

# EXAM PAPERS PRACTICE 

## Co-ordinate Geometry

## Model Answer

A line has gradient 5 .
$M$ and $N$ are two points on this line.
$M$ is the point $(x, 8)$ and $N$ is the point $(k, 23)$.
Find an expression for $x$ in terms of $k$.

The gradient of a line is given by the formula:
Gradient $=\frac{\text { Change in } y}{\text { Change in } x}$
For the given line with a gradient of 5 and points $M(x, 8)$ and $N(k, 23)$, we can write:
$5=\frac{23-8}{k-x}$
Now, solve for $x$ :
$5=\frac{15}{k-x}$
Cross-multiply:
$5(k-x)=15$
Distribute 5:
$5 k-5 x=15$
Add $5 x$ to both sides:
$5 k=5 x+15$
Subtract 15 from both sides:
$5 k-15=5 x$
Divide by 5 :
$x=\frac{5 k-15}{5}$


Simplify:
$x=k-3$
So, the expression for $x$ in terms of $k$ is $x=k-3$.

$A$ is the point $(-2,0)$ and $B$ is the point $(0,4)$.
(a) Find the equation of the straight line joining $A$ and $B$.

The equation of the straight line joining $A$ and $B$ is:

$$
y=2 x
$$


(b) Find the equation of the perpendicular bisector of $A B$.

$$
\square \square \square \square
$$

The equation of the perpendicular bisector of $A B$ is:
$y=(-5 / 2) x+5 / 4$
The perpendicular bisector of $A B$ has a slope of $-5 / 2$ and a $y$-intercept of $5 / 4$.
This can be found by using the following steps:

1. Find the midpoint of $A B$. This is the point where the perpendicular bisector intersects $A B$.
2. Find the slope of $A B$.
3. The perpendicular bisector will have a slope that is the negative reciprocal of the slope of $A B$.
4. Use the midpoint of AB and the slope of the perpendicular bisector to find the equation of the perpendicular bisector in point-slope form.

(a) Find the equation of the line $l$.

Give your answer in the form $y=m x+c$.
the equation of the line $l$ is $y=\frac{3}{2} x-1$.
(b) A line perpendicular to the line $l$ passes through the point $(3,-1)$.

Find the equation of this line.

The slope of line $l$ is -1 , so the slope of the perpendicular line is 1 . The equation of the perpendicular line passing through $(3,-1)$ is: $y+1=1(x-3)$
$y=x-4$
This can be found by using the following steps:

1. Find the slope of line $l$.
2. Find the negative reciprocal of the slope of line $l$ to find the slope of the perpendicular line.
3. Use the point-slope form of linear equations to find the equation of the perpendicular line passing through $(3,-1)$.


## The coordinates of point $B$ are $(-2,3)$.

(b) Find the gradient of the line $A B$.
(c) Find the equation of the line that

- is perpendicular to the line $A B$
and
- passes through the point $(0,2)$.

The equation of the line that is perpendicular to $A B$ and passes through the point $(0,2)$ is $y=-\frac{2}{5} x+2$.
$A$ is the point $(8,3)$ and $B$ is the point $(12,1)$.
Find the equation of the line, perpendicular to the line $A B$, which passes through the point $(0,0)$.

The equation of the line that is perpendicular to $A B$ and passes through the point $(0,0)$ is $y=-\frac{3}{8} x$.

$A$ is the point $(4,1)$ and $B$ is the point $(10,15)$.
Find the equation of the perpendicular bisector of the line $A B$.

The equation of the perpendicular bisector of line $A B$ is $y=(-3 / 7) x+11$.
Explanation:
The midpoint of $A B$ is $(7,8)$, and the slope of $A B$ is $7 / 3$. The slope of the perpendicular bisector is $-3 / 7$, so its equation is $y=(-3 / 7) x+11$.


Find the equation of the line that

- is perpendicular to the line $y=3 x-1$
and
- passes through the point $(7,4)$.

