

Boost your performance and confidence with these topic-based exam questions

Practice questions created by actual examiners and assessment experts

Detailed mark scheme

Suitable for all boards

Designed to test your ability and thoroughly prepare you

2. Functions

2.5 Reciprocal & Rational Functions

MATHS

AA HL

IB Maths DP

2. Functions

CONTENTS

- 2.1 Quadratic Functions & Graphs
 - 2.1.1 Quadratic Functions
- 2.1.2 Factorising & Completing the Square
- 2.1.3 Solving Quadratics
- 2.1.4 Quadratic Inequalities
- 2.1.5 Discriminants
- 2.2 Linear Functions & Graphs
 - 2.2.1 Equations of a Straight Line
- 2.3 Functions Toolkit
 - 2.3.1 Language of Functions
 - 2.3.2 Composite & Inverse Functions
 - 2.3.3 Symmetry of Functions
 - 2.3.4 Graphing Functions
- 2.4 Other Functions & Graphs
 - 2.4.1 Exponential & Logarithmic Functions
 - 2.4.2 Solving Equations
 - 2.4.3 Modelling with Functions
- 2.5 Reciprocal & Rational Functions
 - 2.5.1 Reciprocal & Rational Functions
- 2.6 Transformations of Graphs
 - 2.6.1 Translations of Graphs
 - 2.6.2 Reflections of Graphs
 - 2.6.3 Stretches Graphs
 - 2.6.4 Composite Transformations of Graphs
- 2.7 Polynomial Functions
 - 2.7.1 Factor & Remainder Theorem
 - 2.7.2 Polynomial Division
 - 2.7.3 Polynomial Functions
 - 2.7.4 Roots of Polynomials
- 2.8 Inequalities
 - 2.8.1 Solving Inequalities Graphically

- 2.8.2 Polynomial Inequalities
- 2.9 Further Functions & Graphs
 - 2.9.1 Modulus Functions
 - 2.9.2 Modulus Transformations
 - 2.9.3 Modulus Equations & Inequalities
 - 2.9.4 Reciprocal & Square Transformations

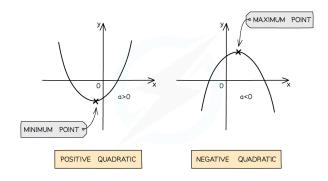
2.1 Quadratic Functions & Graphs

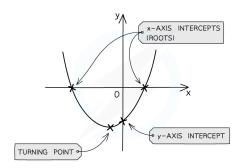
2.1.1 Quadratic Fuctions

Quadratic Functions & Graphs

What are the key features of quadratic graphs?

- A quadratic graph can be written in the form $y = ax^2 + bx + c$ where $a \ne 0$
- The value of a affects the shape of the curve
 - If a is positive the shape is concave up u
 - \circ If a is **negative** the shape is **concave down** \cap
- The **y-intercept** is at the point (0, c)
- The **zeros or roots** are the solutions to $ax^2 + bx + c = 0$
 - These can be found by
 - Factorising
 - Quadratic formula
 - Using your GDC
 - These are also called the x-intercepts
 - There can be 0, 1 or 2x-intercepts
 - This is determined by the value of the discriminant
- There is an axis of symmetry at x = -
 - This is given in your formula booklet
- o If there are two x-intercepts then the axis of symmetry goes through the midpoint of • The **vertex** lies on the axis of symmetry
- - It can be found by **completing the square**
 - The x-coordinate is $x = -\frac{b}{2a}$
 - The y-coordinate can be found using the GDC or by calculating y when x = -
 - If a is positive then the vertex is the minimum point
 - If a is **negative** then the vertex is the **maximum point**





What are the equations of a quadratic function?

- $f(x) = ax^2 + bx + c$
 - This is the **general form**
 - o It clearly shows the y-intercept (0, c)
 - You can find the axis of symmetry by $x = -\frac{b}{2a}$
 - This is given in the formula booklet
- f(x) = a(x-p)(x-q)
 - This is the **factorised form**
 - It clearly shows the roots (p, 0) & (q, 0)
 - You can find the axis of symmetry by $x = \frac{p+c}{2}$
- $f(x) = a(x-h)^2 + k$
 - This is the vertex form
 - It clearly shows the vertex (h, k) DERS DRACTICE
 - The axis of symmetry is therefore x = h
 - It clearly shows how the function can be transformed from the graph $y = x^2$
 - Vertical stretch by scale factor a
 - Translation by vector $\begin{pmatrix} h \\ k \end{pmatrix}$

How do I find an equation of a quadratic?

- If you have the **roots** x = p and x = q...
 - Write in **factorised form** y = a(x p)(x q)
 - You will need a third point to find the value of a
- If you have the **vertex** (h, k) then...
 - Write in **vertex form** $y = a(x h)^2 + k$
 - You will need a second point to find the value of a
- If you have three random points (x_1, y_1) , (x_2, y_2) & (x_3, y_3) then...
 - Write in the general form $y = ax^2 + bx + c$
 - Substitute the three points into the equation
 - Form and solve a system of three linear equations to find the values of a, b & c

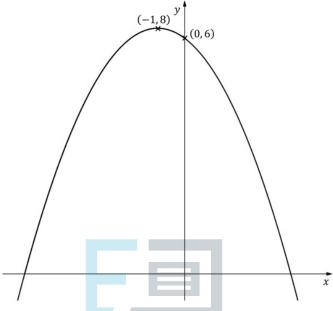
Exam Tip

- Use your GDC to find the roots and the turning point of a quadratic function
 - You do not need to factorise or complete the square
 - It is good exam technique to sketch the graph from your GDC as part of your working

Worked Example

The diagram below shows the graph of y = f(x), where f(x) is a quadratic function.

The intercept with the y-axis and the vertex have been labelled.



Write down an expression for y = f(x).

Vertex
$$(-1,8)$$
: $y=a(x-(-1))^2+8$
 $y=a(x+1)^2+8$

J ...,

Substitute the second point

$$x = 0$$
, $y = 6$: $6 = a(0+1)^2 + 8$
 $6 = a + 8$

$$y = -2(x+1)^2 + 8$$

2.1.2 Factorising & Completing the Square

Factorising Quadratics

Why is factorising quadratics useful?

- Factorising gives roots (zeroes or solutions) of a quadratic
- It gives the x-intercepts when drawing the graph

How do I factorise a monic quadratic of the form $x^2 + bx + c$?

- A monic quadratic is a quadratic where the coefficient of the x^2 term is 1
- You might be able to spot the factors by **inspection**
 - Especially if c is a **prime number**
- Otherwise find two numbers m and n..
 - A sum equal to b
 - p+q=b
 - A product equal to c
 - pq = c
- Rewrite bx as mx + nx
- Use this to factorise $x^2 + mx + nx + c$
- A shortcut is to write:
 - $\circ (x+p)(x+q)$

How do I factorise a non-monic quadratic of the form $ax^2 + bx + c$?

- A non-monic quadratic is a quadratic where the coefficient of the x^2 term is not equal to 1
- If a, b & c have a common factor then first factorise that out to leave a quadratic with coefficients that have **no common factors**
- You might be able to spot the factors by **inspection** RACTICE
 - Especially if a and/or c are prime numbers
- Otherwise find two numbers m and n..
 - A sum equal to b
 - m+n=b
 - A product equal to ac
 - mn = ac
- Rewrite bx as mx + nx
- Use this to factorise $ax^2 + mx + nx + c$
- A shortcut is to write:

$$(ax+m)(ax+n)$$

a

• Then factorise common factors from numerator to cancel with the *a* on the denominator

How do I use the difference of two squares to factorise a quadratic of the form $a^2x^2 - c^2$?

- The difference of two squares can be used when...
 - There is **no** *x* **term**
 - The constant term is a negative
- Square root the two terms a^2x^2 and c^2
- The two factors are the **sum of square roots** and the **difference of the square roots**

• A shortcut is to write:

$$\circ (ax + c)(ax - c)$$

Exam Tip

- You can deduce the factors of a quadratic function by using your GDC to find the solutions of a quadratic equation
 - Using your GDC, the quadratic equation $6x^2 + x 2 = 0$ has solutions

$$x = -\frac{2}{3}$$
 and $x = \frac{1}{2}$

- Therefore the factors would be (3x+2) and (2x-1)
- i.e. $6x^2 + x 2 = (3x + 2)(2x 1)$

Worked Example

Factorise fully:

a)

$$x^2-7x+12$$
.

Find two numbers m and n such that
 $m+n=b=-7$ $mn=c=12$
 $-4+-3=-7$ $-4\times-3=12$
Split $-7\times$ up and factorise Shortcut
 $x^2-4x-3x+12$ $(x+m)(x+n)$
 $x(x-4)-3(x-4)$

$$(x-3)(x-4)$$

b)
$$4x^2 + 4x - 15$$
.

Find two numbers m and n such that $m+n=b=4$ $mn=ac=4x-15=-60$
 $10+-6=4$ $10x-6=-60$
 $5plit 4x up and factorise Shortcut
 $4x^2 + 10x - 6x - 15$ $\frac{(ax+m)(ax+n)}{a}$
 $2x(2x+5) - 3(2x+5)$ $\frac{(4x+10)(4x-6)}{4}$
 $\frac{(2x-3)(2x+5)}{4}$$

c)
$$18 - 50x^2$$
.

Factorise the common factor $2(9-25x^2)$ Use difference of two squares 2(3-5x)(3+5x)

Completing the Square

Why is completing the square for quadratics useful?

- Completing the square gives the maximum/minimum of a quadratic function
 - This can be used to define the range of the function
- It gives the **vertex** when drawing the graph
- It can be used to solve quadratic equations
- It can be used to derive the quadratic formula

How do I complete the square for a monic quadratic of the form $x^2 + bx + c$?

- Half the value of b and write $\left(x + \frac{b}{2}\right)^2$
 - This is because $\left(x + \frac{b}{2}\right)^2 = x^2 + bx + \frac{b^2}{4}$
- Subtract the unwanted $\frac{b^2}{4}$ term and add on the constant c

$$\circ \left(x + \frac{b}{2}\right)^2 - \frac{b^2}{4} + c$$

How do I complete the square for a non-monic quadratic of the form $ax^2 + bx + c$?

• Factorise out the a from the terms involving x

$$\circ \ a\left(x^2 + \frac{b}{a}x\right) + x$$

- Leaving the c alone will avoid working with lots of fractions
- Complete the square on the quadratic term S PRACTICE
 - Half $\frac{b}{a}$ and write $\left(x + \frac{b}{2a}\right)^2$
 - This is because $\left(x + \frac{b}{2a}\right)^2 = x^2 + \frac{b}{a}x + \frac{b^2}{4a^2}$
 - Subtract the unwanted $\frac{b^2}{4a^2}$ term
- Multiply by a and add the constant c

$$a \left[\left(x + \frac{b}{2a} \right)^2 - \frac{b^2}{4a^2} \right] + c$$

$$a \left(x + \frac{b}{2a} \right)^2 - \frac{b^2}{4a} + c$$

Exam Tip

• Some questions may not use the phrase "completing the square" so ensure you can recognise a quadratic expression or equation written in this form

•
$$a(x-h)^2 + k(=0)$$

?

Worked Example

Complete the square:

a)

$$x^2 - 8x + 3$$
.
Half b and subtract its square
 $(x - 4)^2 - 4^2 + 3$
 $(x - 4)^2 - 13$

$$3x^2 + 12x - 5$$
.

Factorise the 3 from the x terms
 $3(x^2 + 4x) - 5$

(complete the square on $x^2 + 4x$
 $3((x+2)^2 - 2^2) - 5$

Simplify
 $3((x+2)^2 - 4) - 5$
 $3(x+2)^2 - 12 - 5$

2.1.3 Solving Quadratics

Solving Quadratic Equations

How do I decide the best method to solve a quadratic equation?

- A quadratic equation is of the form $ax^2 + bx + c = 0$
- If it is a calculator paper then use your GDC to solve the quadratic
- If it is a non-calculator paper then...
 - o you can always use the quadratic formula
 - you can factorise if it can be factorised with integers
 - you can always **complete the square**

How do I solve a quadratic equation by the quadratic formula?

- If necessary **rewrite** in the form $ax^2 + bx + c = 0$
- Clearly identify the values of a, b & c
- Substitute the values into the formula

$$\circ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

- This is given in the formula booklet
- Simplify the solutions as much as possible

How do I solve a quadratic equation by factorising?

- Factorise to rewrite the quadratic equation in the form a(x-p)(x-q)=0
- Set each factor to zero and solve

$$\circ \ \ X - p = 0 \Rightarrow X = p$$

$$\circ x - q = 0 \Rightarrow x = q$$
M PAPERS PRACTICE

How do I solve a quadratic equation by completing the square?

- Complete the square to rewrite the quadratic equation in the form $a(x-h)^2 + k = 0$
- Get the squared term by itself

$$\circ (x-h)^2 = -\frac{k}{a}$$

- If $\left(-\frac{k}{a}\right)$ is **negative** then there will be **no solutions**
- If $\left(-\frac{k}{a}\right)$ is **positive** then there will be **two values** for x h

$$\circ x - h = \pm \sqrt{-\frac{k}{a}}$$

• Solve for x

$$\circ x = h \pm \sqrt{-\frac{k}{a}}$$

Exam Tip

- When using the quadratic formula with awkward values or fractions you may find it easier to deal with the " b^2-4ac " (**discriminant**) first
 - This can help avoid numerical and negative errors, improving accuracy

7

Worked Example

Solve the equations:

a)
$$4x^2 + 4x - 15 = 0.$$

This can be factorised

$$(2x + 5)(2x - 3) = 0$$

$$2x+5=0$$
 or $2x-3=0$

$$x = -\frac{5}{2}$$
 or $x = \frac{3}{2}$

b)
$$3x^2 + 12x - 5 = 0$$
.

This can not be factorised but $3x^2$ and 12x have a common

factor so complete the square

$$3(x+2)^{2}-17 = 0$$
 $(x+2)^{2} = \frac{17}{3}$
Rearrange
 $x+2 = t\sqrt{\frac{17}{3}}$
Remember t

EXAM PAPERS PRACTICE

c)

$$7 - 3x - 5x^2 = 0$$

This can not be factorised so use formula

Formula booklet

Solutions of a quodratic equation
$$ax^2 + bx + c = 0 \implies x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}, a \neq 0$$

$$x = \frac{-(-3) \pm \sqrt{(-3)^2 - 4(-5)(7)}}{2(-5)}$$

$$= \frac{3 \pm \sqrt{9 + 140}}{-10}$$

$$x = -\frac{3 \pm \sqrt{149}}{10}$$

2.1.4 Quadratic Inequalities

Quadratic Inequalities

What affects the inequality sign when rearranging a quadratic inequality?

- The inequality sign is unchanged by...
 - Adding/subtracting a term to both sides
 - Multiplying/dividing both sides by a positive term
- The inequality sign flips (< changes to >) when...
 - Multiplying/dividing both sides by a negative term

How do I solve a quadratic inequality?

- STEP 1: Rearrange the inequality into quadratic form with a positive squared term
 - \circ $ax^2 + bx + c > 0$
 - \circ $ax^2 + bx + c \ge 0$
 - \circ $ax^2 + bx + c < 0$
 - $ax^2 + bx + c \le 0$
- STEP 2: Find the roots of the quadratic equation
 - Solve $ax^2 + bx + c = 0$ to get x_1 and x_2 where $x_1 < x_2$
- STEP 3: Sketch a graph of the quadratic and label the roots
 - As the squared term is positive it will be **concave up** so "U" shaped
- STEP 4: Identify the region that satisfies the inequality
 - If you want the graph to be above the x-axis then choose the region to be the two
 intervals outside of the two roots
 - If you want the graph to be **below the x-axis** then choose the region to be the **interval between** the two roots
 - \circ For $ax^2 + bx + c > 0$
 - The solution is $x < x_1 \text{ or } x > x_2$
 - \circ For $ax^2 + bx + c ≥ 0$
 - The solution is $x \le x_1$ or $x \ge x_2$
 - \circ For $ax^2 + bx + c < 0$
 - The solution is $x_1 < x < x_2$
 - \circ For $ax^2 + bx + c \le 0$
 - The solution is $x_1 \le x \le x_2$

How do I solve a quadratic inequality of the form $(x - h)^2 < n$ or $(x - h)^2 > n$?

- The safest way is by following the steps above
 - Expand and rearrange
- A **common mistake** is writing $x h < \pm \sqrt{n}$ or $x h > \pm \sqrt{n}$
 - This is **NOT correct!**
- The correct solution to $(x h)^2 < n$ is
 - $\circ |x-h| < \sqrt{n}$ which can be written as $-\sqrt{n} < x-h < \sqrt{n}$
 - The final solution is $h \sqrt{n} < x < h + \sqrt{n}$
- The correct solution to $(x h)^2 > n$ is

- $|x-h| > \sqrt{n}$ which can be written as $x-h < -\sqrt{n}$ or $x-h > \sqrt{n}$
- The final solution is $x < h \sqrt{n}$ or $x > h + \sqrt{n}$

\bigcirc

Exam Tip

- It is easiest to sketch the graph of a quadratic when it has a positive x^2 term, so rearrange first if necessary
- Use your GDC to help select the correct region(s) for the inequality
- Some makes/models of GDC may have the ability to solve inequalities directly
 - However unconventional notation may be used to display the answer (e.g. 6 > x > 3 rather than 3 < x < 6)
 - The safest method is to **always** sketch the graph

Worked Example

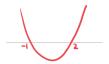
Find the set of values which satisfy $3x^2 + 2x - 6 > x^2 + 4x - 2$.

Step 1: Rearrange
$$(3x^2+2x-6)-(x^2+4x-2) > 0$$
This way
$$2x^2-2x-4>0$$
gives $a>0$

$$x^2-x-2>0$$
Divide by factor of 2

EXAM²-
$$x$$
- A PERS PRACTICE
 $(x-2)(x+1)=0$
 $x=2$ or $x=-1$

STEP 3: Sketch



STEP 4: Identify region

$$x < -1$$
 or $x > 2$

2.1.5 Discriminants

Discriminants

What is the discriminant of a quadratic function?

- The discriminant of a quadratic is denoted by the Greek letter Δ (upper case delta)
- For the quadratic function the discriminant is given by
 - $\circ \Delta = b^2 4ac$

This is given in the **formula booklet**

• The discriminant is the expression that is square rooted in the quadratic formula

How does the discriminant of a quadratic function affect its graph and roots?

