

| Question<br>number | Answer                                                                                                       | Notes                                                                                                                                                                                                                                                                                                                                           | Marks |
|--------------------|--------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 1 a                | <ul><li>(A) refinery gases</li><li>(F) bitumen</li></ul>                                                     |                                                                                                                                                                                                                                                                                                                                                 | 2     |
| b                  | M1 (compound/molecule/substance<br>containing)<br>carbon and hydrogen/C and H<br>(atoms/elements)<br>M2 only | Reject atom/element/ion/mixture in place of<br>compound/molecule/substance<br>Reject compound/molecule/substance in place of<br>atom/element<br>Ignore references to bonds / long chains<br>Accept other terms with same meaning, eg solely /<br>exclusively / just<br>M2 DEP on mention of carbon and hydrogen/C and H and<br>no other element | 2     |



| Question<br>number | Answer                                        | Notes                                                                                                                                                                                                                             | Marks |
|--------------------|-----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 1 c                | (fuel oil molecules/it/they)                  | Accept converse statements about gasoline                                                                                                                                                                                         | 3     |
|                    | M1 have higher boiling points                 | Ignore reference to melting points                                                                                                                                                                                                |       |
|                    | M2 are darker (in colour)                     | Ignore stronger / more intense (colours)<br>If specific colours stated, award M2 if valid comparison,<br>eg gasoline is yellow and fuel oil is brown, fuel oil is<br>browner                                                      |       |
|                    | M3 have higher viscosities / are more viscous | Accept thicker/stickier/flows less easily, etc in place of<br>more viscous<br>If gasoline, accept thinner/runnier/flows more easily, etc<br>in place of less viscous<br>Must be a comparison, eg not enough to say fuel oil has a |       |
|                    |                                               | high boiling point unless also a statement that gasoline<br>has a low boiling point<br>MAX 2 if no comparison                                                                                                                     |       |
|                    |                                               | Accept reference to fractions near the top/up the column<br>in place of gasoline<br>Accept reference to fractions near the bottom/down the<br>column in place of fuel oil                                                         |       |



| d i | silica | / silicon dioxide / SiO <sub>2</sub>                   | Accept aluminosilicate(s) / zeolites  | 1 |
|-----|--------|--------------------------------------------------------|---------------------------------------|---|
|     | OR     |                                                        |                                       |   |
|     | alum   | ina / aluminium oxide / Al <sub>2</sub> O <sub>3</sub> | Ignore silica oxide and alumina oxide |   |
|     | N/ 1   | C H                                                    | Accept in either order                | n |
|     | INIT   | $C_2\Pi_4$                                             | Accept in either order                | Z |
|     | М2     | Calle                                                  |                                       |   |
|     |        | <b>C</b> <sub>3</sub> . <b>i</b> <sub>0</sub>          | Award 1 mark for $C_4H_8$ and $CH_2$  |   |



| Question<br>number                            |  | on<br>er                                | Answer                                                                                                   | Notes                                                                                                                                                                                                                                                                                                                                                                   | Marks |
|-----------------------------------------------|--|-----------------------------------------|----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 1 e i insufficient/lack of air / oxygen OWTTE |  | insufficient/lack of air / oxygen OWTTE | Accept oxygen not in excess<br>Reject no oxygen                                                          | 1                                                                                                                                                                                                                                                                                                                                                                       |       |
|                                               |  | ii                                      | carbon monoxide / CO                                                                                     |                                                                                                                                                                                                                                                                                                                                                                         | 1     |
|                                               |  | III                                     | decreases capacity of blood (cells) to<br>carry oxygen<br>OR<br>stops blood (cells) from carrying oxygen | Accept CO combines with haemoglobin / forms<br>carboxyhaemoglobin<br>Accept CO displaces/replaces oxygen in haemoglobin<br>Ignore CO combines with red blood cells<br>Ignore references to suffocation / lack of oxygen in lungs<br>stopping breathing / gas exchange<br>Ignore just affects haemoglobin<br>Reject destroys haemoglobin<br>Mark all parts independently | 1     |