The equation of a line in slope-intercept form is $y=m x+b$, where $m$ is the slope and $b$ is the $y$-intercept.
The given line is $y=3 x-1$, and it has a slope $m$ of 3 .
The slope of a line perpendicular to this line is the negative reciprocal of the original slope. So, the slope $m_{\text {perp }}$ of the perpendicular line is $-1 / 3$. Now, using the point-slope form of the equation of a line $\left(y-y_{1}\right)=m\left(x-x_{1}\right)$, where $\left(x_{1}, y_{1}\right)$ is a point on the line and $m$ is the slope: $(y-4)=-\frac{1}{3}(x-7)$
Multiply through by -3 to get rid of the fraction:
$-3(y-4)=(x-7)$
Distribute:
$-3 y+12=x-7$
Bring like terms to one side:
$x+3 y=19$
So, the equation of the line perpendicular to $y=3 x-1$ and passing through the point $(7,4)$ is $x+3 y=19$.



The line $y=m x+c$ is parallel to the line The distance $A B$ is 6 units.

Find the value of $m$ and the value of $c$.
$y=2 x+4$.


The value of $m$ is 2 and the value of $c$ is 4 .
Explanation:
The equation of the line is $y=m x+c$, where $m$ is the slope of the line and $c$ is the $y$-intercept. In this case, the slope of the line is 2 and the $y$-intercept is 4 . Therefore, the value of $m$ is 2 and the value of $c$ is 4 .


Find the co-ordinates of the mid-point of the line joining the points $A(2,-5)$ and $B(6,9)$.

The coordinates of the midpoint $\left(M_{x}, M_{y}\right)$ of a line segment with endpoints $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ can be found using the midpoint formula: $M_{x}=\frac{x_{1}+x_{2}}{2}$
$M_{y}=\frac{y_{1}+y_{2}}{2}$
For the given points $A(2,-5)$ and $B(6,9)$, the midpoint coordinates $\left(M_{x}, M_{y}\right)$ are:
$M_{x}=\frac{2+6}{2}=4$
$M_{y}=\frac{(-5)+9}{2}=2$
So, the coordinates of the midpoint of the line joining points $A$ and $B$ are $(4,2)$.


A straight line passes through two points with co-ordinates $(6,8)$ and $(0,5)$.
Work out the equation of the line.

The equation of a straight line in slope-intercept form $y=m x+b$ can be found using the following steps:

1. Find the slope $(m)$ :

The slope $(m)$ is given by the formula:
$m=\frac{\text { change in } y}{\text { change in } x}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$
Using the points $(6,8)$ and $(0,5)$ :
$m=\frac{8-5}{6-0}=\frac{3}{6}=\frac{1}{2}$
2. Use the slope-intercept form $(y=m x+b)$ :

Now that we have the slope $(m)$, we can use one of the points to solve for the $y$-intercept (b).
Using the point $(6,8)$ :
$8=\frac{1}{2}(6)+b$
Solve for $b$ :
$8=3+b \Longrightarrow b=5$
3. Write the equation:

Substitute the values of $m$ and $b$ into the slope-intercept form:
$y=\frac{1}{2} x+5$
So, the equation of the line passing through the points $(6,8)$ and $(0,5)$ is $y=\frac{1}{2} x+5$.

## Exam Papers Practice



In the diagram, the line $A C$ has equation $2 x+3 y=17$ and the line $A B$ has equation $4 x-y=6$. The lines $B C$ and $A B$ intersect at $B(1,-2)$.
The lines $A C$ and $B C$ intersect at $C(4,3)$.
(a) Use algebra to find the coordinates of the point $A$.

To find the coordinates of the point A using algebra, we substitute $x=1.5$ into either equation and find that the $y$-coordinate of A is 4.67. Therefore, the coordinates of the point A are $(1.5,4.67)$.
(b) Find the equation of the line $B C$.


The coordinates of the point A are (1.5, 4.67).

## Explanation:

The equations of lines $B C$ and $A B$ are $2 x+3 y=17$ and $4 x-y=6$, respectively.
Solving the system of equations, we get $\mathrm{x}=1.5$ and $\mathrm{y}=4.67$. Therefore, the coordinates of A are $(1.5,4.67)$.

The points $A(6,2)$ and $B(8,5)$ lie on a straight line.
(a) Work out the gradient of this line.

