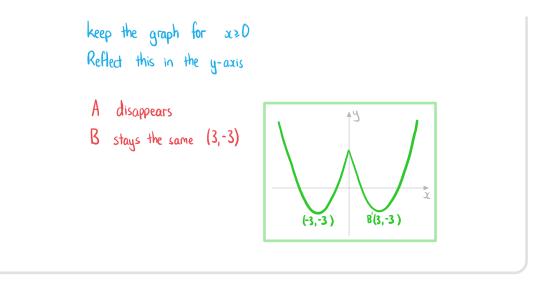
 $\circ y = f(a|x| + b)$

Deal with the b then the a then the modulus

) Exam Tip

- When sketching one of these transformations in an exam question make sure that the graphs do not look smooth at the points where the original graph have been reflected
 - For y = |f(x)| the graph should look "sharp" at the points where it has been reflected on the *x*-axis
 - For y = f(|x|) the graph should look "sharp" at the point where it has been reflected on the y-axis





2.9.3 Modulus Equations & Inequalities

Modulus Equations

How do I find the modulus of a function?

• The modulus of a function f(x) is

$$\circ |f(x)| = \begin{cases} f(x) & f(x) \ge 0\\ -f(x) & f(x) < 0 \end{cases} \text{ or}$$
$$\circ |f(x)| = \sqrt{[f(x)]^2}$$

How do I solve modulus equations graphically?

- To solve |f(x)| = g(x) graphically
 - Draw y = |f(x)| and y = g(x) into your GDC
 - Find the *x*-coordinates of the **points of intersection**

How do I solve modulus equations analytically?

• To solve |f(x)| = g(x) analytically

0

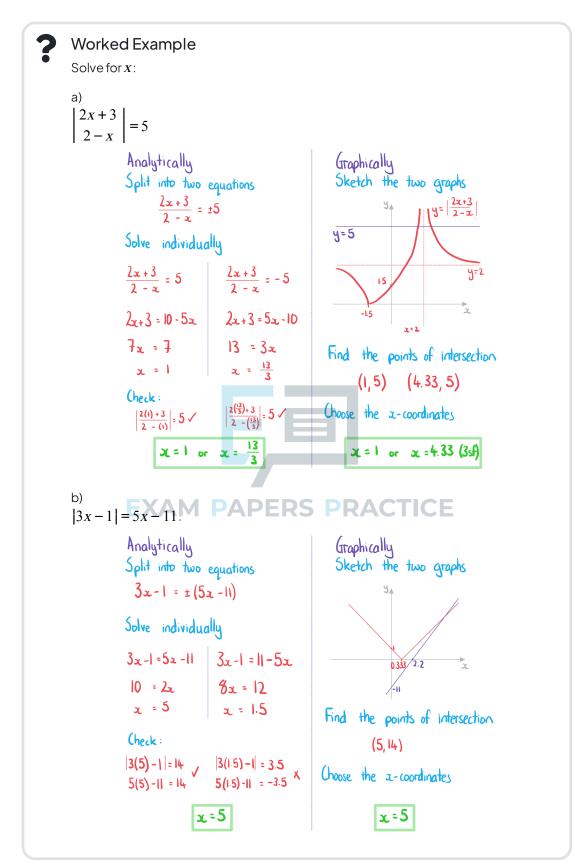
Form two equations
f(x) = g(x)
f(x) = -g(x)

• Solve both equations

• Check solutions work in the original equation

For example: x - 2 = 2x - 3 has solution x = 1But |(1) - 2| = 1 and 2(1) - 3 = -1

So x = 1 is not a solution to |x-2| = 2x - 3 **ACTICE**



Modulus Inequalities

How do I solve modulus inequalities analytically?