| Question<br>number | Answer                                                                                                                                                                                             | Notes                                                                                                                                                                                          | Marks   |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 1 f i              | M1 sulfur dioxide AND sulfur trioxide<br>in correct order                                                                                                                                          | Accept names with correct oxidation states                                                                                                                                                     | 2       |
|                    | M2 sul ric acid                                                                                                                                                                                    | Ignore dilute / concentrated<br>Ignore hydrogen sulfate / hydrogensulfate                                                                                                                      |         |
| ii                 | M1 acid rain                                                                                                                                                                                       | Accept makes lakes acidic / lowers pH of lakes                                                                                                                                                 | 2       |
|                    | M2 specific adverse effect on specific<br>object plants/trees/vegetation/crops/named example<br>eg dies/stunted growth/harmed/damaged/poisoned<br>Ignore deforestation<br>Ignore leaching minerals |                                                                                                                                                                                                |         |
|                    |                                                                                                                                                                                                    | fish<br>fish/aquatic animals/pond life/marine life/named example<br>eg dies/stunted growth/harmed/damaged/poisoned<br>Ignore references to just animals                                        |         |
|                    |                                                                                                                                                                                                    | Accept<br>limestone<br>limestone/marble reacts/corrodes/is eaten away<br>NOT just buildings<br>Ignore rusts or physical process such as erosion /<br>weathering<br>/ wearing away / dissolving |         |
|                    |                                                                                                                                                                                                    | Accept destroys for adverse effect in all of above                                                                                                                                             |         |
|                    |                                                                                                                                                                                                    | Total 17                                                                                                                                                                                       | ' marks |



| Question<br>number | Answer                            |                                                   | Notes                                                                                                                          | Marks     |
|--------------------|-----------------------------------|---------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|-----------|
| 2 (a)              | fractional distillation           |                                                   | accept fractionation                                                                                                           | 1         |
| (b)                |                                   |                                                   |                                                                                                                                |           |
|                    | Fraction                          | Description                                       |                                                                                                                                |           |
|                    | А                                 | it contains only gases                            |                                                                                                                                | 1         |
|                    | F                                 | it is the most viscous                            |                                                                                                                                | 1         |
|                    | F                                 | it contains bitumen                               |                                                                                                                                | 1         |
| (c)                | as the number of increases the bo | of carbon atoms/it/they<br>oiling point increases | accept reverse argument<br>allow positive correlation<br>ignore (directly) proportional<br>ignore references to hydrogen atoms | 1         |
|                    |                                   |                                                   | Tota                                                                                                                           | l 5 marks |



| Question<br>number | Answer                                          | Accept | Reject | Marks |
|--------------------|-------------------------------------------------|--------|--------|-------|
| 3 (a) (i)          | D - hydrocarbons                                |        |        | 1     |
| (b)                | SURVT                                           |        |        | 2     |
|                    | First mark for S in box 1 <u>AND</u> R in box 3 |        |        |       |
|                    | Second mark for V in box 4 AND T in box 5       |        |        |       |

(Total marks for Question 3 = 3 marks)



| Q<br>n | uest<br>umb | ion<br>Der | Answer                                                                                                                                   | Notes                                                                                                                                                                                                                  | Marks       |
|--------|-------------|------------|------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| 4      | а           | i heated   |                                                                                                                                          | Accept boiled / evaporated / vaporised<br>Reject burn<br>Ignore melts                                                                                                                                                  | 1           |
|        |             | ii         | (compounds containing) hydrogen and carbon only                                                                                          | Accept substances/molecules containing<br>Reject atoms/elements //mixture containing<br>Reject hydrogen and carbon molecules/ions<br>Accept alternatives such as solely<br>M2 needs a reference to hydrogen and carbon | 1           |
|        |             | iii        | (hydrocarbons/molecules in) D have:<br>higher boiling point<br>larger/bigger/heavier/longer molecules<br>more viscous/thicker/less runny | Ignore melting point<br>If no reference to D or F, then 0/3<br>Accept converse statements for F                                                                                                                        | 1<br>1<br>1 |
| 4      | b           | i          | silica / alumina (catalyst)<br>600 - 700 °C                                                                                              | Accept aluminosilicate / Al <sub>2</sub> O <sub>3</sub> / SiO <sub>2</sub> / zeolite<br>/broken ceramic/porous pot<br>Accept any value or range within this range<br>Units required<br>Accept equivalent values in K   | 1           |
|        |             | ii         | (alkene has) double bond (between C<br>atoms)<br>OR<br>alkane has only single bonds / no double<br>bonds / no multiple bonds             | Assume it = alkenes<br>Accept multiple bonds<br>Reject triple bonds<br>Reject references to ionic bonding<br>Ignore references to intermolecular forces                                                                | 1           |