- If \triangle > 0 then $\sqrt{b^2 4ac}$ and $-\sqrt{b^2 4ac}$ are **two distinct values**
 - The equation $ax^2 + bx + c = 0$ has two distinct real solutions
 - The graph of $y = ax^2 + bx + c$ has **two distinct real roots** This means the graph **crosses** the x-axis **twice**
- If $\triangle = 0$ then $\sqrt{b^2 4ac}$ and $-\sqrt{b^2 4ac}$ are **both zero**
 - The equation $ax^2 + bx + c = 0$ has one repeated real solution
 - The graph of $y = ax^2 + bx + c$ has one repeated real root This means the graph touches the x-axis at exactly one point This means that the x-axis is a tangent to the graph
- If \triangle < 0 then $\sqrt{b^2 4ac}$ and $-\sqrt{b^2 4ac}$ are **both undefined**
 - The equation $ax^2 + bx + c = 0$ has no real solutions
 - The graph of $y = ax^2 + bx + c$ has **no real roots**

This means the graph **never touches** the **x-axis**

This means that graph is **wholly above** (or **below**) the **x-axis**

 $1F b^2 - 4ac > 0$ $1F b^2 - 4ac = 0$ a>0 ONE REAL ROOT TWO DISTINCT REAL ROOTS (REPEATED ROOTS) $1F b^2 - 4ac < 0$ NO REAL ROOTS

Forming equations and inequalities using the discriminant

- Often at least one of the coefficients of a quadratic is **unknown**
 - Questions usually use the letter k for the unknown constant
- You will be given a fact about the quadratic such as:
 - The **number of solutions** of the equation
 - The **number of roots** of the graph
- To find the value or range of values of k
 Find an expression for the discriminant
 - Use $\Delta = b^2 4ac$
 - \circ Decide whether $\Delta > 0$, $\Delta = 0$ or $\Delta < 0$
 - If the question says there are **real roots** but does not specify how many then use Δ
 - o Solve the resulting equation or inequality

Exam Tip

- Questions will rarely use the word discriminant so it is important to recognise when its use is required
 - Look for
 - a number of roots or solutions being stated
 - whether and/or how often the graph of a quadratic function intercepts the x-axis
- Be careful setting up inequalities that concern "two real roots" ($\Delta \geq 0$) as opposed to "two real distinct roots" ($\Delta > 0$)

Worked Example

A function is given by $f(x) = 2kx^2 + kx - k + 2$, where k is a constant. The graph of y = f(x) has two distinct real roots.

a)

Show that $9k^2 - 16k > 0$.

Two distinct real roots
$$\Rightarrow \Delta > 0$$

Formula booklet Discriminant $\Delta = b^2 - 4ac$
 $a = 2k$ $b = k$ $c = (-k+2)$
 $\Delta = k^2 - 4(2k)(-k+2)$
 $= k^2 + 8k^2 - 16k$
 $= 9k^2 - 16k$

$$\Delta > 0 \Rightarrow 9k^2 - 16k > 0$$

b)

Hence find the set of possible values of k.

Solve the inequality
$$9k^{2}-16k=0$$

$$k(9k-16)=0$$

$$k=0 \text{ or } k=\frac{16}{9}$$

$$k<0 \text{ or } k>\frac{16}{9}$$

2.2 Linear Functions & Graphs

2.2.1 Equations of a Straight Line

Equations of a Straight Line

How do I find the gradient of a straight line?

- Find two points that the line passes through with coordinates (x_1, y_1) and (x_2, y_2)
- The gradient between these two points is calculated by

$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

- This is given in the formula booklet
- The gradient of a straight line measures its slope
 - o Aline with gradient 1 will go up 1 unit for every unit it goes to the right
 - A line with gradient -2 will go down two units for every unit it goes to the right

What are the equations of a straight line?

- y = mx + c
 - This is the **gradient-intercept form**
 - It clearly shows the gradient m and the y-intercept (0, c)
- $\bullet \quad y y_1 = m(x x_1)$
 - This is the point-gradient form PERS PRACTICE
 - It clearly shows the gradient m and a point on the line (x_1, y_1)
- ax + by + d = 0
 - This is the **general form**
 - You can quickly get the x-intercept $\left(-\frac{d}{a},0\right)$ and y-intercept $\left(0,-\frac{d}{b}\right)$

How do I find an equation of a straight line?

- You will need the gradient
 - o If you are given two points then first find the gradient
- It is easiest to start with the **point-gradient form**
 - o then rearrange into whatever form is required
 - multiplying both sides by any denominators will get rid of fractions
- You can check your answer by using your GDC
 - o Graph your answer and check it goes through the point(s)
 - If you have two points then you can enter these in the **statistics mode** and find the regression line y = ax + b

Exam Tip

- A sketch of the graph of the straight line(s) can be helpful, even if not demanded by the question
 - Use your GDC to plot them
- Ensure you state equations of straight lines in the format required
 - Usually y = mx + c or ax + by + d = 0
 - Check whether coefficients need to be integers (they usually are for ax + by + d = 0)

Worked Example

The line I passes through the points (-2, 5) and (6, -7).

Find the equation of I, giving your answer in the form ax + by + d = 0 where a, b and c are integers to be found.

Find the gradient between (-2,5) and (6,-7)

Formula booklet
$$m = \frac{-7 - 5}{6 - 2} = \frac{3}{2}$$
Gradient formula
$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

Use the point-gradient formula

Formula booklet

Equations of a straight

$$y - y_1 = m(x - x_1)$$
 $(x_1, y_1) = (-2, 5)$
 $y - 5 = -\frac{3}{2}(x - \frac{3}{2})$

Simplify

 $y - 5 = -\frac{3}{2}(x + 2)$

Multiply by denominator

 $2(y - 5) = -3(x + 2)$

Expand

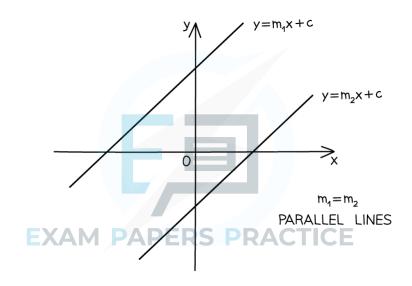
 $3x + 2y - 4 = 0$

Rearrange

Parallel Lines

How are the equations of parallel lines connected?

- Parallel lines are always equidistant meaning they never intersect
- Parallel lines have the same gradient
 - If the gradient of line l_1 is m_1 and gradient of line l_2 is m_2 then...
 - $m_1 = m_2 \Rightarrow l_1 \& l_2$ are parallel
 - $I_1 \& I_2$ are parallel $\Rightarrow m_1 = m_2$
- To determine if two lines are parallel:
 - Rearrange into the gradient-intercept form y = mx + c
 - \circ Compare the coefficients of X
 - If they are equal then the lines are parallel



?

Worked Example

The line I passes through the point (4, -1) and is parallel to the line with equation 2x - 5y = 3.

Find the equation of l, giving your answer in the form y = mx + c.

Rearrange into
$$y=m\infty+c$$
 to find the gradient $5y=2x-3$ $\Rightarrow y=\frac{2}{5}x-\frac{3}{5}$: gradient $=\frac{2}{5}$ Parallel lines $\Rightarrow m_1=m_2$ $m=\frac{2}{5}$

Use the point-gradient formula

Formula booklet Equations of a straight
$$y-y_1=m(x-x_1)$$
 line

$$(\alpha_i, y_i) = (4, -1)$$
 $m = \frac{2}{5}$

$$y + 1 = \frac{2}{5}(x - 4)$$

$$y + 1 = \frac{2}{5}x - \frac{8}{5}$$

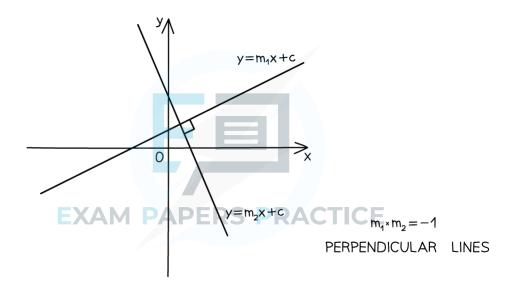
$$y = \frac{2}{5}x - \frac{13}{5}$$

EXAM PAPERS PRACTICE

Perpendicular Lines

How are the equations of perpendicular lines connected?

- Perpendicular lines intersect at right angles
- The gradients of two perpendicular lines are negative reciprocals
 - If the gradient of line l_1 is m_1 and gradient of line l_2 is m_2 then...
 - $m_1 \times m_2 = -1 \Rightarrow l_1 \& l_2$ are perpendicular
 - $l_1 \& l_2$ are perpendicular $\Rightarrow m_1 \times m_2 = -1$
- To determine if two lines are perpendicular:
 - Rearrange into the gradient-intercept form y = mx + c
 - \circ Compare the coefficients of X
 - If their product is -1 then they are perpendicular
- Be careful with horizontal and vertical lines
 - x = p and y = q are perpendicular where p and q are constants



Worked Example

The line I_1 is given by the equation 3x - 5y = 7.

The line I_2 is given by the equation $y = \frac{1}{4} - \frac{5}{3}x$.

Determine whether $\,I_{1}^{}\,$ and $\,I_{2}^{}\,$ are perpendicular. Give a reason for your answer.

$$5y = 3x - 7$$
 => $y = \frac{3}{5}x - \frac{7}{5}$

Identity gradients

$$m_1 = \frac{3}{5}$$
 $m_2 = -\frac{5}{3}$

m, x m, =-1 => Perpendicular lines

$$\frac{3}{5} \times -\frac{5}{3} = -1$$

l, and l2 are perpendicular as m1xm2=-1

EXAM PAPERS PRACTICE

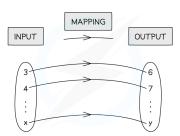
2.3 Functions Toolkit

2.3.1 Language of Functions

Language of Functions

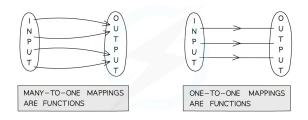
What is a mapping?

- A mapping transforms one set of values (inputs) into another set of values (outputs)
- Mappings can be:
 - o One-to-one
 - Each input gets mapped to **exactly one unique** output
 - No two inputs are mapped to the same output
 - For example: A mapping that cubes the input
 - Many-to-one
 - Each input gets mapped to **exactly one** output
 - Multiple inputs can be mapped to the same output
 - For example: A mapping that squares the input
 - ∘ One-to-many
 - An input can be mapped to **more than one** output
 - No two inputs are mapped to the same output
 - For example: A mapping that gives the numbers which when squared equal the input
 - Many-to-many
 - An input can be mapped to more than one output
 - Multiple inputs can be mapped to the same output
 - For example: A mapping that gives the factors of the input



What is a function?

- A function is a mapping between two sets of numbers where each input gets mapped to exactly one output
 - The output does not need to be unique
- One-to-one and many-to-one mappings are functions
- A mapping is a function if its graph passes the vertical line test
 - Any vertical line will intersect with the graph at most once

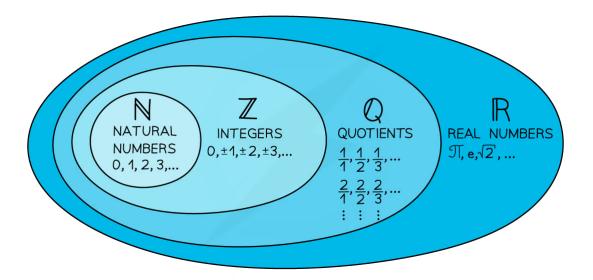


What notation is used for functions?

- Functions are denoted using letters (such as f, v, g, etc)
 - o A function is followed by a variable in a bracket
 - This shows the input for the function
 - \circ The letter f is used most commonly for functions and will be used for the remainder of this revision note
- f(x) represents an expression for the value of the function f when evaluated for the variable x
- Function notation gets rid of the need for words which makes it **universal**
 - f = 5 when x = 2 can simply be written as f(2) = 5

What are the domain and range of a function?

- The **domain** of a function is the set of values that are used as **inputs**
- A domain should be stated with a function
 - If a domain is not stated then it is assumed the domain is all the real values which would work as inputs for the function
 - Domains are expressed in terms of the input
 - x≤2EXAM PAPERS PRACTICE
- The range of a function is the set of values that are given as outputs
 - The range depends on the domain
 - Ranges are expressed in terms of the output
 - $f(x) \ge 0$
- To graph a function we use the **inputs** as the x-coordinates and the **outputs** as the y-coordinates
 - f(2) = 5 corresponds to the coordinates (2, 5)
- Graphing the function can help you visualise the range
- Common sets of numbers have special symbols:
 - \circ \mathbb{R} represents all the real numbers that can be placed on a number line
 - $x \in \mathbb{R}$ means x is a real number
 - $\circ \mathbb{Q}$ represents all the rational numbers $\frac{a}{b}$ where a and b are integers and $b \neq 0$
 - ∘ Z represents all the integers (positive, negative and zero)
 - Z⁺ represents positive integers
 - ∘ N represents the natural numbers (0,1,2,3...)



What are piecewise functions?

• **Piecewise functions** are defined by different functions depending on which interval the input is in

$$\circ \text{ E.g. } f(x) = \begin{cases} x+1 & x \le 5 \\ 2x-4 & 5 < x < 10 \\ x^2 & 10 \le x \le 20 \end{cases}$$

- The region for the individual functions cannot overlap
- To evaluate a piecewise function for a particular value x = k
 - \circ Find which interval includes k
 - Substitute x = k into the corresponding function
- The function may or may not be continuous at the ends of the intervals
 - In the example above the function is
 - continuous at x = 5 as 5 + 1 = 2(5) 4
 - not continuous at x = 10 as $2(10) 4 \neq 10^2$

Exam Tip

- Questions may refer to "the largest possible domain"
 - \circ This would usually be $x \in \mathbb{R}$ unless \mathbb{N} , \mathbb{Z} or \mathbb{Q} has already been stated
 - There are usualy some exceptions
 - e.g. square roots; $x \ge 0$ for a function involving
 - e.g. reciprocal functions; $x \ne 2$ for a function with denominator

Worked Example Forthefunction $f(x) = x^3 + 1$, $2 \le x \le 10$: a) write down the value of f(7). Substitute x = 7 $f(7) = 7^3 + 1$ f(7) = 344b) find the range of f(x). Find the values of $x^3 + 1$ when $2 \le x \le 10$ $2 \le x \le 10$ $3 \le x^3 \le 1000$ $9 \le x^3 + 1 \le 1001$ $9 \le f(x) \le 1001$

EXAM PAPERS PRACTICE

2.3.2 Composite & Inverse Functions

Composite Functions

What is a composite function?

- A composite function is where a function is applied to another function
- A composite function can be denoted
 - $\circ (f \circ g)(x)$
 - \circ fg(x)
 - $\circ f(\varrho(\chi))$
- The order matters
 - $\circ (f \circ g)(x)$ means:
 - First apply g to x to get g(x)
 - Then apply f to the previous output to get f(g(x))
 - Always start with the function closest to the variable
 - $\circ (f \circ g)(x)$ is not usually equal to $(g \circ f)(x)$

How do I find the domain and range of a composite function?

- The domain of $f \circ g$ is the set of values of x...
 - which are a subset of the domain of g
 - which maps g to a value that is in the **domain of** f
- The range of $f \circ g$ is the set of values of x...
 - which are a subset of the range of f
 - found by applying f to the range of g
- ullet To find the **domain** and **range** of $f \circ g$ ERS PRACTICE
 - First find the range of g
 - Restrict these values to the values that are within the domain of f
 - The domain is the set of values that produce the restricted range of g
 - The range is the set of values that are produced using the restricted range of g as the domain for f
- For example: let f(x) = 2x + 1, $-5 \le x \le 5$ and $g(x) = \sqrt{x}$, $1 \le x \le 49$
 - The range of g is $1 \le g(x) \le 7$
 - Restricting this to fit the domain of f results in $1 \le g(x) \le 5$
 - The **domain** of $f \circ g$ is therefore $1 \le x \le 25$
 - These are the values of x which map to $1 \le g(x) \le 5$
 - The range of $f \circ g$ is therefore $3 \le (f \circ g)(x) \le 11$
 - These are the values which f maps $1 \le g(x) \le 5$ to

Exam Tip

- Make sure you know what your GDC is capable of with regard to functions
 - You may be able to store individual functions and find composite functions and their values for particular inputs
 - You may be able to graph composite functions directly and so deduce their domain and range from the graph
- The link between the domains and ranges of a function and its inverse can act as a check for your solution
- ff(x) is not the same as $[f(x)]^2$

Worked Example

Given $f(x) = \sqrt{x+4}$ and g(x) = 3 + 2x:

a)

Write down the value of $(g \circ f)(12)$.

First apply function closest to input

$$(g \circ f)(12) = g(f(12))$$
 $f(12) = \sqrt{12+4} = \sqrt{16} = 4$
 $g(4) = 3 + 2(4) = 11$
 $(g \circ f)(12) = 11$

b) Write down an expression for $(f \circ g)(x)$.

First apply function closest to input

$$(f \circ g)(x) = f(g(x))$$

= $f(3+2x)$
= $\sqrt{3+2x+4}$

c) Write down an expression for $(g \circ g)(x)$.

$$(g \circ g)(x) = g(g(x))$$

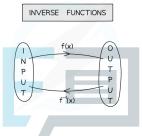
= $g(3+2x)$
= $3+2(3+2x)$
= $3+6+4x$
 $(g \circ g)(x) = 9+4x$

Inverse Functions

What is an inverse function?

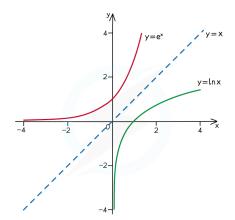
- Only one-to-one functions have inverses
- A function has an inverse if its graph passes the horizontal line test
 - Any horizontal line will intersect with the graph at most once
- The identity function id maps each value to itself
 - \circ id(x) = x
- If $f \circ g$ and $g \circ f$ have the same effect as the identity function then f and g are inverses
- Given a function f(x) we denote the **inverse function** as $f^{-1}(x)$
- An inverse function reverses the effect of a function
 - \circ f(2) = 5 means $f^{-1}(5) = 2$
- Inverse functions are used to solve equations
 - The solution of f(x) = 5 is $x = f^{-1}(5)$
- A composite function made of f and f^{-1} has the same effect as the identity function

$$\circ (f \circ f^{-1})(x) = (f^{-1} \circ f)(x) = x$$



What are the connections between a function and its inverse function?