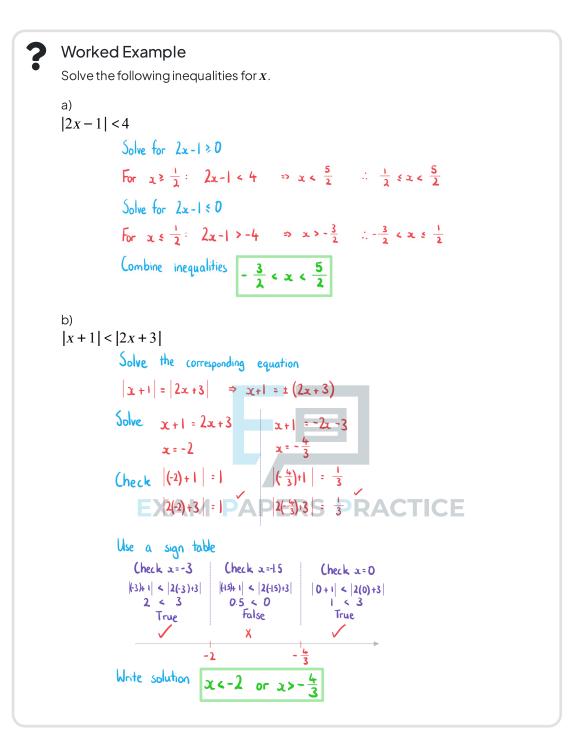
- To solve **any** modulus inequality
 - First solve the corresponding modulus equation
 - Remembering to **check whether solutions are valid**
 - Then use a graphical method or a sign table to find the intervals that satisfy the inequality
- Another method is to solve **two pairs of inequalities**
 - For |f(x)| < g(x) solve:
 - f(x) < g(x) when $f(x) \ge 0$
 - f(x) > -g(x) when $f(x) \le 0$
 - For |f(x)| > g(x) solve:
 - f(x) > g(x) when $f(x) \ge 0$
 - f(x) < -g(x) when $f(x) \le 0$

Exam Tip

• If a question on this appears on a calculator paper then use the same ideas as solving other inequalities

EXAM PAPERS PRACTICE

• Sketch the graphs and find the intersections



2.9.4 Reciprocal & Square Transformations

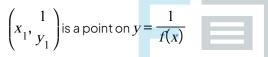
Reciprocal Transformations

What effects do reciprocal transformations have on the graphs?

- The x-coordinates stay the same
- The y-coordinates change
 - Their values become their **reciprocals**
- The coordinates (x, y) become $\begin{pmatrix} 1 \\ y \end{pmatrix}$ where $y \neq 0$
 - If y = 0 then a vertical asymptote goes through the original coordinate
 - Points that lie on the line **y** = 1 or the line **y** = -1 stay the same

How do I sketch the graph of the reciprocal of a function: y = 1/f(x)?

- Sketch the **reciprocal transformation** by considering the **different features** of the original graph
- Consider key points on the original graph
 - If (x_1, y_1) is a point on y = f(x) where $y_1 \neq 0$



If |y₁| < 1 then the point gets further away from the x-axis

If
$$|y_1| > 1$$
 then the point gets closer to the x-axis
PAPERS PRACTICE
• If $y = f(x)$ has a y-intercept at (0, c) where $c \neq 0$

The reciprocal graph
$$y = \frac{1}{f(x)}$$
 has a **y-intercept** at $\begin{pmatrix} 0, \\ c \end{pmatrix}$

• If y = f(x) has a **root** at (a, 0)

The reciprocal graph
$$y = \frac{1}{f(x)}$$
 has a **vertical asymptote** at $x = a$

• If y = f(x) has a **vertical asymptote** at x = a

The reciprocal graph
$$y = \frac{1}{f(x)}$$
 has a **discontinuity** at (a, 0)

The discontinuity will look like a root

• If y = f(x) has a **local maximum** at (x_1, y_1) where $y_1 \neq 0$

The reciprocal graph
$$y = \frac{1}{f(x)}$$
 has a **local minimum** at $\begin{pmatrix} x \\ x_1, y_1 \end{pmatrix}$

• If y = f(x) has a **local minimum** at (x_1, y_1) where $y_1 \neq 0$

The reciprocal graph
$$y = \frac{1}{f(x)}$$
 has a **local maximum** at $\begin{pmatrix} 1 \\ x_1, y_1 \end{pmatrix}$