| Question<br>number |   | tion<br>ber                                                   | Answer                                                              | Notes                                                                                                                                                                                                                                                                                                                                             | Marks       |
|--------------------|---|---------------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| 4                  |   | iii                                                           | C <sub>2</sub> H <sub>4</sub>                                       | Accept structural and displayed formula<br>Penalise incorrectly shown formulae<br>eg eg C2H4 / $C_2h_4$ / $C_2$ + $H_4$                                                                                                                                                                                                                           | 1           |
|                    | с | i                                                             | propene Accept propylene / prop-1-ene<br>Reject incorrect spellings |                                                                                                                                                                                                                                                                                                                                                   | 1           |
|                    |   | ii                                                            | general<br>empirical<br>$H \rightarrow H \rightarrow H$             | Accept methyl group in any position<br>Ignore shape and bond angles                                                                                                                                                                                                                                                                               | 1<br>1<br>1 |
|                    |   | iii CH₃ H CH₃ H<br>       <br>−C−−C−−C−<br>       <br>H H H H |                                                                     | M1 for two carbon atoms both with 2 H atoms<br>M2 for two carbon atoms both with 1 H atom<br>and 1 CH <sub>3</sub> group<br>No M2 if methyl groups on 1st + 2nd, or 3rd +<br>4th carbons in chain<br>Do not penalise bonds to H of CH <sub>3</sub><br>Max 1 if chain extended correctly<br>0/2 if any double bonds shown<br>Ignore brackets and n | 2           |

(Total for Question 4 = 16 marks)

| Question<br>number |     | on<br>er | Expected Answer                                                         | Accept                                                                                         | Reject                                                                                      | Marks |
|--------------------|-----|----------|-------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-------|
| 5                  | (a) | (i)      | M1 contains carbon and hydrogen (atoms /<br>elements / particles)       | C and H for carbon and<br>hydrogen                                                             | ions / carbon<br>molecules / hydrogen<br>molecules / H <sub>2</sub> /<br>mixture of C and H | 1     |
|                    |     |          | M2 only                                                                 | other equivalent<br>words, eg solely /<br>entirely / completely                                |                                                                                             | 1     |
|                    |     |          | M2 DEP on M1, but allow M2 if molecules / ions $\ /$ mixture used in M1 |                                                                                                |                                                                                             |       |
|                    |     | (ii)     | C <sub>10</sub> H <sub>22</sub><br>IGNORE structural formula            | $H_{22}C_{10}$                                                                                 | Reject superscripts /<br>lower case c or h / full<br>size numbers                           | 1     |
|                    | (b) | (i)      | addition                                                                | additional                                                                                     |                                                                                             | 1     |
|                    |     | (ii)     | M1 one of the bonds in the double bond breaks                           | double bond breaks<br>/ double bond becomes<br>single bond<br>changes (from<br>unsaturated) to |                                                                                             | 1     |
|                    |     |          | M2 (many) <u>ethene(s)/molecules/monomers</u> join<br>(together)        | saturated                                                                                      |                                                                                             | 1     |
|                    |     |          | OR                                                                      |                                                                                                |                                                                                             |       |
|                    |     |          | (many) <u>ethene(s)/molecules/monomers</u> form a chain                 |                                                                                                |                                                                                             |       |

| Question<br>number |     |       | Expected Answer                                                                                               | Accept                                                            | Reject | Marks |
|--------------------|-----|-------|---------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|--------|-------|
| 5                  | (c) | Any 4 | 4 from:                                                                                                       |                                                                   |        |       |
|                    |     | •     | produces smaller / shorter (chain) molecules                                                                  |                                                                   |        |       |
|                    |     | •     | smaller / shorter (chain) molecules more<br>useful (as fuels) / have greater demand                           | ORA<br>low(er) demand<br>products converted to<br>high(er) demand |        |       |
|                    |     | •     | smaller / shorter (chain) molecules burn<br>more cleanly /are used to make<br>petrol/diesel/fuel for vehicles |                                                                   |        |       |
|                    |     | •     | crude oil richer in / has a surplus of long<br>(chain) molecules                                              | ORA                                                               |        |       |
|                    |     | •     | produces alkenes / any named alkene                                                                           |                                                                   |        |       |
|                    |     | •     | alkenes used to make alcohol / polymers /<br>plastics / chemical feedstock / any named<br>addition polymer    |                                                                   |        | 4     |



