QUALIFICATION aCCREDITED

A LEVEL SPECIFICATION FURTHER
MATHEMATICS A EXAM PAPER 2 H245

For first assessment in 2024

Core Pure Extra Practice Paper 2

1.

$$
\begin{gathered}
z_{1}=1-i \\
z_{2}=3 \sqrt{3}+3 i
\end{gathered}
$$

a) Find the values of
i) $\arg \left(z_{1}\right)$
ii) $\arg \left(z_{2}\right)$
iii) $\arg \left(z_{1} z_{2}\right)$
b) Find the value of $\left|z_{1}+z_{2}\right|$, giving your answer in the form $\sqrt{a+b \sqrt{c}}$, where a, b, and c are integers.

d) The matrix M represents the linear transformation A.

Given that,

- The determinant of M is positive,
- Under A, a cube with side length 2 is mapped to a shape with volume 48 units 3,
- $(8,-4,2)$ is an invariant point of the transformation,

Find the values of p and q.
3.

The curve C has equation

$$
y=5 \cosh x \sinh x-12 \cosh 2 x
$$

a) Find the x coordinate of the stationary point A of C, giving your answer exactly in terms of natural logarithms.
b) Show that A is a maximum turning point.
4.
a) Express

$$
\frac{1-2 x}{x^{4}-2 x^{3}+x^{2}}
$$

in partial fractions.
b) Hence show that

c) Find the least value of n such that

EXAM PAPERS"PRACTICE

(3)
5.
i) Sketch the polar curve $r=e^{-\theta}$ for $0 \leq \theta<2 \pi$
ii) Find the points on the curve where the tangents are perpendicular to the initial line. Give your answers correct to three significant figures.
6.

b) Find the area enclosed by the curve,
y axis, the x axis, and the line $y=3$, giving your answer in the form $\ln \frac{a+\sqrt{b}}{c+\sqrt{d}}$.

EXAM PAPERS PRACTICE

7.

In an argand diagram, $A B C D E F$ is a regular hexagon centred at the origin, where $A=\sqrt{3}+i$.
The locus of points z satisfying $|z|=|z-\sqrt{3}-i|$ divides the hexagon into two regions.
Find the ratio of the area of the larger region to the area of the smaller region.
8.

Two planes are defined by

$$
\begin{gathered}
\Pi_{1}:-5 x+6 y+z=-52 \\
\Pi_{2}: 3 x-4 y+2 z=24
\end{gathered}
$$

a) Find the acute angle between Π_{1} and Π_{2}, giving your answer to one decimal place.
b) Find a vector equation of l, the line of intersection of the two planes.
c) The point A lies on l. Find the coordinates of A when the distance from A to the origin is minimised.
9.

$$
\int_{0}^{\infty} x d t
$$