- The domain of a function becomes the range of its inverse
- The range of a function becomes the domain of its inverse
- The graph of $v = f^{-1}(x)$ is a **reflection** of the graph v = f(x) in the line v = x
 - Therefore solutions to f(x) = x or $f^{-1}(x) = x$ will also be solutions to $f(x) = f^{-1}(x)$
 - There could be other solutions to $f(x) = f^{-1}(x)$ that don't lie on the line y = x



How do I find the inverse of a function?

- STEP 1: **Swap** the x and y in y = f(x)
 - If $y = f^{-1}(x)$ then x = f(y)
- STEP 2: **Rearrange** x = f(y) to make y the subject
- Note this can be done in any order
 - Rearrange y = f(x) to make x the subject
 - \circ Swap x and y

Can many-to-one functions ever have inverses?

- You can restrict the domain of a many-to-one function so that it has an inverse
- Choose a subset of the domain where the function is one-to-one
 - The inverse will be determined by the restricted domain
 - Note that a many-to-one function can **only** have an inverse if its domain is restricted first
- For quadratics use the vertex as the upper or lower bound for the restricted domain
 - For $f(x) = x^2$ restrict the domain so 0 is either the maximum or minimum value
 - For example: $x \ge 0$ or $x \le 0$
 - For $f(x) = a(x h)^2 + k$ restrict the domain so h is either the maximum or minimum value
 - For example: $x \ge h$ or $x \le h$
- For trigonometric functions use part of a cycle as the restricted domain
 - For $f(x) = \sin x$ restrict the domain to half a cycle between a maximum and a minimum
 - For example: $-\frac{\pi}{2} \le x \le \frac{\pi}{2}$
 - For $f(x) = \cos x$ restrict the domain to half a cycle between maximum and a minimum
 - For example: $0 \le x \le \pi$
 - For $f(x) = \tan x$ restrict the domain to one cycle between two asymptotes
 - For example: $-\frac{\pi}{2} < x < \frac{\pi}{2}$

How do I find the inverse function after restricting the domain?

- The range of the inverse is the same as the restricted domain of the original function
- The inverse function is determined by the restricted domain
 - Restricting the domain differently will change the inverse function
- Use the range of the inverse to help find the inverse function
 - Restricting the domain of $f(x) = x^2$ to $x \ge 0$ means the range of the inverse is $f^{-1}(x) \ge 0$
 - Therefore $f^{-1}(x) = \sqrt{x}$
 - Restricting the domain of $f(x) = x^2$ to $x \le 0$ means the range of the inverse is $f^{-1}(x) < 0$
 - Therefore $f^{-1}(x) = -\sqrt{x}$

- Remember that an inverse function is a reflection of the original function in the line v=x
 - Use your GDC to plot the function and its inverse on the same graph to visually check this
- $f^{-1}(x)$ is not the same as $\frac{1}{f(x)}$

Worked Example

The function $f(x) = (x-2)^2 + 5$, $x \le m$ has an inverse.

a)

Write down the largest possible value of m.

Sketch
$$y=f(x)$$

The graph is one-to-one
for $x \le 2$
 $m=2$

b)

Find the inverse of f(x).

Let
$$y=f^{-1}(x)$$
 and rearrange $x=f(y)$
 $x=(y-2)^2+5$
 $x-5=(y-2)^2$
 $2 \pm \sqrt{x-5}=y-2$
Range of f^{-1} is the domain of $f^{-1}(x) \le 2$... $y=2-\sqrt{x-5}$
PRACTICE

Find the domain of $f^{-1}(x)$.

Domain of
$$f^{-1}$$
 is the range of f
Sketch $y=f(x)$ to
see range
For $x \in 2$, $f(x) \ge 5$ (2.5)

Domain of fi : x>5

Find the value of k such that f(k) = 9.

Use inverse
$$f(a) = b \iff q = f^{-1}(b)$$

 $k = f^{-1}(q) = 2 - \sqrt{q - 5}$
 $k = 0$

2.3.3 Symmetry of Functions

Odd & Even Functions

What are odd functions?

- A function f(x) is called **odd** if
 - $\circ f(-x) = -f(x) \text{ for all values of } x$
- Examples of odd functions include:
 - Power functions with **odd powers**: x^{2n+1} where $n \in \mathbb{Z}$

For example:
$$(-x)^3 = -x^3$$

• Some trig functions: sinx, cosecx, tanx, cotx

For example:
$$\sin(-x) = -\sin x$$

• Linear combinations of odd functions

For example:
$$f(x) = 3x^5 - 4\sin x + \frac{6}{x}$$

What are even functions?

• A function f(x) is called **even** if

$$\circ f(-x) = f(x) \text{ for all values of } x$$

- Examples of even functions include:
 - Power functions with **even powers**: x^{2n} where $n \in \mathbb{Z}$

For example:
$$(-x)^4 = x^4$$

• Some trig functions: cosx, secx

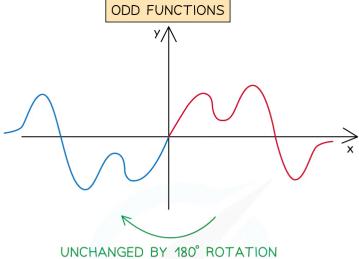
For example:
$$cos(-x) = cosx$$

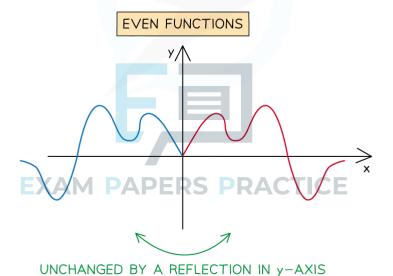
- Modulus function: |x|
 Linear combinations of even functions

For example:
$$f(x) = 7x^6 + 3|x| - 8\cos x$$

What are the symmetries of graphs of odd & even functions?

- The graph of an **odd** function has **rotational symmetry**
 - The graph is unchanged by a 180° rotation about the origin
- The graph of an even function has reflective symmetry
 - The graph is unchanged by a **reflection** in the **y-axis**





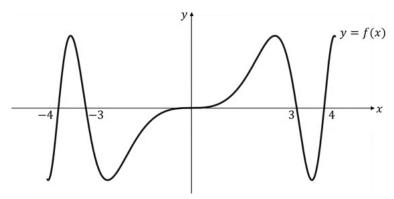
- Turn your GDC upside down for a quick visual check for an odd function!
 - o Ignoring axes, etc, if the graph looks exactly the same both ways, it's odd

?

Worked Example

a)

The graph y = f(x) is shown below. State, with a reason, whether the function f is odd, even or neither.



f is an odd function as its graph has rotational symmetry - it is unchanged by a 180° rotation about the origin.

b)

Use algebra to show that $g(x) = x^3 \sin(x) + 5\cos(x^5)$ is an even function.

g is even if
$$g(-x) = g(x)$$
 for all x
 $g(-x) = (-x)^3 \sin(-x) + 5\cos((-x)^5)$
 $= (-x^3)(-\sin(x)) + 5\cos(-x^5)$ x^3 , x^5 , sinx are odd
 $= x^3 \sin(x) + 5\cos(x^5)$ cos x is even
 $= g(x)$

g is even as g(-x)=g(x) for all x

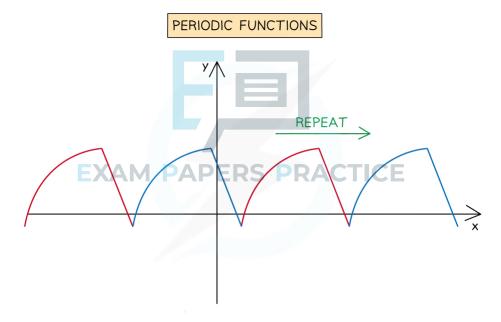
Periodic Functions

What are periodic functions?

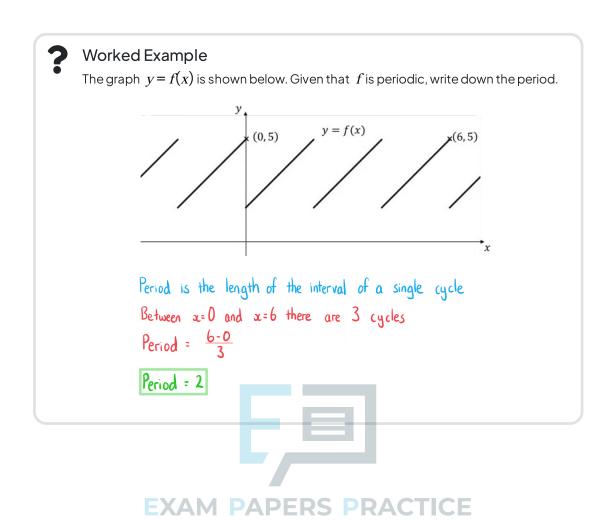
- A function f(x) is called **periodic**, with **period k**, if
 - f(x+k) = f(x) for all values of x
- Examples of periodic functions include:
 - o sin x & cos x: The period is 2π or 360°
 - \circ tan x: The period is π or 180°
 - Linear combinations of periodic functions with the same period
 - For example: $f(x) = 2\sin(3x) 5\cos(3x + 2)$

What are the symmetries of graphs of periodic functions?

- The graph of a **periodic** function has **translational symmetry**
 - \circ The graph is unchanged by **translations** that are **integer multiples of** $\begin{pmatrix} k \\ 0 \end{pmatrix}$
 - The means that the graph appears to **repeat** the same section (cycle) infinitely



- There may be several intersections between the graph of a periodic function and another function
 - i.e. Equations may have several solutions so only answers within a certain range of x-values may be required
 - e.g. Solve $\tan x = \sqrt{3}$ for $0^{\circ} \le x \le 360^{\circ}$
 - $x = 60^{\circ}, 240^{\circ}$
 - o Alternatively you may have to write all solutions in a general form
 - e.g. $x = 60(3k+1)^\circ$, $k = 0, \pm 1, \pm 2, ...$



Self-Inverse Functions

What are self-inverse functions?

• A function f(x) is called **self-inverse** if

$$\circ (f \circ f)(x) = x \text{ for all values of } x$$

$$\circ \quad f^{-1}(x) = f(x)$$

• Examples of self-inverse functions include:

• Identity function: f(x) = x

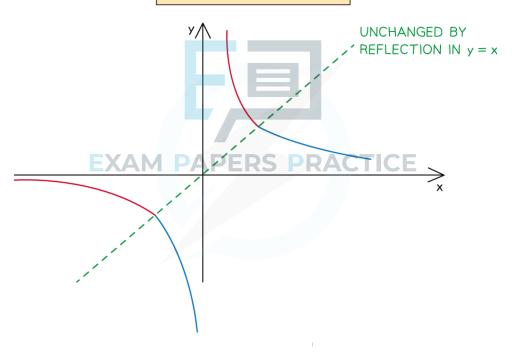
• Reciprocal function: $f(x) = \frac{1}{x}$

• Linear functions with a gradient of -1: f(x) = -x + c

What are the symmetries of graphs of self-inverse functions?

- The graph of a self-inverse function has reflective symmetry
 - The graph is unchanged by a **reflection** in the line y = x

SELF-INVERSE FUNCTIONS



Exam Tip

- If your expression for $f^{-1}(x)$ is not the same as the expression for f(x) you can check their equivalence by plotting both on your GDC
 - If equivalent the graphs will sit on top of one another and appear as one
 - This will indicate if you have made an error in your algebra, before trying to simplify/rewrite to make the two expressions identical
- It is sometimes easier to consider self inverse functions geometrically rather than algebraically

Worked Example

Use algebra to show the function defined by $f(x) = \frac{7x-5}{x-7}$, $x \ne 7$ is self-inverse.

Method 1:
$$f'(x)$$

Let $y = f'(x)$ so $x = f(y)$

$$x = \frac{7y-5}{y-7}$$

$$(y-7)x = 7y-5$$

$$xy - 7x = 7y-5$$

$$xy - 7y = 7x-5$$

$$y = \frac{7x-5}{x-7}$$

Isolate y on $y = \frac{7x-5}{x-7}$

$$y = \frac{7x-5}{x-7}$$

Isolate y on $y = \frac{7x-5}{x-7}$

$$y = \frac{7x-5}{x-7}$$

$$y = \frac{7x-5}{x-7}$$

If $y = \frac{7x-5}{x-7}$

I

2.3.4 Graphing Functions

Graphing Functions

How do I graph the function y = f(x)?

- A point (a, b) lies on the graph y = f(x) if f(a) = b
- The horizontal axis is used for the domain
- The vertical axis is used for the range
- You will be able to graph some functions by hand
- For some functions you will need to use your GDC
- You might be asked to graph the **sum** or **difference** of two functions
 - Use your GDC to graph y = f(x) + g(x) or y = f(x) g(x)
 - Just type the functions into the graphing mode

What is the difference between "draw" and "sketch"?

- If asked to sketch you should:
 - Show the general shape
 - Label any key points such as the intersections with the axes
 - Label the axes
- If asked to draw you should:
 - Use a pencil and ruler
 - o Draw to scale
 - Plot any points **accurately**
 - o Join points with a straight line or smooth curve
 - Label any key points such as the intersections with the axes
 Label the axes
 - Label the axes AM PAPERS

How can my GDC help me sketch/draw a graph?

- You use your GDC to plot the graph
 - o Check the scales on the graph to make sure you see the full shape
- Use your GDC to find any key points
- Use your GDC to check specific points to help you plot the graph

Key Features of Graphs

What are the key features of graphs?

- You should be familiar with the following key features and know how to use your GDC to find them
- Local minimums/maximums
 - These are points where the graph has a minimum/maximum for a small region
 - They are also called **turning points**

This is where the graph changes its direction between upwards and downwards directions

- A graph can have multiple local minimums/maximums
- A local minimum/maximum is not necessarily the minimum/maximum of the whole graph

This would be called the **global** minimum/maximum

- For quadratic graphs the minimum/maximum is called the **vertex**
- Intercepts
 - \circ y intercepts are where the graph crosses the y-axis At these points x = 0
 - x intercepts are where the graph crosses the x-axis

At these points y = 0

These points are also called the **zeros of the function** or **roots of the equation**

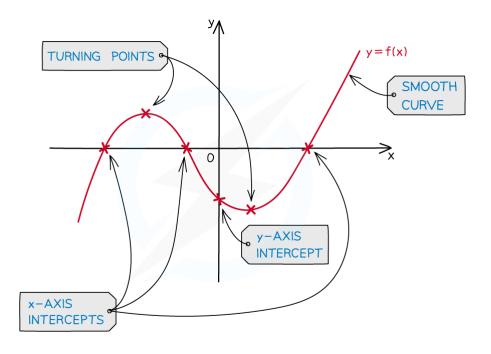
- Symmetry
 - Some graphs have lines of symmetry

A quadratic will have a vertical line of symmetry

- Asymptotes
 - These are lines which the graph will get closer to but not cross
 - These can be horizontal or vertical

Exponential graphs have horizontal asymptotes

Graphs of variables which vary inversely can have vertical and horizontal asymptotes



- Most GDC makes/models will not plot/show asymptotes just from inputting a function
 - Add the asymptotes as additional graphs for your GDC to plot
 - You can then check the equations of your asymptotes visually
 - You may have to zoom in or change the viewing window options to confirm an asymptote
- Even if using your GDC to plot graphs and solve problems sketching them as part of your working is good exam technique
 - Label the key features of the graph and anything else relevant to the question on your sketch

?

Worked Example

Two functions are defined by

$$f(x) = x^2 - 4x - 5$$
 and $g(x) = 2 + \frac{1}{x+1}$.

a)

Draw the graph y = f(x).

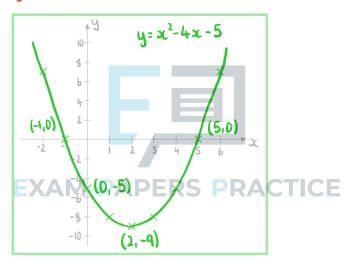
Draw means accurately

Use GDC to find vertex, roots and y-intercepts

Vertex = (2, -9)

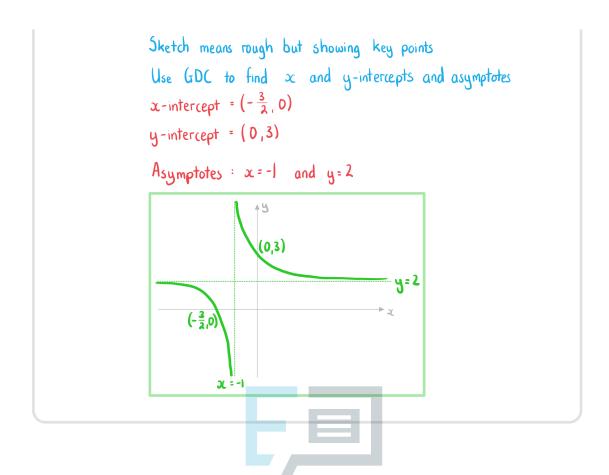
Roots = (-1, 0) and (5, 0)

y-intercept = (0, -5)



b)

Sketch the graph y = g(x).

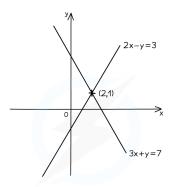


EXAM PAPERS PRACTICE

Intersecting Graphs

How do I find where two graphs intersect?

- Plot both graphs on your GDC
- Use the intersect function to find the intersections
- Check if there is more than one point of intersection



 LINES INTERSECT AT (2,1)
 SOLVING 2x-y=3 AND 3x+y=7 SIMULTANEOUSLY IS x=2, y=1

How can I use graphs to solve equations?

- One method to solve equations is to use graphs
- To solve f(x) = a
 - Plot the two graphs y = f(x) and y = a on your GDC
 - Find the points of intersections PERS PRACTICE
 - The **x-coordinates** are the **solutions** of the equation
- To solve f(x) = g(x)
 - Plot the two graphs y = f(x) and y = g(x) on your GDC
 - \circ Find the points of intersections
 - The **x-coordinates** are the **solutions** of the equation
- Using graphs makes it easier to see **how many solutions** an equation will have

- You can use graphs to solve equations
 - Questions will not necessarily ask for a drawing/sketch or make reference to graphs
 - $\circ~$ Use your GDC to plot the equations and find the intersections between the graphs

?

Worked Example

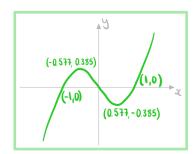
Two functions are defined by

$$f(x) = x^3 - x$$
 and $g(x) = \frac{4}{x}$.

a)

Sketch the graph y = f(x).

