

 EXAM PAPERS PRACTICE

 EXAM PAPERS PRACTICE}

Conversion

Model Answers

Write the recurring decimal 0.25 as a fraction.
[0.25 means 0.2555 ...]

Multiply the number by 10 to "shift it" by one repeating cycle.

$$
10 \times 0.2 \dot{5}=2.5 \dot{5}
$$

Subtract the number with recurring decimal from both sides.

$$
\begin{gathered}
9 \times 0.2 \dot{5}=2.5 \dot{5}-0.2 \dot{5} \\
9 \times 0.2 \dot{5}=2.3
\end{gathered}
$$

Divide both sides of the equation by 9 .

$$
0.2 \dot{5}=\frac{2.3}{9}
$$

Multiply the denominator and the numerator of the fraction by 10

$$
0.2 \dot{5}=\frac{\mathbf{2 3}}{\mathbf{9 0}}
$$

At the beginning of July, Kim had a mass of 63 kg . At the end of July, his mass was 61 kg .

Calculate the percentage loss in Kim's mass.

Loss of 2 kg

$$
\begin{gathered}
\frac{2}{63} \times 100 \\
=3.17
\end{gathered}
$$

Work out 72 cents as a percentage of 83 cents.

The percentage can be worked out as follows:

$$
\begin{gathered}
\frac{72}{83} \times 100 \% \\
=0.8674698 \ldots \times 100 \% \\
=\mathbf{8 6 . 7} \%
\end{gathered}
$$

Write
(a) 60 square metres in square centimetres,

$$
60 \mathrm{~m}^{2}=? ? \mathrm{~cm}^{2}
$$

We know 1 m is 100 cm , we have to square this to match the units as follows:

$$
1 \mathrm{~m}^{2}=100^{2} \mathrm{~cm}^{2}=10000 \mathrm{~cm}^{2}
$$

Hence

$$
60 m^{2}=600000 \mathrm{~cm}^{2}
$$

(b) 22 metres per second in kilometres per hour.

Applying the same principle, but for metres to kilometres:

$$
22 \frac{\mathrm{~m}}{\mathrm{~s}}=? ? \frac{\mathrm{~km}}{\mathrm{~h}}
$$

Since 1000 m is $1 \mathrm{~km}, \quad 22 \frac{\mathrm{~m}}{\mathrm{~s}}=0.022 \frac{\mathrm{~km}}{\mathrm{~s}}$

Since 3600 s is 1 hr ,

$$
\begin{aligned}
0.022 \frac{\mathrm{~km}}{\mathrm{~s}} & =0.022 \frac{\mathrm{~km}}{\mathrm{~s}} \times 3600 \frac{\mathrm{~s}}{\mathrm{hr}} \\
& =79.2 \frac{\mathrm{~km}}{\mathrm{hr}}
\end{aligned}
$$

A cruise ship travels at 22 knots.
[1 knot is 1.852 kilometres per hour.]
Convert this speed into metres per second.

1 knot $=1.852 \mathrm{~km} / \mathrm{h}$

22 knots $=22 \times 1.852 \mathrm{~km} / \mathrm{h}$

22 knots $=40.744 \mathrm{~km} / \mathrm{h}$
$1 \mathrm{~km}=1000 \mathrm{~m}$

1 hour = 3600 seconds

We will first convert the speed from km / h into m / h.
$40.744 \mathrm{~km} / \mathrm{h} \times 1000 \mathrm{~m} / \mathrm{km}=40477 \mathrm{~m} / \mathrm{h}$

Now, we convert the speed from m / h into m / s.

To do this, we divide the speed by $3600 \mathrm{~s} / \mathrm{h}$.
$\frac{40477 \mathrm{~m} / \mathrm{h}}{3600 \mathrm{~s} / \mathrm{h}}$
$=11.3 \mathrm{~m} / \mathrm{s}$

The maximum speed of a car is $252 \mathrm{~km} / \mathrm{h}$.
Change this speed into metres per second.
. Multiply by 10^{3} to get m / h

$$
252000 \mathrm{mh}^{-1}
$$

Now divide by 60^{2} to get per second

$$
\begin{gathered}
252000 \div 60^{2} \\
=70
\end{gathered}
$$

Lin scored 18 marks in a test and Jon scored 12 marks.
Calculate Lin's mark as a percentage of Jon's mark.

$$
\begin{aligned}
(18 & \div 12) \times 100 \\
& =\mathbf{1 5 0} \%
\end{aligned}
$$

Calculate
$\frac{5^{2}}{2^{5}}$
$\frac{5^{2}}{2^{5}}=\frac{25}{32}$
(a) giving your answer as a fraction,

The answer as a fraction is: $\frac{\mathbf{2 5}}{32}$
(b) giving your answer as adecimal.

Write the recurring decimal $0.6 \dot{3}$ as a fraction in its lowest terms. You must show all your working.

$$
\begin{aligned}
& 100 \times 0 . \dot{6} \dot{3}-0 . \dot{6} \dot{3}=63 \\
= & (100-1) 0 . \dot{6} \dot{3}=99 \times 0 . \dot{6} \dot{3} \\
& \rightarrow 99 \times 0 . \dot{6} \dot{3}=63
\end{aligned}
$$

Now divide through by 99

$$
\rightarrow 0 . \dot{6} \dot{3}=\frac{63}{99}
$$

Cancel out 9 top and bottom

$$
=\frac{7}{11}
$$

Write the recurring decimal 0.17 as a fraction.
Show all your working.

