

 Z_0

OCR

A LEVEL SPECIFICATION FURTHER MATHEMATICS A EXAM PAPER 2

inciden

H245

For first assessment in 2024

Core Pure Extra Practice Paper 2

1.

$$z_1 = 1 - i$$
$$z_2 = 3\sqrt{3} + 3i$$

a) Find the values of

i) $arg(z_1)$

ii) $arg(z_2)$

iii) $\arg(z_1 z_2)$

(3)

b) Find the value of $|z_1 + z_2|$, giving your answer in the form $\sqrt{a + b\sqrt{c}}$, where a, b, and c are integers.

d) The matrix M represents the linear transformation A.

Given that,

- The determinant of *M* is positive,
- Under A, a cube with side length 2 is mapped to a shape with volume 48 units³,
- (8, -4, 2) is an invariant point of the transformation,

Find the values of p and q.

(4)

(1)

3.

The curve C has equation

 $y = 5 \cosh x \sinh x - 12 \cosh 2x$

a) Find the x coordinate of the stationary point A of C, giving your answer exactly in terms of natural logarithms.

b) Show that \boldsymbol{A} is a maximum turning point.

(2)

(4)

(2)

4.

a) Express

$$\frac{1-2x}{x^4-2x^3+x^2}$$

b) Hence show that

c) Find the least value of *n* such that

 $-2r^3 + r^2$

 n^2k^2

2r

5.

i) Sketch the polar curve $r=e^{-\theta}$ for $0\leq\theta<2\pi$

(1)

ii) Find the points on the curve where the tangents are perpendicular to the initial line. Give your answers correct to three significant figures.

(4)

In an argand diagram, ABCDEF is a regular hexagon centred at the origin, where $A = \sqrt{3} + i$.

The locus of points z satisfying $|z| = |z - \sqrt{3} - i|$ divides the hexagon into two regions.

Find the ratio of the area of the larger region to the area of the smaller region.

(6)

8.

Two planes are defined by

$$\Pi_1: -5x + 6y + z = -52$$
$$\Pi_2: 3x - 4y + 2z = 24$$

a) Find the acute angle between Π_1 and Π_2 , giving your answer to one decimal place.

(3)

b) Find a vector equation of l, the line of intersection of the two planes.

(4)

c) The point A lies on l. Find the coordinates of A when the distance from A to the origin is minimised.

(4)
9.
The displacement of a particle from a fixed origin is modelled by the differential equation

$$\frac{d^2x}{dt^2} + 6\frac{dx}{dt} + 9x = -4e^{-3t}$$
a) Find the general solution of the displacement of the particle at time t.
(6)
b) Initially, the particle has displacement $\frac{5}{3}$ and is stationary.
Find the other time when the particle is stationary.

(6)