Use GDC to find max, min, intercepts

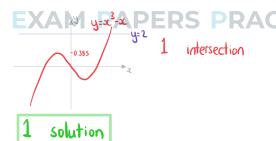


b)

Write down the number of real solutions to the equation $x^3 - x = 2$.

Identify the number of intersections between

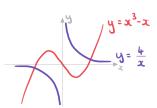
$$y=x^3-x$$
 and $y=2$



c)

Find the coordinates of the points where y = f(x) and y = g(x) intersect.

Use GDC to sketch both graphs



(-1.60,-2.50) and (1.60,2.50)

d)

Write down the solutions to the equation $x^3 - x = \frac{4}{x}$.

Solutions to $x^3 - x = \frac{4}{x}$ are the x coordinates of the points of intersection.

x = -1.60 and x = 1.60

EXAM PAPERS PRACTICE

2.4 Other Functions & Graphs

2.4.1 Exponential & Logarithmic Functions

Exponential Functions & Graphs

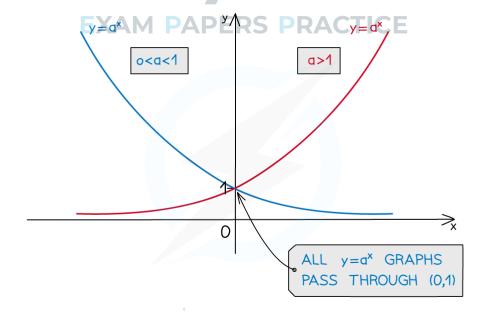
What is an exponential function?

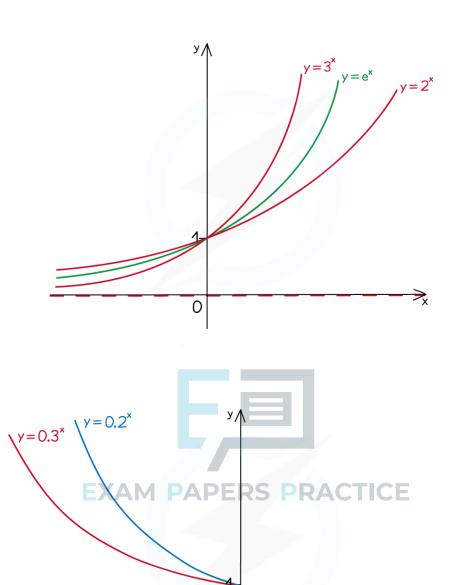
- An exponential function is defined by $f(x) = a^x$, a > 0
- Its domain is the set of all real values
- Its range is the set of all positive real values
- An important exponential function is $f(x) = e^x$
 - Where e is the mathematical constant 2.718...
- Any exponential function can be written using e
 - $a^x = e^{x \ln a}$

This is given in the formula booklet

What are the key features of exponential graphs?

- The graphs have a y-intercept at (0, 1)
- The graphs do not have any roots
- The graphs have a horizontal asymptote at the x-axis: y=0
 - For a > 1 this is the limiting value when x tends to negative infinity
 - For 0 < a < 1 this is the **limiting value** when x tends to **positive infinity**
- The graphs do not have any minimum or maximum points





0

Logarithmic Functions & Graphs

What is a logarithmic function?

- A logarithmic function is of the form $f(x) = \log_{a} x$, x > 0
- Its domain is the set of all positive real values
 - You can't take a log of zero or a negative number
- Its range is set of all real values
- $\log_a x$ and a^x are **inverse** functions
- An important logarithmic function is $f(x) = \ln x$
 - This is the natural logarithmic function $\ln x \equiv \log_a x$
 - \circ This is the inverse of e^x

$$\ln e^x = x$$
 and $e^{\ln x} = x$

- Any logarithmic function can be written using In
 - $\circ \log_a x = \frac{\ln x}{\ln a}$ using the change of base formula

What are the key features of logarithmic graphs?

- The graphs do not have a y-intercept
- The graphs have **one root** at (1, 0)
- The graphs have a **vertical asymptote** at the y-axis: x = 0
- The graphs do not have any minimum or maximum points

EXAM PAPERS PRACTICE

The function f is defined by $f(x) = \log_5 x$ for x > 0.

a)

b)

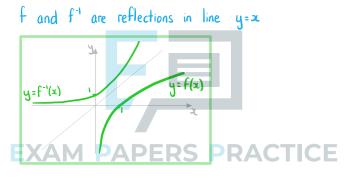
Write down the inverse of f. Give your answer in the form $e^{g(x)}$.

Formula booklet Exponents & logarithms
$$a' = b \Leftrightarrow x = \log_a b$$
 $a > 0, b > 0, a \neq 1$

$$x = \log_5 y \iff y = 5^{\infty}$$
Formula booklet Exponential & logarithmic functions $a' = e^{x \ln 5}$

$$f^{-1}(x) = e^{x \ln 5}$$

Sketch the graphs of f and its inverse on the same set of axes.



2.4.2 Solving Equations

Solving Equations Analytically

How can I solve equations analytically where the unknown appears only once?

- These equations can be solved by rearranging
- For one-to-one functions you can just apply the inverse
 - Addition and subtraction are inverses

$$y = x + k \iff x = y - k$$

• Multiplication and division are inverses

$$y = kx \iff x = \frac{y}{k}$$

• Taking the reciprocal is a self-inverse

$$y = \frac{1}{x} \iff x = \frac{1}{y}$$

• Odd powers and roots are inverses

$$y = x^n \iff x = \sqrt[n]{y}$$

$$y = x^n \iff x = y^n$$

• Exponentials and logarithms are inverses

$$y = a^x \Leftrightarrow x = \log_a y$$

$$y = e^x \Leftrightarrow x = \ln y$$

- For many-to-one functions you will need to use your knowledge of the functions to find the other solutions
 - Even powers lead to positive and negative solutions

$$y = x^n \Leftrightarrow x = \pm \sqrt[n]{y}$$

• Modulus functions lead to positive and negative solutions

$$y = |x| \Leftrightarrow x = \pm y$$

• Trigonometric functions lead to infinite solutions using their symmetries

$$y = \sin x \Leftrightarrow x = 2k\pi + \arcsin y$$
 or $x = (1 + 2k)\pi - \arcsin y$

$$y = \cos x \Leftrightarrow x = 2k\pi \pm \arccos y$$

$$y = \tan x \Leftrightarrow x = k\pi + \arctan y$$

- Take care when you apply many-to-one functions to both sides of an equation as this can create additional solutions which are incorrect
 - For example: squaring both sides

$$x + 1 = 3$$
 has one solution $x = 2$

$$(x+1)^2 = 3^2$$
 has two solutions $x = 2$ and $x = -4$

• Always check your solutions by substituting back into the original equation

How can I solve equations analytically where the unknown appears more than once?

- Sometimes it is possible to simplify expressions to make the unknown appear only once
- Collect all terms involving x on one side and try to simplify into one term
 - For **exponents** use

$$a^{f(x)} \times a^{g(x)} = a^{f(x) + g(x)}$$

$$\frac{a^{f(x)}}{a^{g(x)}} = a^{f(x) - g(x)}$$

$$(a^{f(x)})g(x) = a^{f(x) \times g(x)}$$

$$a^{f(x)} = e^{f(x)\ln a}$$

• For**logarithms** use

$$\log_a f(x) + \log_a g(x) = \log_a (f(x) \times g(x))$$
$$\log_a f(x) - \log_a g(x) = \log_a \left(\frac{f(x)}{g(x)}\right)$$
$$n\log_a f(x) = \log_a (f(x))^n$$

How can I solve equations analytically when the equation can't be simplified?

- Sometimes it is **not possible to simplify** equations
- Most of these equations cannot be solved analytically
- A **special case** that can be solved is where the equation can be **transformed into a quadratic** using a substitution
 - o These will have **three terms** and involve the same type of function
- Identify the suitable substitution by considering which function is a square of another
 - For example: the following can be transformed into $2y^2 + 3y 4 = 0$

$$2x^{4} + 3x^{2} - 4 = 0 \text{ using } y = x^{2}$$

$$2x + 3\sqrt{x} - 4 = 0 \text{ using } y = \sqrt{x}$$

$$\frac{2}{x^{6}} + \frac{3}{x^{3}} - 4 = 0 \text{ using } y = \frac{1}{x^{3}}$$

$$2e^{2x} + 3e^{x} - 4 = 0 \text{ using } y = e^{x}$$

$$2 \times 25^{x} + 3 \times 5^{x} - 4 = 0 \text{ using } y = 5^{x}$$

$$2^{2x+1} + 3 \times 2^{x} - 4 = 0 \text{ using } y = 2^{x}$$

$$2(x^{3} - 1)^{2} + 3(x^{3} - 1) - 4 = 0 \text{ using } y = x^{3} - 1$$

- To solve:
 - Make the **substitution** y = f(x)
 - Solve the quadratic equation $ay^2 + by + c = 0$ to get $y_1 \& y_2$
 - Solve $f(x) = y_1$ and $f(x) = y_2$

Note that some equations might have zero or several solutions

Can I divide both sides of an equation by an expression?

- When dividing by an expression you must consider whether the expression could be zero
- Dividing by an expression that could be zero could result in you **losing solutions to the original equation**

• For example:
$$(x+1)(2x-1) = 3(x+1)$$

If you divide both sides by $(x+1)$ you get $2x-1=3$ which gives $x=2$
However $x=-1$ is also a solution to the original equation

- To ensure you do not lose solutions you can:
 - Split the equation into two equations

One where the dividing expression equals zero: x + 1 = 0

One where the equation has been divided by the expression: 2x - 1 = 3

• Make the equation equal zero and factorise

$$(x+1)(2x-1)-3(x+1)=0$$

 $(x+1)(2x-1-3)=0$ which gives $(x+1)(2x-4)=0$
Set each factor equal to zero and solve: $x+1=0$ and $2x-4=0$

- A common mistake that students make in exams is applying functions to each term rather than to each side
 - For example: Starting with the equation $\ln x + \ln(x-1) = 5$ it would be incorrect to write $e^{\ln x} + e^{\ln(x-1)} = e^5$ or $x + (x-1) = e^5$
 - Instead it would be correct to write $e^{\ln x + \ln(x 1)} = e^5$ and then simplify from there

Worked Example

Find the exact solutions for the following equations:

a)
$$5 - 2\log_4 x = 0.$$

Rearrange using inverse functions

$$5 - 2\log_4 x = 0$$

$$2 \log_4 x = 5$$

$$\log_4 x = \frac{5}{2}$$

$$y = kx \iff x = y + k$$

$$x = 4$$

$$x = (\sqrt{4})^5$$

$$y = \log_a x \iff x = a^y$$

$$x = (\sqrt{4})^5$$

$$x = 32$$

b)
$$x = \sqrt{x+2}.$$
Square both sides (Many-to-one function)
$$x^{2} = x+2 \implies x^{2} - x - 2 = 0$$

$$(x-2)(x+1) = 0 \implies x = 2 \text{ or } x = -1$$
Check whether each solution is valid
$$x = 2: LHS = 2 RHS = \sqrt{2+2} = 2$$

$$x = -1: LHS = -1 RHS = \sqrt{-1+2} = 1$$

$$x = 2$$

c)
$$e^{2x} - 4e^x - 5 = 0$$

Notice
$$e^{2x} = (e^{x})^{2}$$
, let $y = e^{x}$
 $y^{2} - 4y - 5 = 0 \Rightarrow (y+1)(y-5) = 0$
 $y = -1$ or $y = 5$
Solve using $y = e^{x}$
 $e^{x} = -1$ has no solutions as $e^{x} > 0$
 $e^{x} = 5$ $\therefore x = \ln 5$

Solving Equations Graphically

How can I solve equations graphically?

• To solve f(x) = g(x)

• One method is to draw the graphs y = f(x) and y = g(x)

The **solutions** are the **x-coordinates** of the points of **intersection**

• Another method is to draw the graph y = f(x) - g(x) or y = g(x) - f(x)

The **solutions** are the **roots (zeros)** of this graph

This method is sometimes quicker as it involves drawing only one graph

Why do I need to solve equations graphically?

- Some equations cannot be solved analytically
 - Polynomials of degree higher than 4

$$x^5 - x + 1 = 0$$

• Equations involving different types of functions

$$e^{x} = x^{2}$$

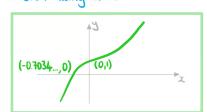
Exam Tip

- On a calculator paper you are allowed to solve equations using your GDC unless the question asks for an algebraic method
- If your answer needs to be an exact value then you might need to solve analytically to get the exact value

Worked Example

a) **EXAM PAPERS PRACTICE** Sketch the graph $y = e^x - x^2$.

Sketch using GDC



b)

Hence find the solution to $e^x = x^2$.

$$e^{x} = x^{2}$$
 when $e^{x} - x^{2} = 0$

Solution is the x-intercept of
$$y=e^{x}-x^{2}$$

$$x = -0.703$$
 (3sf)

2.4.3 Modelling with Functions

Modelling with Functions

What is a mathematical model?

- A mathematical model simplifies a real-world situation so it can be described using mathematics
 - The model can then be used to make predictions
- Assumptions about the situation are made in order to simplify the mathematics
- Models can be refined (improved) if further information is available or if the model is compared to real-world data

How do I set up the model?

- The question could:
 - o give you the equation of the model
 - tell you about the relationship

It might say the relationship is linear, quadratic, etc

• ask you to suggest a suitable model

Use your knowledge of each model

E.g. if it is compound interest then an exponential model is the most appropriate

- You may have to determine a reasonable domain
 - Consider real-life context

E.g. if dealing with hours in a day then

E.g. if dealing with physical quantities (such as length) then

• Consider the **possible ranges**

If the outcome cannot be negative then you want to choose a domain which corresponds to a range with no negative values

Sketching the graph is helpful to determine a suitable domain

Which models might I need to use?

- You could be given any model and be expected to use it
- Common models include:
 - Linear

Arithmetic sequences

Linear regression

Quadratic

Projectile motion

The height of a cable supporting a bridge

Profit

Exponential

Geometric sequences

Exponential growth and decay

Compound interest

Logarithmic

Richter scale for the magnitude of earthquakes

Rational

Temperature of a cup of coffee

• Trigonometric

The depth of a tide

How do I use a model?

- You can use a model by substituting in values for the variable to estimate outputs
 - \circ For example: Let h(t) be the height of a football t seconds after being kicked h(3) will be an estimate for the height of the ball 3 seconds after being kicked
- Given an output you can form an equation with the model to estimate the input
 - \circ For example: Let P(n) be the profit made by selling n items Solving P(n) = 100 will give you an estimate for the number of items needing to be sold to make a profit of 100
- If your variable is **time** then substituting *t* = 0 will give you the **initial value** according to the model
- Fully understand the units for the variables
 - \circ If the units of P are measured in **thousand dollars** then P = 3 represents \$3000
- Look out for key words such as:
 - Initially
 - Minimum/maximum
 - Limiting value

What do I do if some of the parameters are unknown?

- A general method is to **form equations** by substituting in given values
 - You can form **multiple equations** and **solve them simultaneously** using your GDC
 - This method works for all models
- The initial value is the value of the function when the variable is 0
 - This is **normally one of the parameters** in the equation of the model

Worked Example

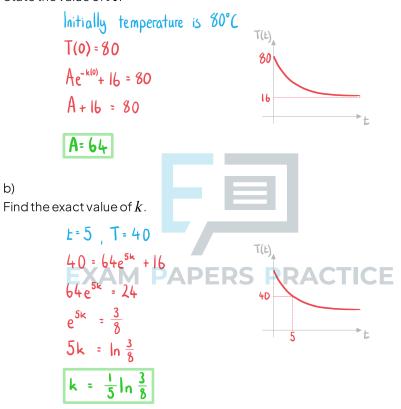
The temperature, $T^{\circ}C$, of a cup of coffee is monitored. Initially the temperature is 80°C and 5 minutes later it is 40°C . It is suggested that the temperature follows the model:

$$T(t) = Ae^{kt} + 16, t \ge 0.$$

where t is the time, in minutes, after the coffee has been made.

a)

State the value of A.



c)

Find the time taken for the temperature of the coffee to reach 30°C.

Find t such that
$$T(t) = 30$$

$$30 = 64e^{kt} + 16$$
Leave as k until the end to save
$$64e^{kt} = 14$$
writing $\frac{1}{5} \ln \frac{3}{8}$ each time
$$t = \frac{1}{32}$$

$$kt = \ln \frac{7}{32}$$

$$t = \frac{\ln \frac{7}{32}}{k} = \frac{\ln \frac{37}{32}}{5 \ln \frac{3}{8}} = 7.7476$$
7.75 minutes (3sf)

2.5 Reciprocal & Rational Functions

2.5.1 Reciprocal & Rational Functions

Reciprocal Functions & Graphs

What is the reciprocal function?

- The **reciprocal function** is defined by $f(x) = \frac{1}{x}$, $x \ne 0$
- Its domain is the set of all real values except 0
- Its range is the set of all real values except 0
- The reciprocal function has a self-inverse nature

$$\circ \quad f^{-1}(x) = f(x)$$

$$\circ (f \circ f)(x) = x$$

What are the key features of the reciprocal graph?

- The graph does not have a y-intercept
- The graph does not have any roots
- The graph has **two asymptotes**
 - A **horizontal** asymptote at the x-axis: y = 0

This is the **limiting value** when the absolute value of x gets very large

• A **vertical** asymptote at the y-axis: x = 0

This is the value that causes the **denominator to be zero**

• The graph has two axes of symmetry

$$\circ y = x$$

$$\circ y = -x$$

• The graph does not have any minimum or maximum points

Linear Rational Functions & Graphs

What is a rational function with linear terms?

- A (linear) rational function is of the form $f(x) = \frac{ax + b}{cx + d}$, $x \ne -\frac{d}{c}$
- Its domain is the set of all real values except $-\frac{d}{c}$
- Its range is the set of all real values except $\frac{a}{c}$
- The reciprocal function is a special case of a rational function

What are the key features of linear rational graphs?