• Consider key regions on the original graph

• If
$$y = f(x)$$
 is **positive** then $y = \frac{1}{f(x)}$ is **positive**

If
$$y = f(x)$$
 is **negative** then $y = \frac{1}{f(x)}$ is **negative**

• If y = f(x) is increasing then $y = \frac{1}{f(x)}$ is decreasing

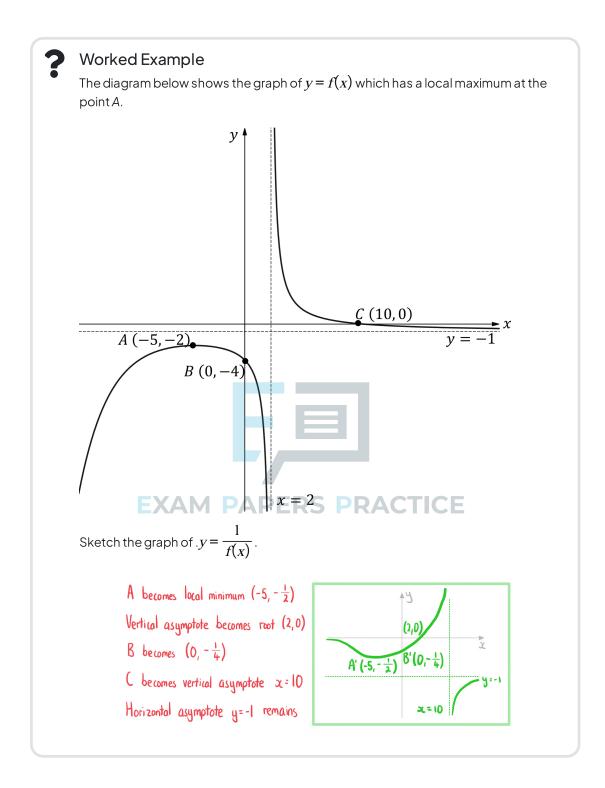
If
$$y = f(x)$$
 is decreasing then $y = \frac{1}{f(x)}$ is increasing

• If y = f(x) has a **horizontal asymptote** at y = k

$$y = \frac{1}{f(x)} \text{ has a horizontal asymptote at } y = \frac{1}{k} \text{ if } k \neq 0$$
$$y = \frac{1}{f(x)} \text{ tends to } \pm \infty \text{ if } k = 0$$

• If y = f(x) tends to $\pm \infty$ as x tends to $+\infty$ or $-\infty$

$$y = \frac{1}{f(x)}$$
 has a horizontal asymptote at $y = 0$ CTICE



Square Transformations

What effects do square transformations have on the graphs?

- The effects are similar to the transformation y = |f(x)|
 - The parts **below the x-axis are reflected**
 - The **vertical distance** between a point and the *x*-axis is **squared** This has the effect of **smoothing the curve** at the *x*-axis
- $y = [f(x)]^2$ is never below the x-axis
- The x-coordinates stay the same
- The y-coordinates change
 - Their values are **squared**
- The coordinates (x, y) become (x, y^2)
 - Points that lie on the *x*-axis or the line *y* = 1 stay the same

How do I sketch the graph of the square of a function: $y = [f(x)]^2$?

- Sketch the **square transformation** by considering the **different features** of the original graph
- Consider key points on the original graph
 - If (x_1, y_1) is a point on y = f(x)
 - (x_1, y_1^2) is a point on $y = [f(x)]^2$
 - If $|y_1| < 1$ then the point gets **closer to the x-axis**
 - If $|y_1| > 1$ then the point gets further away from the x-axis
 - If y = f(x) has a **y-intercept** at (0, c) The square graph $y = [f(x)]^2$ has a **y-intercept** at $(0, c^2)$
 - If y = f(x) has a **root** at (a, 0)
 - The square graph $y = [f(x)]^2$ has a **root** and **turning point** at (a, 0)
 - If y = f(x) has a **vertical asymptote** at x = a
 - The square graph $y = [f(x)]^2$ has a vertical asymptote at x = a
 - If y = f(x) has a **local maximum** at (x_1, y_1)
 - The square graph $y = [f(x)]^2$ has a local maximum at (x_1, y_1^2) if $y_1 > 0$ The square graph $y = [f(x)]^2$ has a local minimum at (x_1, y_1^2) if $y_1 \le 0$
 - If y = f(x) has a **local minimum** at (x_1, y_1)

The square graph $y = [f(x)]^2$ has a **local minimum** at (x_1, y_1^2) if $y_1 \ge 0$ The square graph $y = [f(x)]^2$ has a **local maximum** at (x_1, y_1^2) if $y_1 < 0$

Exam Tip

- In an exam question when sketching $y = [f(x)]^2$ make it clear that the points where the new graph touches the x-axis are smooth
 - This will make it clear to the examiner that you understand the difference between the roots of the graphs y = |f(x)| and $y = \lceil f(x) \rceil^2$