The gradient $(m)$ of a line passing through two points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ is given by the formula:
$m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$
For the given points $A(6,2)$ and $B(8,5)$, the gradient $m$ is calculated as follows:
$m=\frac{5-2}{8-6}=\frac{3}{2}$
So, the gradient of the line passing through points $A(6,2)$ and $B(8,5)$ is $\frac{3}{2}$.
(b) Work out the equation of the line, giving your answer in the form $y=m x+c$.

1. Find the slope (m):
$m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$
Using points $A(6,2)$ and $B(8,5)$ :
$m=\frac{5-2}{8-6}=\frac{3}{2}$
2. Use the slope-intercept form $(y=m x+c)$ :

Now that we have the slope $(m)$, we can use one of the points to solve for the y-intercept $(c)$. Using point $A(6,2)$ :
$2=\frac{3}{2}(6)+c$
Solve for $c$ :
$2=9+c \Longrightarrow c=-7$
3. Write the equation:

Substitute the values of $m$ and $c$ into the slope-intercept form:
$y=\frac{3}{2} x-7$
So, the equation of the line passing through points $A(6,2)$ and $B(8,5)$ is $y=\frac{3}{2} x-7$.

The points $(2,5),(3,3)$ and $(k, 1)$ all lie in a straight line.
(a) Find the value of $k$.

If three points $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$, and $\left(x_{3}, y_{3}\right)$ lie on a straight line, the slopes of the line segments formed by consecutive points are equal. Let's use the points $(2,5),(3,3)$, and $(k, 1)$. The slope between the first two points is:
$m_{1}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{3-5}{3-2}=-2$
Now, find the slope between the second and third points:
$m_{2}=\frac{y_{3}-y_{2}}{x_{3}-x_{2}}=\frac{1-3}{k-3}$
Since the points lie on the same line, $m_{1}=m_{2}$ :
$-2=\frac{1-3}{k-3}$
Now, solve for $k$ :
$-2(k-3)=1-3$
$-2 k+6=-2$
$-2 k=-8$
$k=4$
So, the value of $k$ is 4 .
(b) Find the equation of the line.


To find the equation of the line passing through the points $(2,5),(3,3)$, and $(k, 1)$, follow these steps:

1. Find the slope $(m)$ :
$m=\frac{w_{2}-y_{1}}{x_{2}-x_{1}}$
Using the points $(2,5)$ and $(3,3)$ :
$m=\frac{3-5}{3-2}=-2$
2. Use the point-slope form $\left(y-y_{1}=m\left(x-x_{1}\right)\right)$ :

Using one of the points, let's use $(2,5)$ :
$y-5=-2(x-2)$
3. Simplify the equation:
$y-5=-2 x+4$
$y=-2 x+9$
Now, check if the third point $(k, 1)$ lies on the line. Substitute $x=k$ and $y=1$ into the equation:
$1=-2 k+9$
Solve for $k$ :
$k=4$
So, the equation of the line is $y=-2 x+9$.

(a) The line $y=4$ meets the line $2 x+y=8$ at the point $A$.

Find the co-ordinates of $A$.
The coordinates of point $A$ are $(2,4)$.
(b) The line $3 x+y=18$ meets the $x$ axis at the point $B$.

Find the co-ordinates of $B$.
The coordinates of point B are $(6,0)$.
(c) (i) Find the co-ordinates of the mid-point $M$ of the line joining $A$ to $B$.

The coordinates of the midpoint, $M$, are ( $-1,2$ ).
(ii) Find the equation of the line through $M$ parallel to $3 x+y=18$.
the equation of the line through $M$ parallel to $3 x+y=18$ is $y=-3 x+7$.

Find the length of the line joining the points $A(-4,8)$ and $B(-1,4)$.

We use the distance formula:
$d=\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}}$
where $\left(x_{1}, y_{1}\right)=(-4,8)$ and $\left(x_{2}, y_{2}\right)=(-1,4)$. Plugging in, we get:
$d=\sqrt{(-4-(-1))^{2}+(8-4)^{2}}$
$d=\sqrt{(-3)^{2}+(4)^{2}}$
$d=\sqrt{25}$
$d=5$
Therefore, the length of the line joining the points $A$ and $B$ is 5 .