- The graph has a **y-intercept** at $\begin{pmatrix} 0, & b \\ d \end{pmatrix}$ provided $d \neq 0$
- The graph has **one root** at $\left(-\frac{b}{a}, 0\right)$ provided $a \neq 0$
- The graph has two asymptotes
 - A horizontal asymptote: $y = \frac{a}{c}$

This is the **limiting value** when the absolute value of x gets very large

• A **vertical** asymptote: $x = -\frac{d}{c}$

This is the value that causes the **denominator to be zero**

- The graph does not have any minimum or maximum points
- If you are asked to **sketch or draw** a rational graph:
 - Give the coordinates of any intercepts with the axes
 - Give the equations of the asymptotes

- If you draw a horizontal line anywhere it should only intersect this type of graph once at most
- The only horizontal line that should not intersect the graph is the horizontal asymptote
 - This can be used to check your sketch in an exam

?

Worked Example

The function f is defined by $f(x) = \frac{10 - 5x}{x + 2}$ for $x \ne -2$.

a)

Write down the equation of

(i)

the vertical asymptote of the graph of f,

(ii)

the horizontal asymptote of the graph of f.

Vertical asymptote is when denominator equals zero x+2=0 x=-2

Horizontal asymptote is limiting value as x gets large x = x + x = 0

 $\lim_{x\to\infty}\frac{10-5x}{x+2}=\lim_{x\to\infty}\frac{-5x}{x}$ y=-5

b)

Find the coordinates of the intercepts of the graph of f with the axes.

y-intercept occurs when x = 0y = $\frac{10-5(0)}{0+2} = 5$ (0,5)

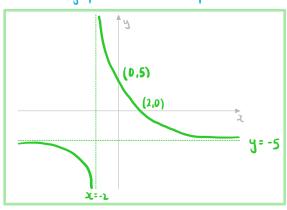
EX-intercept occurs when y=9 PRACTICE

 $\frac{10-5x}{x+2} = 0 \implies 10-5x=0 \implies x=2$ (2,0)

c)

Sketch the graph of f.

Include asymptotes and intercepts



Quadratic Rational Functions & Graphs

How do I sketch the graph of a rational function where the terms are not linear?

- A rational function can be written $f(x) = \frac{g(x)}{h(x)}$
 - $\circ \ \ \mathsf{Where}\, \mathsf{g}\, \mathsf{and}\, \mathsf{h}\, \mathsf{are}\, \mathsf{polynomials}$
- To find the **y-intercept** evaluate $\begin{pmatrix} g(0) \\ h(0) \end{pmatrix}$
- To find the x-intercept(s) solve g(x) = 0
- To find the equations of the **vertical asymptote(s)** solve h(x) = 0
- There will also be an **asymptote** determined by what f(x) tends to as x approaches infinity
 - o In this course it will be either:

Horizontal

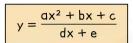
Oblique (a slanted line)

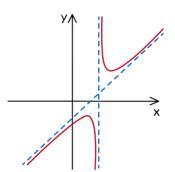
- This can be found by writing g(x) in the form h(x)Q(x) + r(x)You can do this by polynomial division or comparing coefficients
- The function then tends to the curve y = Q(x)

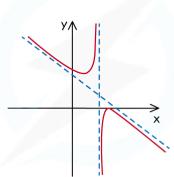
What are the key features of rational graphs: quadratic over linear?

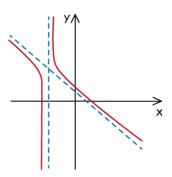
- For the rational function of the form $f(x) = ax^2 + bx + c$ dx + e
- The graph has a **y-intercept** at $\begin{pmatrix} c \\ 0, \\ e \end{pmatrix}$ provided $e \neq 0$
- The graph can have **0**, **1 or 2 roots** They are the solutions to $ax^2 + bx + c = 0$
- The graph has **one vertical asymptote** $x = -\frac{e}{dx}$
- The graph has an **oblique asymptote** y = px + q
 - Which can be found by writing $ax^2 + bx + c$ in the form (dx + e)(px + q) + rWhere p, q, r are constants

This can be done by **polynomial division** or **comparing coefficients**







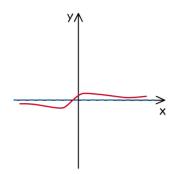


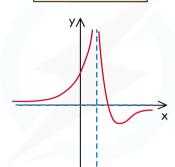
What are the key features of rational graphs: linear over quadratic?

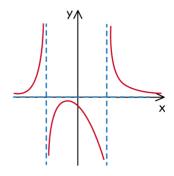
- For the rational function of the form $f(x) = \frac{ax + b}{cx^2 + dx + e}$
- The graph has a **y-intercept** at $\begin{pmatrix} 0, & b \\ e \end{pmatrix}$ provided $e \neq 0$
- The graph has **one root** at $x = -\frac{b}{a}$
- The graph has can have **0**, **1 or 2 vertical asymptotes**
 - They are the solutions to $cx^2 + dx + e = 0$
- The graph has a horizontal asymptote

EXAM PAPERS PRA

$$y = \frac{ax + b}{cx^2 + dx + e}$$







0

Exam Tip

- If you draw a horizontal line anywhere it should only intersect this type of graph twice at most
 - This idea can be used to check your graph or help you sketch it

Worked Example

The function f is defined by $f(x) = \frac{2x^2 + 5x - 3}{x + 1}$ for $x \ne -1$.

a)

(i)

Show that $\frac{2x^2+5x-3}{x+1} = px+q+\frac{r}{x+1}$ for constants p, q and r which are to be found.

(ii)

Hence write down the equation of the oblique asymptote of the graph of f.

(i) Write
$$2x^2 + 5x - 3$$
 as $(x+1)(px+q) + r$
 $2x^2 + 5x - 3 = px^2 + qx + px + q + r$
Compare coefficients
 $2 = p$ $5 = q + p$ $-3 = q + r$
 $\therefore p = 2$ $\therefore q = 3$ $\therefore r = -6$

$$2x^2 + 5x - 3$$
 $\Rightarrow (x+1)(2x+3) - 6$ $\Rightarrow 2x + 3 - \frac{6}{x+1}$
(ii) $y = 2x + 3$ PAPERS PRACTICE

b)

Find the coordinates of the intercepts of the graph of $\,f$ with the axes.

y-intercept occurs when
$$x = 0$$

$$y = \frac{2(0)^{2} \cdot 5(0) - 3}{(0) \times 1} = -3$$

$$x - intercept occurs when $y = 0$

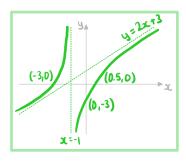
$$\frac{2x^{2} \cdot 5x - 3}{x + 1} = 0 \Rightarrow 2x^{2} \cdot 5x - 3 = 0 \Rightarrow (2x - 1)(x + 3) \Rightarrow x = 0.5 \text{ or } x = -3$$

$$(0.5, 0) \text{ and } (-3, 0)$$$$

c)

Sketch the graph of f.

Vertical asymptote when denominator is zero x=-1Include asymptotes and intercepts



2.6 Transformations of Graphs

2.6.1 Translations of Graphs

Translations of Graphs

What are translations of graphs?

- When you alter a function in certain ways, the effects on the graph of the function can be described by geometrical transformations
- For a translation:
 - the graph is **moved** (up or down, left or right) in the xy plane Its position **changes**
 - the shape, size, and orientation of the graph remain unchanged
- A particular translation (how far left/right, how far up/down) is specified by a **translation**

$$vector \begin{pmatrix} x \\ y \end{pmatrix}$$

o x is the horizontal displacement

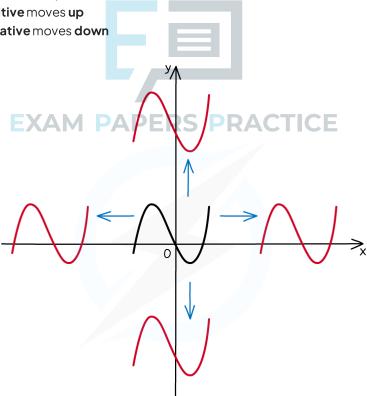
Positive moves right

Negative moves left

• y is the **vertical** displacement

Positive moves up

Negative moves down

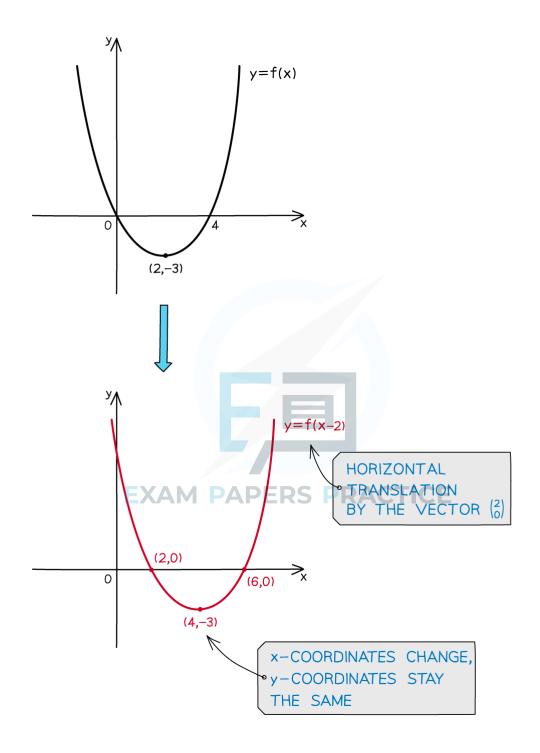


What effects do horizontal translations have on the graphs and functions?

• A horizontal translation of the graph
$$y = f(x)$$
 by the vector $\begin{pmatrix} a \\ 0 \end{pmatrix}$ is represented by

$$\circ \quad y = f(x - a)$$

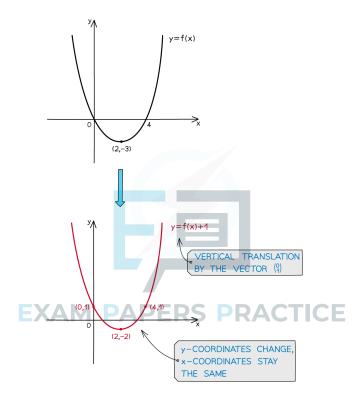
- The x-coordinates change
 - The value a is **subtracted** from them
- The y-coordinates stay the same
- The coordinates (x, y) become (x + a, y)
- Horizontal asymptotes stay the same
- Vertical asymptotes change
 - $\circ x = k$ becomes x = k + a



$What \,effects\,do\,vertical\,translations\,have\,on\,the\,graphs\,and\,functions?$

• A **vertical translation** of the graph
$$y = f(x)$$
 by the vector $\begin{pmatrix} 0 \\ b \end{pmatrix}$ is represented by $y - b = f(x)$

- This is often rearranged to y = f(x) + b
- The x-coordinates stay the same
- The y-coordinates change
 - The value b is **added** to them
- The coordinates (x, y) become (x, y + b)
- Horizontal asymptotes change
 - \circ y = k becomes y = k + b
- Vertical asymptotes stay the same



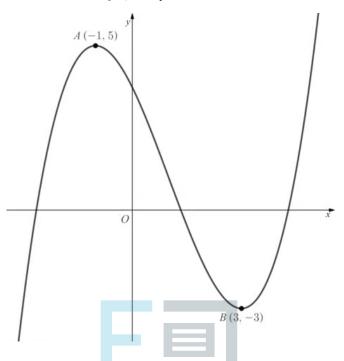
Exam Tip

- To get full marks in an exam make sure you use correct mathematical terminology
 - For example: Translate by the vector

?

Worked Example

The diagram below shows the graph of y = f(x).



a)

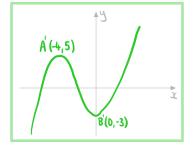
Sketch the graph of y = f(x+3).

$$y = f(x + k)$$
 translation by $\binom{-k}{k}$

Translate y=f(x) by $\binom{-3}{0}$

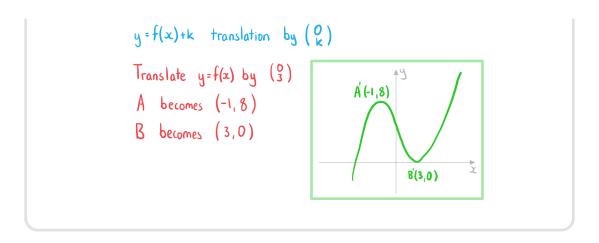
A becomes (-4,5)

B becomes (0, -3)



b

Sketch the graph of y = f(x) + 3.



2.6.2 Reflections of Graphs

Reflections of Graphs

What are reflections of graphs?

- When you alter a function in certain ways, the effects on the graph of the function can be described by **geometrical transformations**
- For a reflection:
 - the graph is **flipped** about one of the coordinate axes

Its orientation changes

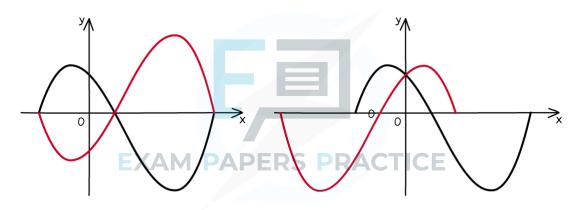
- the size of the graph remains unchanged
- A particular reflection is specified by an axis of symmetry:

$$\circ y = 0$$

This is the x-axis

 $\circ x = 0$

This is the y-axis



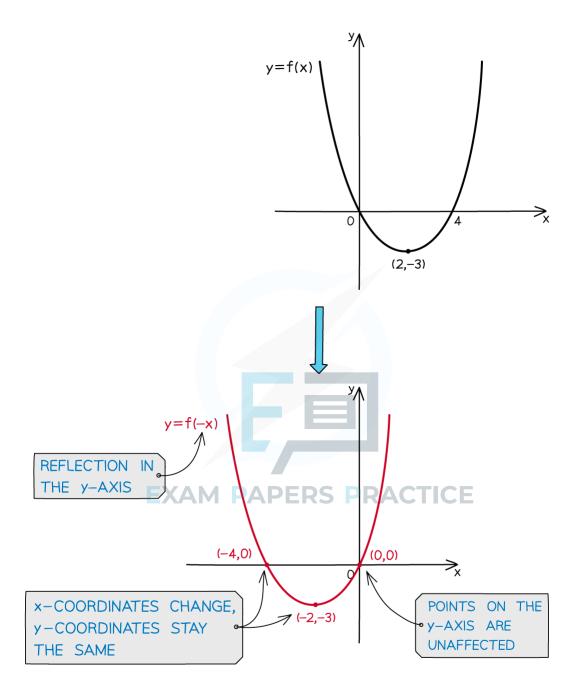
$What \, effects \, do \, horizontal \, reflections \, have \, on \, the \, graphs \, and \, functions?$

• A horizontal reflection of the graph y = f(x) about the y-axis is represented by

$$\circ \quad y = f(-x)$$

- The x-coordinates change
 - Their **sign** changes
- The y-coordinates stay the same
- The coordinates (x, y) become (-x, y)
- Horizontal asymptotes stay the same
- Vertical asymptotes change

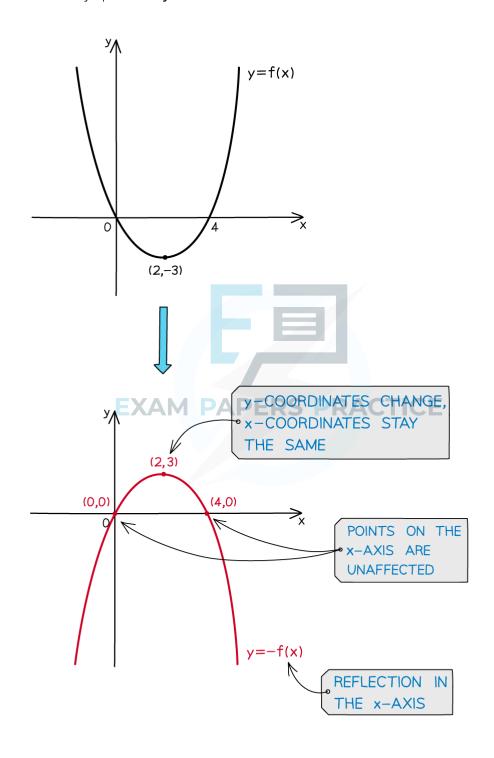
$$\circ x = k$$
 becomes $x = -k$



What effects do vertical reflections have on the graphs and functions?

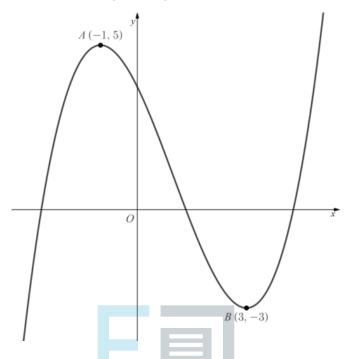
- A vertical reflection of the graph y = f(x) about the x-axis is represented by
 - $\circ \quad -y = f(x)$
 - This is often rearranged to y = -f(x)
- The x-coordinates stay the same
- The y-coordinates change
 - Their **sign** changes

- The coordinates (x, y) become (x, -y)
- Horizontal asymptotes change
 - \circ y = k becomes y = -k
- Vertical asymptotes stay the same



Worked Example

The diagram below shows the graph of y = f(x).

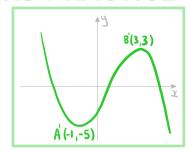


Sketch the graph of y = -f(x).

y E (x) A reflection in Paxis PRACTICE

A becomes (-1,-5)

B becomes (3,3)



Sketch the graph of y = f(-x).

y = f(-x) reflection in y - axisA becomes (1, 5)B becomes (-3, -3) g'(-3, -3)

2.6.3 Stretches Graphs

Stretches of Graphs

What are stretches of graphs?

- When you alter a function in certain ways, the effects on the graph of the function can be described by **geometrical transformations**
- For a stretch:
 - the graph is **stretched** about one of the coordinate axes by a scale factor
 Its size **changes**
 - the orientation of the graph remains unchanged
- A particular stretch is specified by a **coordinate axis** and a **scale factor**:
 - The distance between a point on the graph and the specified coordinate axis is multiplied by the constant scale factor
 - The graph is stretched in the direction which is parallel to the other coordinate axis
 - For scale factors bigger than 1
 - the points on the graph get further away from the specified coordinate axis
 - For scale factors between 0 and 1
 - the points on the graph get closer to the specified coordinate axis

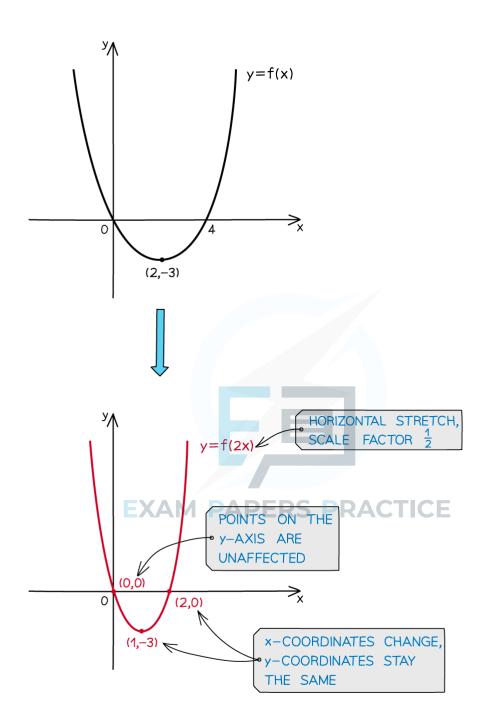
This is also sometimes called a **compression** but in your exam you must use the term **stretch** with the appropriate scale factor

What effects do horizontal stretches have on the graphs and functions?