| Question<br>number | Answer                                                                                                                                                                                                                                                                            | Notes                                                                                                                                                                                                                                                                                                                                                          | Marks |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 6 a                | fractional distillation/fractionating<br>column/tower<br>(crude oil) heated/vaporised / boiled<br>cooler at top/hotter at bottom/idea of<br>temperature gradient<br>fractions condense /separate at different<br>heights/levels<br>fractions have different boiling points/ranges | Reference to fractional / fractionating<br>needed<br>Ignore references to fracking<br>Accept components / hydrocarbons /<br>compounds / gases<br>Accept separate at different temperatures<br>Ignore references to melting point<br>Any four for 1 mark each<br>If any reference to cracking, MAX 2<br>M1 - M4 can be scored from suitably<br>labelled diagram | 4     |



| Question<br>number |     | Answer                                                                                                                                                                                                                                     | Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Marks |
|--------------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 6                  | b i | C <sub>n</sub> H <sub>2n+2</sub>                                                                                                                                                                                                           | Do not penalise inappropriate spaces or failure to show 2 and n as subscripts                                                                                                                                                                                                                                                                                                                                                                                             | 1     |
|                    | ii  | same/similar chemical<br>properties/reactions/behaviour/characteristics<br>gradation / gradual change / trend / increase /<br>decrease of physical properties<br>same functional group<br>(neighbouring) members differ by CH <sub>2</sub> | Ignore specific examples such as react with<br>oxygen<br>Ignore similar (type of) reactivity<br>Do not penalise reference to trends<br>Accept reference to specific property, eg<br>boiling point<br>Reject same / similar physical properties<br>Ignore variable physical properties<br>Ignore reference to specific group<br>Any two for 1 each<br>Accept two answers on one answer line<br>Ignore any reference to properties not<br>specified as physical or chemical | 2     |
|                    | С   | (1) 5 3 4                                                                                                                                                                                                                                  | Accept multiples and fractions                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1     |
|                    | d i | carbon monoxide / CO                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1     |
|                    | 11  | reduces capacity of blood to carry oxygen /<br>OWTTE                                                                                                                                                                                       | Accept correct explanation involving<br>haemoglobin<br>Ignore references to carbon monoxide<br>reacting with blood / red blood cells                                                                                                                                                                                                                                                                                                                                      | 1     |
|                    | iii | nitrogen/N <sub>2</sub> AND oxygen/O <sub>2</sub>                                                                                                                                                                                          | Accept in either order<br>Ignore N and O                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1     |



| Question<br>number | Answer                                                | Notes                                                                                                                     | Marks |
|--------------------|-------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-------|
| 6 e                | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ |                                                                                                                           | 1     |
|                    | н—с—н<br>н                                            | Penalise missing H atoms once only<br>provided all bonds are correctly shown<br>Penalise missing bonds in both structures |       |

| Question<br>number | Answer                                                                                                                                        | Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Marks   |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 6 f i<br>ii        | setting out correct division of each % by $A_r$<br>OR<br>4.4, 11.1 and 1.1<br>division by smallest /ratio of 4 : 10 : 1<br>$C_4H_{10}S_{(1)}$ | Award 0/3 if division by any atomic<br>numbers / wrong way up / multiplication<br>used / wrong atomic mass (eg 16 for C)<br>Do not penalise roundings and minor<br>misreads of % values, eg 11 for H and 36.5<br>for S<br>If molecular mass used for H, no M1, but<br>can award M2 and M3<br>but no CQ in ii<br>Using 2 for H gives C <sub>4</sub> H <sub>5</sub> S<br>Working required for this answer<br>M2 subsumes M1<br>Accept elements in any order<br>Award 3 for correct final answer with no<br>working<br>No ECF from M2<br>Accept use of 90 from ii,<br>i.e. 90 × 0.533 = 48 etc scores M1<br>ratio scores M2, answer scores M3 | 1 1 1 1 |
|                    |                                                                                                                                               | No other answer acceptable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -       |
|                    |                                                                                                                                               | Total 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7 marks |