The distance $A B$ is 7 units.
(a) Write down the equation of the line through $B$ which is parallel to $y=2 x+3$.

The equation of the line through $B$ which is parallel to $y=2 x+3$ is $y=2 x-5$.
(b) Find the co-ordinates of the point $C$ where this line crosses the $x$ axis.

The line crosses the $x$-axis at the point $(-3 / 2,0)$.

## Exam <br> Papers <br> Practice

# NOT TO <br> SCALE 

The line $l$ passes through the points $(10,0)$ and $(0,8)$ as shown in the diagram.
(a) Find the gradient of the line as a fraction in its simplest form.
[1]
Since the change in the $y$-coordinate is zero, the gradient of the line is 0 as a fraction in its simplest form.
(b) Write down the equation of the line parallel to $l$ which passes through the origin.

The slope of line $l$ is equal to $\frac{0-8}{10-0}=-\frac{4}{5}$. Since parallel lines have equal slopes, the equation of the line parallel to $l$ passing through the origin is: $y=-4 / 5^{*} x$
or, equivalently, $4 x+5 y=0$.
(c) Find the equation of the line parallel to $l$ which passes through the point $(3,1)$.

Line $l$ is vertical, since it passes through two points with the same $x$-coordinate.
Therefore, the equation of any parallel line is of the form $\mathrm{x}=\mathrm{C}$ for some constant C .
Since we want the parallel line to pass through the point $(3,1)$, we must have $3=C$.
Therefore, the equation of the parallel line is $\mathrm{x}=3$.

The equation of a straight line can be written in the form $3 x+2 y-8=0$.
(a) Rearrange this equation to make $y$ the subject.

Step 1: Isolate the $y$ term
$3 x+2 y-8=0$
$2 y=8-3 x$
Step 2: Divide both sides by 2
$2 y=8-3 x$
$y=4-1.5 x$
Step 3: Write the equation in slope-intercept form
$y=-1.5 x+4$
Therefore, the equation of the line with $y$ as the subject is $y=-1.5 x+4$.
(b) Write down the gradient of the line.

To find the gradient of the line, we need to rewrite the equation in slope-intercept form, which is $y=m x+b$, where $m$ is the gradient and $b$ is the $y$-intercept. To do this, we need to isolate $y$ on one side of the equation:
$3 x+2 y-8=0$
$2 y=-3 x+8$
$y=(-3 / 2) x+4$
Therefore, the gradient of the line is $-3 / 2$.
(c) Write down the co-ordinates of the point where the line crosses the $y$ axis.

To find the $y$-intercept, let's substitute $x=0$ into the equation.

$$
3(0)+2 y-8=0
$$

$2 y-8=0$
$2 y=8$
$y=4$
Therefore the line intercepts the $y$ axis at the point $(0,4)$.

(a) Calculate the gradient of the line $l$.

To calculate the gradient of the line $l$, we can use the following formula:
gradient $=(y 2-y 1) /(x 2-x 1)$
where $(x 1, y 1)$ and $(x 2, y 2)$ are any two points on the line.
Since the line $l$ intersects the $y$-axis at the point $(0,4)$ and passes through the point $(3,1)$, we can use these two points to calculate the gradient:
gradient $=(1-4) /(3-\varnothing)$
gradient $=-3 / 3$
gradient $=-1$
Therefore, the gradient of the line $l$ is -1 .
Answer: The gradient of the line $l$ is -1 .

(b) Write down the equation of the line $l$.

The equation of the line 1 is $\mathrm{y}=\mathrm{x}$.
This is because the line passes through the origin $(0,0)$ and has a slope of 1 . The slope of a line is calculated by taking the difference in the $y$-coordinates of two points on the line and dividing it by the difference in the x-coordinates of those same two points. In this case, the two points are the origin and $(1,1)$, which both lie on the line 1 .

The equation of a line in slope-intercept form is $y=m x+b$, where $m$ is the slope $a n d$ is the $y$-intercept. In this case, the slope is 1 and the $y$-intercept is 0 , so the equation of the line is $\mathrm{y}=\mathrm{x}$.