• A horizontal stretch of the graph y = f(x) by a scale factor q centred about the y-axis is represented by

$$\circ y = f \binom{x}{q}$$

- The x-coordinates change
 - They are **divided** by g
- The y-coordinates stay the same
- The coordinates (x, y) become (qx, y)
- Horizontal asymptotes stay the same
- Vertical asymptotes change
 - $\circ x = k$ becomes x = qk



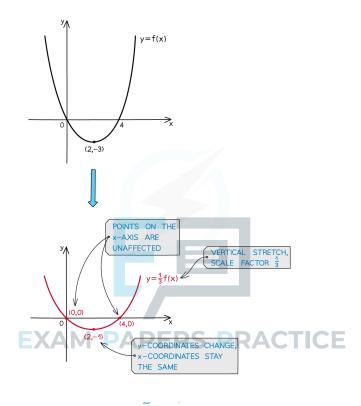
$What \, effects \, do \, vertical \, stretches \, have \, on \, the \, graphs \, and \, functions?$

• A **vertical stretch** of the graph y = f(x) by a scale factor p centred about the x-axis is represented by

$$\circ \quad \frac{y}{p} = f(x)$$

• This is often rearranged to y = pf(x)

- The x-coordinates stay the same
- The y-coordinates change
 - They are **multiplied** by *p*
- The coordinates (x, y) become (x, py)
- Horizontal asymptotes change
 - \circ y = k becomes y = pk
- Vertical asymptotes stay the same

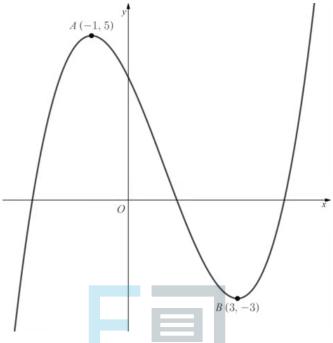


Exam Tip

- To get full marks in an exam make sure you use correct mathematical terminology
 - For example: Stretch vertically by scale factor 1/2
 - Do not use the word "compress" in your exam

Worked Example

The diagram below shows the graph of y = f(x).



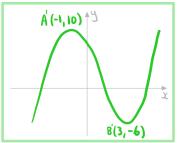
a) Sketch the graph of y = 2f(x).

y = kf(x) vertical stretch scale factor KACTICE

Stretch y=f(x) vertically scale factor 2

A becomes (-1,10)

B becomes (3,-6)



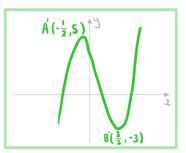
b) Sketch the graph of y = f(2x).

y = f(kx) horizontal stretch scale factor $\frac{1}{k}$

Stretch y=f(x) horizontally scale factor $\frac{1}{2}$

A becomes $\left(-\frac{1}{\lambda}, 5\right)$

B becomes $(\frac{3}{\lambda}, -3)$



2.6.4 Composite Transformations of Graphs

Composite Transformations of Graphs

What transformations do I need to know?

- y = f(x + k) is **horizontal translation** by vector $\begin{pmatrix} -k \\ 0 \end{pmatrix}$
 - If k is **positive** then the graph moves **left**
 - If k is **negative** then the graph moves **right**
- y = f(x) + k is **vertical translation** by vector $\begin{pmatrix} 0 \\ k \end{pmatrix}$
 - If k is **positive** then the graph moves **up**
 - If k is **negative** then the graph moves **down**
- y = f(kx) is a **horizontal stretch** by scale factor $\frac{1}{k}$ centred about the y-axis
 - If k > 1 then the graph gets closer to the y-axis
 - If 0 < k < 1 then the graph gets further from the y-axis
- y = kf(x) is a **vertical stretch** by scale factor k centred about the x-axis
 - If k > 1 then the graph gets further from the x-axis
 - If 0 < k < 1 then the graph gets closer to the x-axis
- y = f(-x) is a **horizontal reflection** about the y-axis
 - A horizontal reflection can be viewed as a special case of a horizontal stretch
- y = -f(x) is a **vertical reflection** about the x-axis
 - A vertical reflection can be viewed as a special case of a vertical stretch

How do horizontal and vertical transformations affect each other?

- Horizontal and vertical transformations are independent of each other
 - The horizontal transformations involved will need to be applied in their correct order
 - The vertical transformations involved will need to be applied in their correct order
- Suppose there are two horizontal transformation H₁then H₂ and two vertical transformations V₁then V₂then they can be applied in the following orders:
 - Horizontal then vertical:

$$H_1H_2V_1V_2$$

• Vertical then horizontal:

$$V_1V_2H_1H_2$$

• Mixed up (provided that H₁ comes before H₂ and V₁ comes before V2):

 $H_1V_1H_2V_2$

 $H_1V_1V_2H_2$

 $V_1H_1V_2H_2$

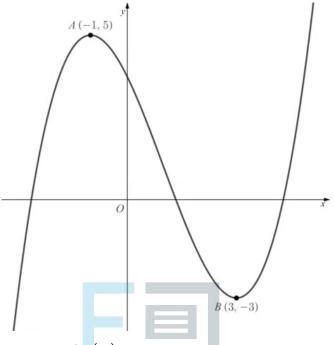
 $V_1H_1H_2V_2$

Exam Tip

• In an exam you are more likely to get the correct solution if you deal with one transformation at a time and sketch the graph after each transformation

Worked Example

The diagram below shows the graph of y = f(x).



Sketch the graph of $y = \frac{1}{2} f \begin{pmatrix} x \\ 2 \end{pmatrix}$.

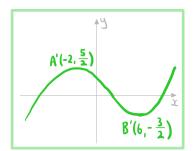
A vertical and horizontal transformation can be done in any order

 $y = \frac{1}{2} f(x)$: vertical stretch scale factor $\frac{1}{2}$

 $y = f(\frac{x}{2})$: horizontal stretch scale factor 2

A becomes $\left(-2, \frac{5}{2}\right)$

B becomes $\left(6, -\frac{3}{2}\right)$



Composite Vertical Transformations af (x)+b How do I deal with multiple vertical transformations?

- Order matters when you have more than one vertical transformations
- If you are asked to find the equation then **build up the equation** by looking at the transformations in order
 - \circ A **vertical stretch** by scale factor *a* followed by a **translation** of $\begin{pmatrix} 0 \\ b \end{pmatrix}$

Stretch: y = af(x)

Then translation: y = [af(x)] + b

Final equation: y = af(x) + b

 $\circ \ \, \text{A translation of} \begin{pmatrix} 0 \\ b \end{pmatrix} \text{followed by a vertical stretch} \, \text{by scale factor} \, a$

Translation: y = f(x) + b

Then stretch: y = a[f(x) + b]

Final equation: y = af(x) + ab

- If you are asked to determine the order
 - The order of vertical transformations follows the order of operations
 - First write the equation in the form y = af(x) + b

First stretch vertically by scale factor a

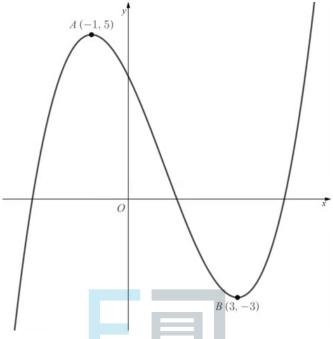
If a is negative then the reflection and stretch can be done in any order

Then translate by $\begin{pmatrix} 0 \\ b \end{pmatrix}$

EXAM PAPERS PRACTICE

Worked Example

The diagram below shows the graph of y = f(x).



Sketch the graph of y = 3f(x) - 2.

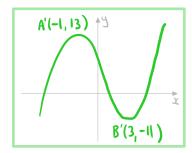
The order vertical transformations follows the order of xoperations APERS PRACTICE

y = 3f(x): Vertical stretch scale factor 3

y = f(x) - 2: Translate $\begin{pmatrix} 0 \\ -2 \end{pmatrix}$

A becomes (-1, 13)

B becomes (3,-11)



Composite Horizontal Transformations f(ax+b)

How do I deal with multiple horizontal transformations?

- Order matters when you have more than one horizontal transformations
- If you are asked to find the equation then **build up the equation** by looking at the transformations in order
 - A **horizontal stretch** by scale factor $\begin{bmatrix} 1 \\ a \end{bmatrix}$ followed by a **translation** of $\begin{bmatrix} -b \\ 0 \end{bmatrix}$

Stretch: y = f(ax)

Then translation: y = f(a(x + b))

Final equation: y = f(ax + ab)

 $\circ \ \, {\rm A} \, {\rm translation} \, {\rm of} \begin{pmatrix} -b \\ 0 \end{pmatrix} {\rm followed} \, {\rm by} \, {\rm a} \, {\rm horizontal} \, {\rm stretch} \, {\rm by} \, {\rm scale} \, {\rm factor} \, \frac{1}{a}$

Translation: y = f(x + b)

Then stretch: y = f((ax) + b)

Final equation: y = f(ax + b)

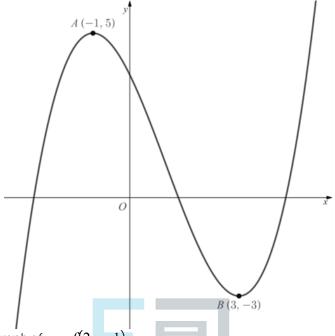
- If you are asked to determine the order
 - First write the equation in the form y = f(ax + b)
 - The order of horizontal transformations is the reverse of the order of operations

First translate by $\begin{pmatrix} -b \\ 0 \end{pmatrix}$

Then stretch by scale factor

If a is negative then the reflection and stretch can be done in any order

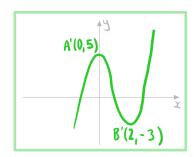
The diagram below shows the graph of y = f(x).



Sketch the graph of y = f(2x - 1).

The order of horizontal transformations is the reverse of the order of operations y = f(x-1): Translate y = f(2x): Horizontal stretch scale factor $\frac{1}{2}$

A becomes (0,5)
B becomes (2,-3)



2.7 Polynomial Functions

2.7.1 Factor & Remainder Theorem

Factor Theorem

What is the factor theorem?

- The factor theorem is used to find the linear factors of polynomial equations
- This topic is closely tied to finding the **zeros** and **roots** of a **polynomial** function/equation
 - As a rule of thumb a zero refers to the polynomial function and a root refers to a
 polynomial equation
- For any **polynomial** function P(x)
 - (x-k) is a **factor** of P(x) if P(k) = 0
 - P(k) = 0 if (x k) is a factor of P(x)

How do I use the factor theorem?

- Consider the polynomial function $P(x) = a_n x^n + a_{n-1} x^{n-1} + ... + a_1 x + a_0$ and (x k) is a **factor**
 - Then, due to the factor theorem $P(k) = a_n k^n + a_{n-1} k^{n-1} + ... + a_1 k + a_0 = 0$
 - $P(x) = (x k) \times Q(x)$, where Q(x) is a **polynomial** that is a factor of P(x)
 - Hence, $\frac{P(x)}{x-k} = Q(x)$, where Q(x) is another factor of P(x)
- If the linear factor has a **coefficient of x** then you must first factorise out the coefficient
 - If the linear factor is $(ax b) = a\left(x \frac{b}{a}\right) \rightarrow P\left(\frac{b}{a}\right) = 0$

Exam Tip

- A common mistake in exams is using the incorrect sign for either the root or the factor.
- If you are asked to find integer solutions to a polynomial then you only need to consider factors of the constant term

Worked Example

Determine whether (x-2) is a factor of the following polynomials:

a)
$$f(x) = x^3 - 2x^2 - x + 2$$
.

Step 1: Determine k

$$\rightarrow$$
 so $k = 2$

Step 2: Apply factor theorem

f(2) has to equal zero

$$f(2) = (2)^3 - 2(2)^2 - (2) + 2$$

b)
$$g(y) =$$

$$g(x) = 2x^3 + 3x^2 - x + 5.$$

Our linear function is x - 2

$$\rightarrow$$
 so $k = 2$

Step 2: Apply factor theorem

For x-2 to be a factor of g(x), g(2) has to equal zero

$$g(2) = 2(2)^{3} + 3(2)^{2} - (2) + 5$$

$$= 16 - 12 - 2 + 5$$

$$= 7$$

$$g(2) = 7$$
,
so $x - 2$ is not a factor of $g(x)$

It is given that (2x-3) is a factor of $h(x) = 2x^3 - bx^2 + 7x - 6$.

c)

Find the value of b.

Step 1: Determine k

Our linear function is
$$2x-3$$
 $\rightarrow 50 \text{ k} = \frac{3}{2}$

Step 2: Apply factor theorem to find b

Since $2x-3$ is a factor of $h(x)$,

 $h\left(\frac{3}{2}\right) = 0$
 $0 = 2\left(\frac{3}{2}\right)^3 - b\left(\frac{3}{2}\right)^2 + 7\left(\frac{3}{2}\right) - 6$
 $= \frac{54}{8} - \frac{9}{4}b + \frac{21}{2} - 6$
 $b = 5$

EXAM PAPERS PRACTICE

Remainder Theorem

What is the remainder theorem?

- The **remainder theorem** is used to find the remainder when we divide a **polynomial** function by a linear function
- When any polynomial P(x) is divided by any linear function (x k) the value of the remainder R is given by P(k) = R
 - Note, when P(k) = 0 then (x k) is a factor of P(x)

How do I use the remainder theorem?

- Consider the polynomial function $P(x) = a_n x^n + a_{n-1} x^{n-1} + ... + a_1 x + a_0$ and the linear function (x k)
 - Then, due to the remainder theorem $P(k) = a_n k^n + a_{n-1} k^{n-1} + ... + a_1 k + a_0 = R$
 - $P(x) = (x k) \times Q(x) + R$, where Q(x) is a **polynomial**
 - Hence, $\frac{P(x)}{x-k} = Q(x) + \frac{R}{x-k}$, where R is the remainder
- If the linear factor has a **coefficient of x** then you must first factorise out the coefficient
 - If the linear factor is $(ax b) = a\left(x \frac{b}{a}\right) \rightarrow P\left(\frac{b}{a}\right) = R$

EXAM PAPERS PRACTICE

Worked Example Let $f(x) = 2x^4 - 2x^3 - x^2 - 3x + 1$, find the remainder R when f(x) is divided by: a) x-3. Step 1: Determine kOur linear function is x-3 $\rightarrow so k = 3$ Step 2: Apply remainder theorem f(3) = R $f(3) = 2(3)^4 - 2(3)^3 - (3)^2 - 3(3) + 1$ f(3) = 162 - 54 - 9 - 9 + 1

f(3) = 91

b)

x+2. EXAM PAPERS PRACTICE

Step 1: Determine k

Our linear function is x+2

$$\rightarrow$$
 so $k = -2$

Step 2: Apply remainder theorem

$$f(-2) = R$$

$$f(-2) = 2(-2)^4 - 2(-2)^3 - (-2)^2 - 3(-2) + 1$$

$$f(-2) = 32 + 16 - 4 + 6 + 1$$

$$f(-2) = 51$$

The remainder when f(x) is divided by (2x + k) is $\frac{893}{8}$.

c) Given that k > 0, find the value of k.

Step 1: Apply remainder theorem

$$2x+k=2\left(x+\frac{k}{2}\right)$$
 $f\left(-\frac{k}{2}\right)=\frac{893}{8}$

$$\frac{893}{8} = 2(-\frac{k}{2})^{4} - 2(-\frac{k}{2})^{3} - (-\frac{k}{2})^{2} - 3(-\frac{k}{2}) + 1$$

Step 2: Solve for k using your GOC

k = 5

2.7.2 Polynomial Division

Polynomial Division

What is polynomial division?

- Polynomial division is the process of dividing two polynomials
 - This is usually only useful when the **degree of the denominator** is **less than or equal** to the **degree of the numerator**
- To do this we use an algorithm similar to that used for division of integers
- To divide the polynomial $P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$ by the polynomial

$$D(x) = b_k x^k + b_{k-1} x^{k-1} + \dots + b_1 x + b_0$$
 where $k \le n$

STEP

Divide the **leading term of the polynomial** P(x) by **the leading term of the divisor** D(x)

$$: \frac{a_n x^n}{b_b x^k} = q_m x^m$$

o STEP 2

Multiply the divisor by this term: $D(x) \times q_m x^m$

o STEP 3

Subtract this from the **original polynomial** P(x) to cancel out the leading term:

$$R(x) = P(x) - D(x) \times q_m x^m$$

• Repeat steps 1 – 3 using the new polynomial R(x) in place of P(x) until the subtraction results in an expression for R(x) with degree less than the divisor

The quotient Q(x) is the **sum of the terms** you multiplied the divisor by:

$$Q(x) = q_m x^m + q_{m-1} x^{m-1} + \dots + q_1 x + q_0$$

The remainder R(x) is the polynomial after the final subtraction

Division by linear functions

• If P(x) has degree n and is divided by a linear function (ax + b) then

ax + b is the divisor (degree 1)

Q(x) is the **quotient** (degree n-1)

R is the **remainder** (degree 0)

• Note that $P(x) = Q(x) \times (ax + b) + R$

Division by quadratic functions

• If P(x) has degree n and is divided by a quadratic function $(ax^2 + bx + c)$ then

 $ax^2 + bx + c$ is the **divisor** (degree 2)

Q(x) is the **quotient** (degree n-2)

ex + f is the **remainder** (degree less than 2)

- The remainder will be linear (degree 1) if $e \neq 0$, and constant (degree 0) if e = 0
- Note that $P(x) = Q(x) \times (ax^2 + bx + c) + ex + f$

Division by polynomials of degree $k \le n$

• If P(x) has degree n and is divided by a polynomial D(x) with degree $k \le n$

$$\circ \frac{P(x)}{D(x)} = Q(x) + \frac{R(x)}{D(x)} \text{ where}$$

D(x) is the **divisor** (degree k)

Q(x) is the **quotient** (degree n - k)

R(x) is the **remainder** (degree less than k)

• Note that $P(x) = Q(x) \times D(x) + R(x)$

Are there other methods for dividing polynomials?