To do this, we can do a trick:

$$
\begin{aligned}
& x=0.1 \dot{7}=0.1777777 \ldots \\
& 10 x=1 . \dot{7}=1.777777 \ldots
\end{aligned}
$$

We now can subtract one from the other, and get rid of the long string of numbers at the end:

$$
\begin{gathered}
10 x-x=9 x=1.77777 \ldots-0.1777777 \ldots \\
9 x=1.6 \\
x=\frac{1.6}{9} \\
x=\frac{8}{45}
\end{gathered}
$$

(a) Write $\$ 0.70$ as a fraction of $\$ 5.60$, giving your answer in its lowest terms.

$$
\begin{aligned}
\frac{0.70}{5.60} \times \frac{10}{10} & =\frac{7}{56}=\frac{7 \times 1}{7 \times 8} \\
& =\frac{1}{8}
\end{aligned}
$$

(b) Write the recurring decimal $0.1 \dot{8}$ as a fraction in its lowest terms.
[$0.1 \dot{8}$ means $0.181818 \ldots$]

Give it a name:
Multiply by 10 until the
decimal parts are the same:

$$
\begin{gathered}
f=0.181818 \ldots \\
10 f=1.818181 \ldots \\
100 f=18.181818 \ldots
\end{gathered}
$$

Subtract to get rid of the decimal part:

$$
100 f-f=18.181818 \ldots-0.181818 \ldots
$$

And simplify:

$$
\begin{gathered}
99 f=18 \\
f=\frac{18}{99} \\
f=\frac{9 \times 2}{9 \times 11} \\
f=\frac{2}{11}
\end{gathered}
$$

$$
\frac{3}{5}<p<\frac{2}{3}
$$

Which of the following could be a value of p ?

$$
\frac{16}{27} \quad 0.67 \quad 60 \% \quad(0.8)^{2} \quad \sqrt{\frac{4}{9}}
$$

The easiest way to find a suitable value of p is to convert numbers into decimals.

Out two limits are:

$$
\frac{3}{5}=0.6
$$

$$
\frac{2}{3}=0 . \dot{6}
$$

And the potential candidates for p are:

$$
\begin{gathered}
\frac{16}{27}=0.941 \ldots \\
0.67 \\
60 \%=0.6 \\
(0.8)^{2}=0.64 \\
\sqrt{\frac{4}{9}}=0 . \dot{6}
\end{gathered}
$$

Two of these numbers are equal to our boundaries, however strict equality is not allowed
for p, hence we can see that there is only one number between $\frac{3}{5}=0.6$ and $\frac{2}{3}=$ 0.6 which is 0.64 .

$$
p=(0.8)^{2}
$$

A tin of soup has the following information on the label.

200 grams of soup contains		
Protein	Carbohydrate	Fat
4 g	8.7 g	5.8 g

(a) What fraction of the soup is Protein? Give your answer in its simplest form.

Protein fraction $=\frac{4 \mathrm{~g}}{200 \mathrm{~g}}=\frac{1}{50}$
(b) What percentage of the soup is Carbohydrate?

The total amount of soup is 200 g , amount which corresponds to a percentage of 100%.

The amount of carbohydrate is 8.7 g . As a percentage we can write it as:
\%carbohydrate $=\frac{8.7 \mathrm{~g} \times 100}{200 \mathrm{~g}}=4.35 \%$

We need to convert millilitres to litres so we can have the
same unit for both amounts.

125 millilitres $=0.125$ litres
$\frac{2.5 \text { litres }}{0.125 \text { litres/glass }}$
= 20 glasses

EXAM PAPERS PRACTICE

The population of Europe is 580000000 people.
The land area of Europe is 5900000 square kilometres.
(a) Write 580000000 in standard form.

A number in standard form takes up the form: a $\times 10^{n}$ where n is an integer and $0<a<10$.
$580000000=5.8 \times 10^{8}$

Where $\mathrm{n}=8$ and $\mathrm{a}=5.8,0<5.8<10$.
(b) Calculate the number of people per square kilometre, to the nearest whole number.

$$
\begin{aligned}
& \text { people/ square } \mathrm{km}=\frac{580000000}{5900000} \\
& \text { people/ square } \mathrm{km}=98.3
\end{aligned}
$$

$$
\text { The nearest whole number is } 98 .(3<5)
$$

(c) Calculate the number of square metres per person.

We need to convert square km in square m .

$$
\begin{aligned}
& 5900000 \mathrm{~km}^{2}=5900000 \times 10^{6} \mathrm{~m}^{2} \\
& \text { square } \mathrm{m} / \text { people }=\frac{5900000 \times 10^{6}}{580000000} \\
& \text { square } \mathrm{m} / \text { people }=0.0102 \times 10^{6} \\
& =10200
\end{aligned}
$$

```
The top speed of a car is 54 metres per second. Change this speed into kilometres per hour.
```

```
54 m/s = 0.054 km/s
```

54 m/s = 0.054 km/s
1 hours=3600 s
1 hours=3600 s
Speed = 0.054 km/s x 3 600 s/h
Speed = 0.054 km/s x 3 600 s/h
Speed = 194.4 km/h

```
Speed = 194.4 km/h
```