Another way to think about this is that the line 1 is simply a diagonal line that passes through the first and third quadrants of the graph. The equation of a diagonal line is always $y=x$, regardless of where it is located on the graph.

16 The straight line graph of $y=3 x-6$ cuts the $x$-axis at $A$ and the $y$-axis at $B$.
(a) Find the coordinates of $A$ and the coordinates of $B$.

1. For point A (x-axis):

When a point lies on the $x$-axis, the $y$-coordinate is 0 . Set $y=0$ and solve for $x$ :
$0=3 x-6$
Solve for $x$ :
$x=2$
So, point $A$ is $(2,0)$.
2. For point $\mathbf{B}$ ( $y$-axis):

When a point lies on the $y$-axis, the $x$-coordinate is 0 . Set $x=0$ and solve for $y$ :
$y=3(0)-6$
Solve for $y$ :
$y=-6$
So, point B is $(0,-6)$.
Therefore, the coordinates of point $A$ are $(2,0)$ and the coordinates of point $B$ are $(0,-6)$.
(b) Calculate the length of $A B$.

The x -axis intercept $(A)$ occurs when $y=0$, and the $y$-axis intercept $(B)$ occurs when $x=0$.

1. Finding $A$ :

Set $y$ to 0 in the equation $y=3 x-6$ :
$0=3 x-6$
Solve for $x$ :
$x=2$
So, the point $A$ is $(2,0)$.
2. Finding $B$ :

Set $x$ to 0 in the equation $y=3 x-6$ :
$y=3(0)-6$
$y=-6$
So, the point $B$ is $(0,-6)$.
3. Calculating the length of $A B$ :

Use the distance formula: $A B=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
$A B=\sqrt{(2-0)^{2}+(0-(-6))^{2}}$
$A B=\sqrt{4+36}=\sqrt{40}=2 \sqrt{10}$
Therefore, the length of $A B$ is $2 \sqrt{10}$.
(c) $M$ is the mid-point of $A B$.

Find the coordinates of $M$.
The x -axis intercept $(A)$ occurs when $y=0$ in the equation $y=3 x-6$ :
$0=3 x-6$
Solving for $x$ :
$x=2$
So, the coordinates of $A$ are (2,0).
The $y$-axis intercept $(B)$ occurs when $x=0$ :
$y=3 \cdot 0-6$
Solving for $y$ :
$y=-6$
So, the coordinates of $B$ are $(0,-6)$.
The midpoint ( $M$ ) of $A B$ is the average of the x -coordinates and the y -coordinates:
$M_{x}=\frac{2+0}{2}=1$
$M_{y}=\frac{0+(-6)}{2}=-3$
So, the coordinates of $M$ are $(1,-3)$.
For more help, please visit our website www.exampaperspractice.co.uk


The co-ordinates of $A, B$ and $C$ are shown on the diagram, which is not to scale.
(a) Find the length of the line $A B$.

The length of line $A B$ is 3

(b) Find the equation of the $a$
 Pra

$$
y=x+2
$$


$A(1,3), B(4,1)$ and $C(6,4)$ are shown on the diagram.
(b) Work out the equation of the line $B C$.

The equation of the line BC is $y=-\frac{1}{2} x+3$.

## Exam <br> 

(c) $A B C$ forms a right-angled isosceles triangle of area $6.5 \mathrm{~cm}^{2}$.

Calculate the length of $A B$.
The length of $A B$ is 5 units.

Find the length of the straight line from $Q(-8,1)$ to $R(4,6)$.
$\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
For $Q(-8,1)$ and $R(4,6)$ :
Length of QR $=\sqrt{(4-(-8))^{2}+(6-1)^{2}}$
Length of QR $=\sqrt{12^{2}+5^{2}}$
Length of QR $=\sqrt{144+25}$
Length of QR $=\sqrt{169}$
Length of QR $=13$
So, the length of the straight line from $Q$ to $R$ is 13 units.



The lines $A B$ and $C B$ intersect at $B$.
(a) Find the co-ordinates of the midpoint of $A B$.
(b) Find the equation of the line $C B$.