• Synthetic division is a faster and shorter way of setting out a division when dividing by a linear term of the form

$$\quad \text{ To divide } P(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0 \text{ by } (x-c) \colon$$

Set
$$b_n = a_n$$

Calculate
$$b_{n-1} = a_{n-1} + c \times b_n$$

Continue this iterative process
$$b_{i-1} = a_{i-1} + c \times a$$

Continue this iterative process
$$b_{i-1} = a_{i-1} + c \times a_i$$

The quotient is $Q(x) = b_n x^{n-1} + b_{n-1} x^{n-2} + \dots + b_2 x + b_1$ and the remainder is $c = b$

$$r = b_0$$

- You can also find quotients and remainders by comparing coefficients
 - Given a polynomial $P(x) = a_n x^n + a_{n-1} x^{n-1} + ... + a_1 x + a_0$

• And a divisor
$$D(x) = d_k x^k + d_{k-1} x^{k-1} + ... + d_1 x + d_0$$

$$\text{ Write } Q(x) = q_{n-k} x^{n-k} + \ldots + q_1 x + q_0 \text{ and } R(x) = r_{k-1} x^{k-1} + \ldots + r_1 x + r_0$$

• Write
$$P(x) = Q(x)D(x) + R(x)$$

Expand the right-hand side

Equate the coefficients

Solve to find the unknowns q's & r's

Exam Tip

• In an exam you can use whichever method to divide polynomials - just make sure your method is written clearly so that if you make a mistake you can still get a mark for your method!

?

Worked Example

a)

Perform the division -
$$\frac{x^4 + 11x^2 - 1}{x + 3}$$
 . Hence write $x^4 + 11x^2 - 1$ in the form $Q(x) \times (x + 3) + R$.

Step 2: Subtract
$$x^{3}(x+3) = x^{4} + 3x^{3}$$

from $x^{4} + 0x^{3}$
 $x+3$ $x^{4} + 0x^{3} + 11x^{2} + 0x - 1$

$$\frac{2 \times 4 + 0 \times^3 + 11 \times^2 + 0 \times - 1}{4 \times 4 \times 3 \times 3}$$

$$= \frac{2 \times 4 \times 3 \times 3}{2 \times 3}$$

$$= \frac{3 \times 3}{2 \times 3}$$

$$= \frac{3 \times 3}{2 \times 3}$$

Step 3: bring the llx2 down and return to step 1.

$$x^{4} + 11x^{2} - 1$$

$$= (x^{3} - 3x^{2} + 20x - 60)(x + 3) + 179$$

b)

Find the quotient and remainder for $\frac{x^4+4x^3-x+1}{x^2-2x}$. Hence write x^4+4x^3-x+1 in the form $Q(x)\times(x^2-2x)+R(x)$.

When dividing by quadratics use the same steps as above.

$$x^{4} + 4x^{3} - x + 1$$

= $(x^{2} + 6x + 12)(x^{2} - 2x) + 23x + 1$

EXAM PAPERS PRACTICE

2.7.3 Polynomial Functions

Sketching Polynomial Graphs

In exams you'll commonly be asked to sketch the graphs of different polynomial functions with and without the use of your GDC.

What's the relationship between a polynomial's degree and its zeros?

- If a **real polynomial** P(x) has **degree** n, it will have n **zeros** which can be written in the form a + 1bi, where $a, b \in \mathbb{R}$
 - For example:

A quadratic will have 2 zeros

A cubic function will have 3 zeros

A quartic will have 4 zeros

- Some of the zeros may be repeated
- Every real polynomial of odd degree has at least one real zero

How do I sketch the graph of a polynomial function without a GDC?

- Suppose $P(x) = a_n x^n + a_{n-1} x^{n-1} + ... + a_1 x + a_0$ is a real polynomial with degree n
- To sketch the graph of a polynomial you need to know three things:
 - The **y-intercept**

Find this by substituting x = 0 to get $y = a_0$

• The roots

You can find these by **factorising** or solving y = 0

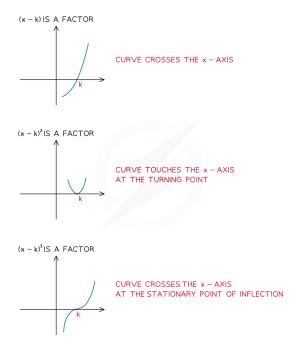
 The shape_XAM DAPERS PRA This is determined by the **degree** (n) and the sign of the **leading coefficient** (a_n)

How does the multiplicity of a real root affect the graph of the polynomial?

- The multiplicity of a root is the number of times it is repeated when the polynomial is factorised
 - If x = k is a root with **multiplicity m** then $(x k)^m$ is a **factor** of the polynomial
- The graph either **crosses** the x-axis or **touches** the x-axis at a **root** x = k where k is a real number
 - If x = k has **multiplicity 1** then the graph **crosses** the x-axis at (k, 0)
 - If x = k has multiplicity 2 then the graph has a turning point at (k, 0) so touches the xaxis

If x = k has odd multiplicity $m \ge 3$ then the graph has a stationary point of **inflection** at (k, 0) so **crosses** the x-axis

If x = k has **even multiplicity** $m \ge 4$ then the graph has a **turning point** at (k, 0) so touches the x-axis



How do I determine the shape of the graph of the polynomial?

- Consider what happens as x tends to ± ∞
 - If a_n is **positive** and n is **even** then the graph **approaches from the top left** and **tends** to the top right

$$\lim_{x \to -\infty} f(x) = \lim_{x \to +\infty} f(x) = +\infty$$

• If a_n is **negative** and n is **even** then the graph **approaches from the bottom left** and tends to the bottom right $\triangle D = RS$

$$\lim_{x \to -\infty} f(x) = \lim_{x \to +\infty} f(x) = +\infty$$

• If a_n is **positive** and n is **odd** then the graph **approaches from the bottom left** and **tends to the top right**

$$\lim_{x \to -\infty} f(x) = -\infty \text{ and } \lim_{x \to +\infty} f(x) = +\infty$$

• If a_n is **negative** and n is **odd** then the graph **approaches from the top left** and **tends** to the bottom right

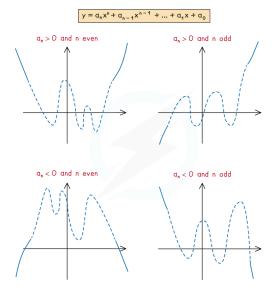
$$\lim_{x \to -\infty} f(x) = +\infty \text{ and } \lim_{x \to +\infty} f(x) = -\infty$$

- Once you know the **shape**, the **real roots** and the **y-intercept** then you simply connect the points using a **smooth curve**
- There will be at least one turning point in-between each pair of roots
 - If the degree is *n* then there is **at most** *n* **1 stationary points (**some will be **turning points**)

Every real polynomial of **even degree** has **at least one turning point**Every real polynomial of **odd degree bigger than 1** has **at least one point of inflection**

• If it is a calculator paper then you can use your GDC to find the coordinates of the turning points

 $\circ \ \ You won't \, need to \, find \, their location \, without \, a \, GDC \, unless \, the \, question \, asks \, you \, to \,$



Ō

Exam Tip

- If it is a calculator paper then you can use your GDC to find the coordinates of any turning points
- If it is the non-calculator paper then you will not be required to find the turning points when sketching unless specifically asked to

EXAM PAPERS PRACTICE

Worked Example

a)

The function f is defined by $f(x) = (x+1)(2x-1)(x-2)^2$. Sketch the graph of y = f(x).

Find the y-intercept

$$x = 0 : y = (1)(-1)(-2)^2 = -4$$

Find the roots and determine if graphs crosses or touches the x-axis

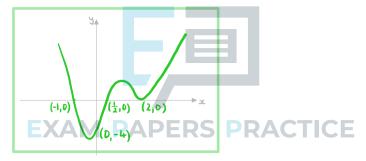
$$(x + 1)(2x - 1)(x - 2)^{2}$$

 $(-1, 0) \quad (\frac{1}{2}, 0) \quad (2, 0)$
cross cross touch

Determine the shape by looking at the leading term

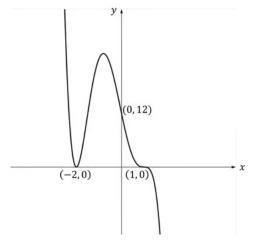
Leading term is
$$(x)(2x)(x)^2 = 2x^4$$

As
$$x \to -\infty$$
 $y \to +\infty$
As $x \to +\infty$ $y \to +\infty$



b)

The graph below shows a polynomial function. Find a possible equation of the polynomial.



Touches at
$$(-2,0)$$
 $(x+2)^2$ is a factor

Point of inflection at $(1,0)$ $(x-1)^3$ is a factor

Write in the form of: $y = a(x+2)^2(x-1)^3$

Use the y-intercept to find a

 $|2 = a(2)^2(-1)^3 \implies -4a = |2$ $\therefore a = -3$
 $y = -3(x+2)^2(x-1)^3$

Solving Polynomial Equations

What is "The Fundamental Theorem of Algebra"?

- Every real polynomial with degree n can be factorised into n complex linear factors
 - Some of which may be **repeated**
 - This means the polynomial will have n zeros (some may be repeats)
- Every **real polynomial** can be expressed as a product of **real linear factors** and **real irreducible quadratic factors**
 - An irreducible quadratic is where it does not have real roots
 The discriminant will be negative: b² 4ac < 0
- If $a + bi(b \neq 0)$ is a zero of a real polynomial then its complex conjugate a bi is also a zero
- Every real polynomial of odd degree will have at least one real zero

How do I solve polynomial equations?

- Suppose you have an equation P(x) = 0 where P(x) is a **real polynomial of degree** n• $P(x) = a_n x^n + a_{n-1} x^{n-1} + ... + a_1 x + a_0$
- You may be given one zero or you might have to find a zero x = k by substituting values into
 P(x) until it equals 0
- If you know a root then you know a factor
 - If you know x = k is a root then (x k) is a factor
 - If you know x = a + bi is a root then you know a quadratic factor (x (a + bi))(x (a bi))

Which can be written as ((x-a)-bi)((x-a)+bi) and **expanded quickly using** difference of two squares

- You can then **divide** P(x) by this factor to get **another factor**
 - o For example: dividing a cubic by a linear factor will give you a quadratic factor
- You then may be able to factorise this new factor

- If a polynomial has three or less terms check whether a substitution can turn it into a quadratic
 - For example: $x^6 + 3x^3 + 2$ can be written as $(x^3)^2 + 3(x^3) + 2$

Worked Example

Given that $x = \frac{1}{2}$ is a zero of the polynomial defined by $f(x) = 2x^3 - 3x^2 + 5x - 2$, find all three zeros of f.

Find the quadratic factor
$$(2x^3 - 3x^2 + 5x - 2) = (2x - 1)(ax^2 + bx + c)$$

Compare coefficients: $2x^3 = 2ax^3$ $\therefore a = 1$
 $-2 = -c$ $\therefore c = 2$
 $5x = 2cx - bx \Rightarrow 5 = 4 - b$ $\therefore b = -1$
Solve the quadratic: $x^2 - x + 2 = 0$
Formula booklet Solutions of a quadratic $ax^2 + bx + c = 0 \Rightarrow x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$
 $x = \frac{-(-1) \pm \sqrt{(-1)^2 - 4(1)(2)}}{2(1)}$
 $x = \frac{-(-1) \pm \sqrt{(-1)^2 - 4(1)(2)}}{2(1)}$
Roots: $\frac{1}{2}$, $\frac{1}{2}$ + $\frac{\sqrt{7}}{2}$ i, $\frac{1}{2}$ - $\frac{\sqrt{7}}{2}$ i

2.7.4 Roots of Polynomials

Sum & Product of Roots

How do I find the sum & product of roots of polynomials?

- Suppose $P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$ is a **polynomial** of **degree** n with n roots $\alpha_1, \alpha_2, \dots, \alpha_n$
 - The polynomial is written as $\sum_{r=0}^{n} a_r x^r = 0$, $a_n \neq 0$ in the **formula booklet**
 - \circ a_n is the coefficient of the **leading term**
 - a_{n-1} is the coefficient of the x^{n-1} term

Be careful: this could be equal to zero

• aois the constant term

Be careful: this could be equal to zero

- In factorised form: $P(x) = a_n(x \alpha_1)(x \alpha_2)...(x \alpha_n)$
 - \circ Comparing coefficients of the x^{n-1} term and the constant term gives

$$a_{n-1} = a_n \left(-\alpha_1 - \alpha_2 - \dots - \alpha_n \right)$$

$$a_0 = a_n \left(-\alpha_1 \right) \times \left(-\alpha_2 \right) \times \dots \times \left(-\alpha_n \right)$$

• The **sum** of the roots is given by:

$$\alpha_1 + \alpha_2 + ... + \alpha_n = -\frac{a_{n-1}}{a_n}$$

• The **product** of the roots is given by:

•
$$\alpha_1 \times \alpha_2 \times ... \times \alpha_n = \frac{(-1)^n a_0}{a_n}$$
 PERS PRACTICE

both of these formulae are in your formula booklet

How can I find unknowns if I am given the sum and/or product of the roots of a polynomial?

- If you know a complex root of a real polynomial then its complex conjugate is another root
- Form two equations using the roots
 - o One using the sum of the roots formula
 - One using the product of the roots formula
- Solve for any unknowns

- Examiners might trick you by not having an x^{n-1} term or a constant term
- To make sure you do not get tricked you can write out the full polynomial using 0 as a coefficient where needed
 - For example: Write $x^4 + 2x^2 5x$ as $x^4 + 0x^3 + 2x^2 5x + 0$

Worked Example

2-3i, $\frac{5}{3}i$ and α are three roots of the equation

$$18x^5 - 9x^4 + 32x^3 + 794x^2 - 50x + k = 0$$
.

a)

Use the sum of all the roots to find the value of α .

It is a real polynomial so if a+bi is a root then a-bi is also a root Roots: 2-3i, 2+3i, $\frac{5}{3}i$, $-\frac{5}{3}i$, \propto

Formula booklet
$$\begin{bmatrix} \sum_{sum & k \text{ product of the roots of polynomial equations of the form} \\ \sum_{sum \text{ is } \frac{-a_{n-1}}{a_s} \end{bmatrix}} \underbrace{18x^5 - 9x^4 + 32x^3 + 794x^2 - 50x + k}_{a_n = 18}$$

$$(2-3i)+(2+3i)+(\frac{5}{3}i)+(\frac{5}{3}i)+\alpha = \frac{-(-9)}{18}$$

$$4+\alpha=\frac{1}{2}$$

$$\alpha = \frac{7}{2}$$

b)

Use the product of all the roots to find the value of k.

Formula booklet
$$\begin{bmatrix} \frac{\text{Sum \& product of the roots of polynomial equations of the form}}{\sum_{i=0}^{n} x_{i}x_{i}^{2} = 0} \end{bmatrix} \xrightarrow{\text{product is } \frac{(-1)^{n} a_{i}}{a_{i}}} \begin{bmatrix} 18x^{\frac{n}{2}} - 9x^{\frac{n}{4}} + 32x^{\frac{n}{3}} + 794x^{\frac{n}{4}} - 50x + k \\ a_{0} = k \end{bmatrix}$$

$$(2-3i)(2+3i)(\frac{5}{3}i)(\frac{5}{3}i)(\frac{7}{3})$$
 F(-1)⁵ PRACTICE

$$(13)\left(\frac{25}{9}\right)\left(-\frac{7}{2}\right) = \frac{-k}{18}$$

$$-\frac{2275}{18} = -\frac{k}{18}$$

2.8 Inequalities

2.8.1 Solving Inequalities Graphically

Solving Inequalities Graphically

How can I solve inequalities graphically?

- Consider the inequality $f(x) \le g(x)$, where f(x) and g(x) are functions of x
 - if we move g(x) to the LHS we get

$$f(x) - g(x) \le 0$$

- Solve f(x) g(x) = 0 to find the zeros of f(x) g(x)
 - These correspond to the x-coordinates of the points of intersection of the graphs y = f(x) and y = g(x)
- To solve the inequality we can use a graph
 - Graph y = f(x) g(x) and label its zeros
 - Hence find the intervals of x that satisfy the inequality $f(x) g(x) \le 0$

These are the intervals which satisfies the original inequality $f(x) \le g(x)$

• This method is particularly useful when finding the intersections between the functions is difficult due to needing large x and y windows on your GDC

Be careful when rearranging inequalities!

- Remember to flip the sign of the inequality when you multiply or divide both sides by a negative number
 - e.1<2→[times both sides by (-1)] → -1> -2 (sign flips)
- Never multiply or divide by a variable as this could be positive or negative
 - You can only multiply by a term if you are certain it is always positive (or always negative)

Such as
$$x^2$$
, $|x|$, e^x

- Some functions reverse the inequality
 - Taking reciprocals of positive values

$$0 < x < y \Rightarrow \frac{1}{x} > \frac{1}{y}$$

 \circ Taking logarithms when the base is 0 < a < 1

$$0 < x < y \Rightarrow \log_a(x) > \log_a(y)$$

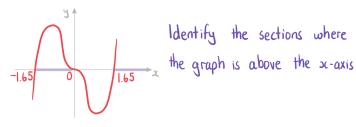
• The safest way to rearrange is simply to add & subtract to move all the terms onto one side

Worked Example

Use a GDC to solve the inequality $2x^3 < x^5 - 2x$.

Rearrange to get one side as zero $x^5 - 2x^3 - 2x > 0$

On GDC sketch $y = x^5 - 2x^3 - 2x$ and find zeros



-1.65 < x < 0 or x > 1.65

2.8.2 Polynomial Inequalities

Polynomial Inequalities

How do I solve polynomial inequalities?

- STEP 1: Rearrange the inequality so that one of the sides is equal to zero
 - ∘ For example: $P(x) \le 0$
- STEP 2: Find the roots of the polynomial
 - You can do this by factorising or using GDC to solve P(x) = 0
- STEP 3: Choose one of the following methods:
- Graph method
 - Sketch a graph of the polynomial (with or without a GDC)
 - Choose the intervals for x corresponding to the sections of the graph that satisfy the inequality

For example: for $P(x) \le 0$ you would want the sections below the x-axis

- Sign table method
 - o If you are unsure how to sketch a polynomial graph then this method is best
 - **Split the real numbers** into the possible **intervals** using the roots

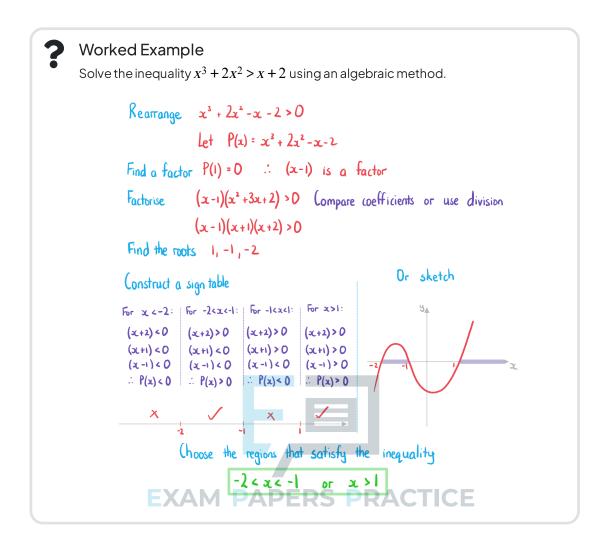
If the roots are a and b then the intervals would be x<a, a<x<b, x>b

- Test a value from each interval using the inequality
 - Choose a value within an interval and substitute into P(x) to determine if it is positive or negative
- Alternatively if the polynomial is factorised you can **determine the sign of each factor** in each interval

An odd number of negative factors in an interval will mean the polynomial is negative on that interval

• If the value satisfies the inequality then that interval is part of the solution

- In exams most solutions will be intervals but some could be a single point
 - For example: Solution to $(x-3)^2 \le 0$ is x=1



2.9 Further Functions & Graphs

2.9.1 Modulus Functions

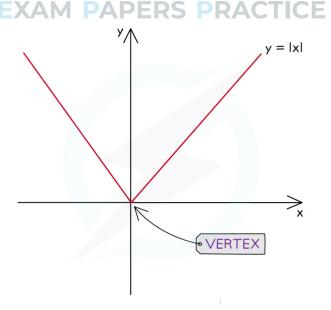
Modulus Functions & Graphs

What is the modulus function?

- The **modulus function** is defined by f(x) = |x|
 - $\circ |x| = \sqrt{x^2}$
 - Equivalently it can be defined $|x| = \begin{cases} x & x \ge 0 \\ -x & x < 0 \end{cases}$
- Its domain is the set of all real values
- Its range is the set of all real non-negative values
- The modulus function gives the **distance** between 0 and x
 - This is also called the **absolute value** of x

What are the key features of the modulus graph: y = |x|?

- The graph has a **y-intercept** at (0,0)
- The graph has one root at (0,0)
- The graph has a **vertex** at (0, 0)
- The graph is symmetrical about the y-axis
- At the **origin**
 - The function is **continuous**
 - The function is not differentiable



What are the key features of the modulus graph: y = a|x + p| + q?

• Every **modulus grap**h which is formed by **linear transformations** can be written in this form using key features of the modulus function

$$\circ |ax| = |a||x|$$

For example:
$$|2x + 1| = 2 |x + \frac{1}{2}|$$

$$\circ |p-x| = |x-p|$$

For example:
$$|4-x| = |x-4|$$

- The graph has a y-intercept when x = 0
- The graph can have 0, 1 or 2 roots
 - If a and q have the same sign then there will be 0 roots
 - If q = 0 then there will be **1 root** at (-p, 0)
 - If a and q have different signs then there will be 2 roots at $\left(-p \pm \frac{q}{a}, 0\right)$
- The graph has a **vertex** at (-p, q)
- The graph is **symmetrical** about the line x = -p
- The value of a determines the **shape** and the **steepness** of the graph
 - If a is **positive** the graph looks like V
 - \circ If a is **negative** the graph looks like \wedge
 - The larger the value of |a| the steeper the lines
- At the **vertex**
 - The function is **continuous**
 - The function is **not differentiable**

EXAM PAPERS PRACTICE

2.9.2 Modulus Transformations

Modulus Transformations

How do I sketch the graph of the modulus of a function: y = |f(x)|?

- STEP 1: Keep the parts of the graph of y = f(x) that are on or above the x-axis
- STEP 2: Any parts of the graph below the x-axis get reflected in the x-axis anything

How do I sketch the graph of a function of a modulus: y = f(|x|)?

- STEP 1: Keep the graph of y = f(x) only for $x \ge 0$
- STEP 2: Reflect this in the y-axis

What is the difference between y = |f(x)| and y = f(|x|)?

- The graph of y = |f(x)| never goes below the x-axis
 - o It does not have to have any lines of symmetry
- The graph of y = f(|x|) is always symmetrical about the y-axis
 - It can go below the y-axis

When multiple transformations are involved how do I determine the order?

- The transformations outside the function follow the same order as the order of operations
 - $\circ y = |af(x) + b|$

Deal with the a then the b then the modulus

$$\circ y = a|f(x)| + b$$

a|f(x)|+bDeal with the modulus then the a then the b

• The transformations inside the function are in the reverse order to the order of operations

$$\circ y = f(|ax + b|)$$

Deal with the modulus then the b then the a

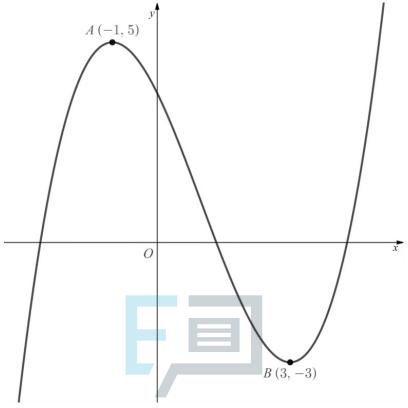
$$\circ \ \ y = f(a|x| + b)$$

Deal with the b then the a then the modulus

- When sketching one of these transformations in an exam question make sure that the graphs do not look smooth at the points where the original graph have been reflected
 - For y = |I(x)| the graph should look "sharp" at the points where it has been reflected on the x-axis
 - For y = f(|x|) the graph should look "sharp" at the point where it has been reflected on the y-axis

Worked Example

The diagram below shows the graph of y = f(x).

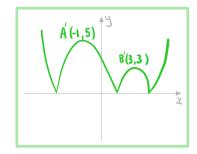


(a) Sketch the graph of y = |f(x)|. ERS PRACTICE

If the graph is on or above the x-axis then it stays the same If the graph is below the x-axis the it is reflected in the x-axis

A stays the same (-1,5)

B becomes (3,3)

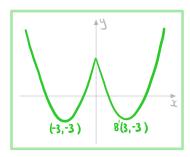


(b) Sketch the graph of y = f(|x|).

keep the graph for $x \ge 0$ Reflect this in the y-axis

A disappears

B stays the same (3,-3)



2.9.3 Modulus Equations & Inequalities

Modulus Equations

How do I find the modulus of a function?

• The modulus of a function f(x) is

$$|f(x)| = \begin{cases} f(x) & f(x) \ge 0 \\ -f(x) & f(x) < 0 \end{cases}$$
 or
$$|f(x)| = \sqrt{[f(x)]^2}$$

How do I solve modulus equations graphically?

- To solve |f(x)| = g(x) graphically
 - Draw y = |f(x)| and y = g(x) into your GDC
 - Find the x-coordinates of the **points of intersection**

How do I solve modulus equations analytically?

• To solve |f(x)| = g(x) analytically

Form two equations
 f(x) = g(x)
 f(x) = -g(x)

 Solve both equations

• Check solutions work in the original equation

For example: x-2=2x-3 has solution x=1But |(1)-2|=1 and 2(1)-3=-1So x=1 is not a solution to |x-2|=2x-3

Worked Example

Solve for X:

a)
$$\begin{vmatrix} 2x+3 \\ 2-x \end{vmatrix} = 5$$

Analytically
Split into two equations
$$\frac{2x+3}{2-x} = \pm 5$$

Solve individually

$$\frac{2\alpha+3}{2-\alpha}=5 \qquad \frac{2\alpha+3}{2-\alpha}=-5$$

$$2x+3=10-5x$$
 $2x+3=5x-10$

$$7x = 7$$

$$x = 1$$

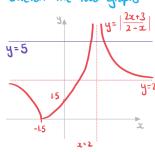
$$3 = 3x$$

$$x = \frac{13}{2}$$

Check:

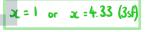
x=1 or x=

Graphically Sketch the two graphs



Find the points of intersection

Choose the x-coordinates



$$|3x-1|=5x-11$$
M PAPERS PRACTICE

Analytically

Split into two equations

$$3x-1=\pm(5x-11)$$

Solve individually

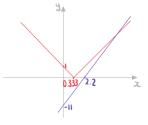
$$3x-1=5x-11$$
 $3x-1=11-5x$

Check:

$$\frac{|3(5)-1|=14}{5(5)-|1|=14}$$
 $\sqrt{\frac{|3(1.5)-1|=3.5}{5(1.5)-|1|=-3.5}}$ X

x=5

Graphically Sketch the two graphs



Find the points of intersection (5, 14)

Choose the x-coordinates

x=5

Modulus Inequalities

How do I solve modulus inequalities analytically?

- To solve **any** modulus inequality
 - First solve the corresponding modulus equation
 Remembering to check whether solutions are valid
 - Then use a graphical method or a sign table to find the intervals that satisfy the inequality
- Another method is to solve **two pairs of inequalities**
 - \circ For |f(x)| < g(x) solve:

f(x) < g(x) when $f(x) \ge 0$

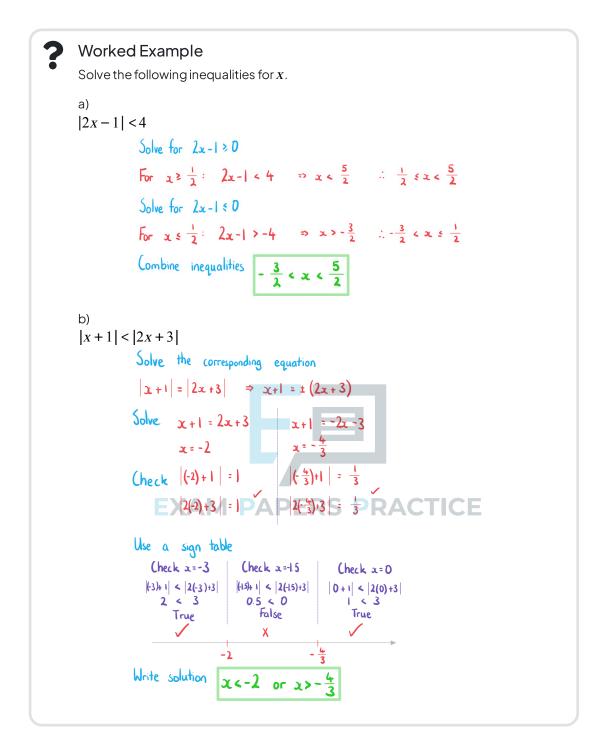
f(x) > -g(x) when $f(x) \le 0$

• For |f(x)| > g(x) solve:

f(x) > g(x) when $f(x) \ge 0$

f(x) < -g(x) when $f(x) \le 0$

- If a question on this appears on a calculator paper then use the same ideas as solving other inequalities
 - Sketch the graphs and find the intersections



2.9.4 Reciprocal & Square Transformations

Reciprocal Transformations

What effects do reciprocal transformations have on the graphs?

- The x-coordinates stay the same
- The y-coordinates change
 - Their values become their reciprocals
- The coordinates (x, y) become $\left(x, \frac{1}{y}\right)$ where $y \neq 0$
 - \circ If y = 0 then a vertical asymptote goes through the original coordinate
 - Points that lie on the line y = 1 or the line y = -1 stay the same

How do I sketch the graph of the reciprocal of a function: y = 1/f(x)?

- Sketch the **reciprocal transformation** by considering the **different features** of the original graph
- Consider key points on the original graph
 - If (x_1, y_1) is a point on y = f(x) where $y_1 \neq 0$

$$\begin{pmatrix} x_1, y_1 \end{pmatrix}$$
 is a point on $y = \frac{1}{f(x)}$

If $|y_1| < 1$ then the point gets further away from the x-axis

If $|y_1| > 1$ then the point gets closer to the x-axis

• If y = f(x) has a **y-intercept** at (0, c) where $c \neq 0$

The reciprocal graph
$$y = \frac{1}{f(x)}$$
 has a **y-intercept** at $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$

• If y = f(x) has a **root** at (a, 0)

The reciprocal graph
$$y = \frac{1}{f(x)}$$
 has a **vertical asymptote** at $x = a$

 \circ If y = f(x) has a **vertical asymptote** at x = a

The reciprocal graph
$$y = \frac{1}{f(x)}$$
 has a **discontinuity** at $(a, 0)$

The discontinuity will look like a root

• If y = f(x) has a **local maximum** at (x_1, y_1) where $y_1 \neq 0$

The reciprocal graph
$$y = \frac{1}{f(x)}$$
 has a **local minimum** at $\begin{pmatrix} x_1 \\ y_1 \end{pmatrix}$

∘ If y = f(x) has a **local minimum** at (x_1, y_1) where $y_1 \neq 0$

The reciprocal graph
$$y = \frac{1}{f(x)}$$
 has a **local maximum** at $\begin{pmatrix} 1 \\ x_1, y_1 \end{pmatrix}$

• Consider key regions on the original graph

• If
$$y = f(x)$$
 is **positive** then $y = \frac{1}{f(x)}$ is **positive**

If
$$y = f(x)$$
 is **negative** then $y = \frac{1}{f(x)}$ is **negative**

• If
$$y = f(x)$$
 is increasing then $y = \frac{1}{f(x)}$ is decreasing

If
$$y = f(x)$$
 is **decreasing** then $y = \frac{1}{f(x)}$ is **increasing**

• If y = f(x) has a horizontal asymptote at y = k

$$y = \frac{1}{f(x)}$$
 has a horizontal asymptote at $y = \frac{1}{k}$ if $k \neq 0$

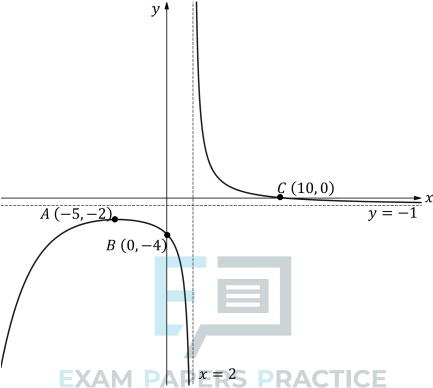
$$y = \frac{1}{f(x)}$$
 tends to $\pm \infty$ if $k = 0$

∘ If y = f(x) tends to ± ∞ as x tends to +∞ or -∞

$$y = \frac{1}{f(x)}$$
 has a horizontal asymptote at $y = 0$

Worked Example

The diagram below shows the graph of y = f(x) which has a local maximum at the point A.



Sketch the graph of $y = \frac{1}{f(x)}$.

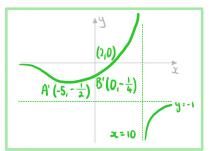
A becomes local minimum $\left(-5, -\frac{1}{2}\right)$

Vertical asymptote becomes root (2,0)

B becomes $(0, -\frac{1}{4})$

C becomes vertical asymptote x=10

Horizontal asymptote y=-1 remains



Square Transformations

What effects do square transformations have on the graphs?

- The effects are similar to the transformation y = |f(x)|
 - The parts below the x-axis are reflected
 - The vertical distance between a point and the x-axis is squared

This has the effect of **smoothing the curve** at the x-axis

- $y = [f(x)]^2$ is never below the x-axis
- The x-coordinates stay the same
- The y-coordinates change
 - Their values are squared
- The coordinates (x, y) become (x, y^2)
 - Points that lie on the x-axis or the line y = 1 stay the same

How do I sketch the graph of the square of a function: $y = [f(x)]^2$?

- Sketch the **square transformation** by considering the **different features** of the original graph
- Consider key points on the original graph
 - If (x_1, y_1) is a point on y = f(x)

$$(x_1, y_1^2)$$
 is a point on $y = [f(x)]^2$

If $|y_1| < 1$ then the point gets closer to the x-axis

If $|y_1| > 1$ then the point gets further away from the x-axis

• If y = f(x) has a **y-intercept** at (0, c)

The square graph $y = [f(x)]^2$ has a **y-intercept** at $(0, c^2)$

• If y = f(x) has a **root** at (a, 0)

The square graph $y = [f(x)]^2$ has a **root** and **turning point** at (a, 0)

• If y = f(x) has a **vertical asymptote** at x = a

The square graph $y = [f(x)]^2$ has a **vertical asymptote** at x = a

• If y = f(x) has a **local maximum** at (x_1, y_1)

The square graph $y = [f(x)]^2$ has a **local maximum** at (x_1, y_1^2) if $y_1 > 0$

The square graph $y = [f(x)]^2$ has a **local minimum** at (x_1, y_1^2) if $y_1 \le 0$

• If y = f(x) has a **local minimum** at (x_1, y_1)

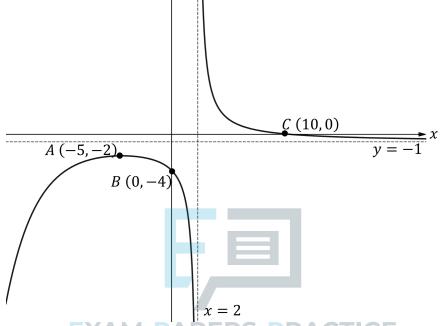
The square graph $y = [f(x)]^2$ has a **local minimum** at (x_1, y_1^2) if $y_1 \ge 0$

The square graph $y = [f(x)]^2$ has a **local maximum** at (x_1, y_1^2) if $y_1 < 0$

- In an exam question when sketching $y = [f(x)]^2$ make it clear that the points where the new graph touches the x-axis are smooth
 - This will make it clear to the examiner that you understand the difference between the roots of the graphs y = |f(x)| and $y = [f(x)]^2$

Worked Example

The diagram below shows the graph of y = f(x) which has a local maximum at the point A.



Sketch the graph of $y = [f(x)]^2$ PERS PRACTICI

A becomes local minimum (-5, 4)

Vertical asymptote x=2 remains

B becomes (0, 16)

C becomes local minimum

Horizontal asymptote becomes y=1