To find the equation of the line CB , you need the slope and the $y$-intercept.
Given points $C(6,4)$ and $B$, you can find the slope (m) using the formula:
$m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$
Let's take $\mathrm{B}(\mathrm{x}, \mathrm{y})$. Using $\mathrm{B}(4,1)$ and $\mathrm{C}(6,4)$ :
$m=\frac{1-4}{4-6}$
$m=\frac{-3}{-2}$
$m=\frac{3}{2}$
Now that you have the slope (m), you can use the point-slope form of the equation of a line:
$y-y_{1}=m\left(x-x_{1}\right)$
Using point $C(6,4)$ :
$y-4=\frac{3}{2}(x-6)$
Now, simplify this equation to put it in the slope-intercept form $(y=m x+b)$ :
$y-4=\frac{3}{2} x-9$
$y=\frac{3}{2} x-5$
So, the equation of the line CB is $y=\frac{3}{2} x-5$.


The diagram shows the straight line which passes through the points $(0,1)$ and $(3,13)$.
Find the equation of the straight line.
$y-y_{1}=m\left(x-x_{1}\right)$
where $\left(x_{1}, y_{1}\right)$ is a point on the line, and $m$ is the slope.
First, find the slope $(m)$ using the given points $(0,1)$ and $(3,13)$ :
$m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$
$m=\frac{13-1}{3-0}$
$m=\frac{12}{3}$
$m=4$
Now that you have the slope, choose one of the points, let's say $(0,1)$, and substitute the values into the point-slope form:
$y-1=4(x-0)$
Simplify:
$y-1=4 x$
Now, bring $y$ to one side:
$y=4 x+1$
So, the equation of the straight line is $y=4 x+1$.

(a) Using a straight edge and compasses only, construct the perpendicular bisector of $A B$ on the diagram above.

To construct the perpendicular bisector of AB using only a straight edge and compasses, draw arcs above and below $A B$ from points $A$ and $B$ with a radius greater than half the length of $A B$. Then, draw a straight line through the points where the arcs intersect.

## Fvon Donere Dunctic (1)

(b) Write down the co-ordinates of the midpoint of the line segment joining $A(1,8)$ to $B(7,-4)$.

The coordinates of the midpoint are $M\left(\frac{1+7}{2}, \frac{8-4}{2}\right)=(4,2)$.
(c) Find the equation of the line $A B$.

The equation of the line $A B$ is $y=2 x+3$.
(a) The line $y=2 x+7$ meets the $y$-axis at $A$.

Write down the co-ordinates of $A$.
To find the coordinates where the line $y=2 x+7$ meets the $y$-axis, you set $x=0$. The $y$-axis has the equation $x=0$.
Substitute $x=0$ into $y=2 x+7$ :
$y=2(0)+7$
$y=7$
So, the coordinates where the line meets the $y$-axis (point A) are $(0,7)$.
(b) A line parallel to $y=2 x+7$ passes through $B(0,3)$.
(i) Find the equation of this line.

The equation of the line parallel to $y=2 x+7$ passing through $B(0,3)$ is $y=2 x+3$.

(ii) $C$ is the point on the line $y=2 x+1$ where $x=2$.

Find the co-ordinates of the midpoint of $B C$.
The line parallel to $y=2 x+7$ passing through $B(0,3)$ has the equation $y=2 x+3$.
For $y=2 x+1$, when $x=2, y=2(2)+1=5$.
The midpoint of $B C$ is $(1,4)$.

Find the equation of the straight line which passes through the points $(0,8)$ and $(3,2)$.
To find the equation of the straight line passing through the points $(0,8)$ and $(3,2)$, you can use the point-slope form of the equation: $y-y_{1}=m\left(x-x_{1}\right)$
where $\left(x_{1}, y_{1}\right)$ is a point on the line, and $m$ is the slope.
First, find the slope $(m)$ using the given points $(0,8)$ and $(3,2)$ :
$m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$
$m=\frac{2-8}{3-0}$
$m=\frac{-6}{3}$
$m=-2$
Now that you have the slope, choose one of the points, let's say $(0,8)$, and substitute the values into the point-slope form: $y-8=-2(x-0)$
Simplify:
$y-8=-2 x$
Now, bring $y$ to one side:
$y=-2 x+8$
So, the equation of the straight line is $y=-2 x+8$.


