

IB Maths: AI HL Complex Numbers

Topic Questions

These practice questions can be used by students and teachers and is Suitable for IB

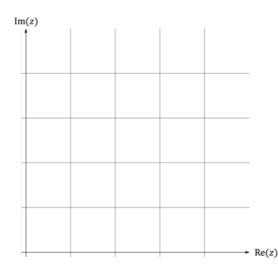
Maths Al HL Topic Questions

Course	IB Maths
Section	1. Number & Algebra
Topic	1.5 Complex Numbers
Difficulty	Medium

Level: IB Maths

Subject: IB Maths AI HL

Board: IB Maths


Topic: Complex Numbers

Consider the complex numbers $z_1 = 2 + 2i$ and $z_2 = 2 + 2\sqrt{3}i$.

a)

Sketch \boldsymbol{z}_1 and \boldsymbol{z}_2 on the Argand diagram below, be sure to include an appropriate scale.

[2 marks]

b)

Find the modulus of z_1 and z_2 .

[3 marks]

c)

Find the argument of \boldsymbol{z}_1 and \boldsymbol{z}_2 .

[3 marks]

Solve the following equations for x

(i)

$$x^2 + 4x + 5 = 0$$

(ii)

$$x^2 = -625$$

(iii)

$$x^4 = 24 - 2x^2.$$

[7 marks]

Question 3

Let $w_1 = z_1 z_2$, where $z_1 = 5 + i$ and $z_2 = 1 + 2i$.

a)

Express w in the form w = a + bi.

[2 marks]

b)

Find the modulus and argument for w

[4 marks]

Question 4

Let
$$z = \frac{w_1}{w_2}$$
, where $w_1 = 4 - i$ and $w_2 = 1 - 2i$.

a)

Express z in the form z = a + bi.

[3 marks]

Find the modulus and argument for z .	[4 marks]
Question 5	
Consider the complex numbers $z=3-4i$ and $w=7-2i$.	
a) Find	
$(i) \\ z + w$	
(ii) $W-Z$.	
	[2 marks]
Let z^* and w^* represent the complex conjugates of z and w , respectively.	
b) Write down z^* and w^* , giving your answers in the form $a+b{ m i}$.	
	[2 marks]
c) Find	
(i)	
$\frac{w^*}{z}$.	
z ·	[4 marks]

Find all possible real values for a and b such that

a + bi = 8i

(ii) (2+3i)(a+bi) = 13

(iii) (a+i)(2+bi) = -6+22i.

[7 marks]

Question 7

Consider the complex numbers w = iz and w + 2z = 7 + 6i.

Find

(i)

Re(w)

(ii)

Im(w)

(iii)

Re(z)

(iv)

Im(z).

[7 marks]

It is given that $z_1 = 3 + 4i$ and $z_2 = -2 + 2i$.

Find

(i)

$$iz_1 + z_2$$

(ii)

$$\frac{z_1}{iz_2}$$

 $i(z_1z_2)$.

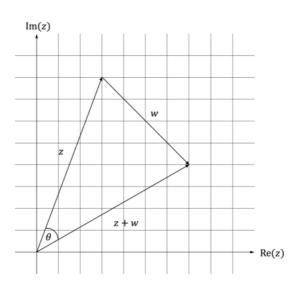
[7 marks]

Question 9

Find the complex numbers z and w such that

$$2z - iw^* = 5 + 7i$$

$$w + iz^* = 5 + 16i$$


[8 marks]

Question 10

Let z = 3 + 8i and w = 4 - 4i.

a)

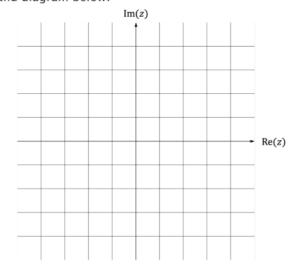
Find θ , the angle shown on the diagram below.

[5 marks]

Find the area of the triangle formed in the diagram above.

[3 marks]

Question 11


Let z = -1 - 3i and w = 1 + i.

a)

Find zw.

[2 marks]

b)
Sketch z,w and zw on the Argand diagram below.

[3 marks]

Let θ be the angle between z and zw and ϕ be the angle between w and zw.

c)

Find the angles θ and ϕ , giving your answers in degrees.

[4 marks]

a)

Write w in the form x + yi, $x, y \in \mathbb{R}$.

[4 marks]

b)

Determine the conditions under which \boldsymbol{w} is purely imaginary.

[3 marks]

Question 13

Consider the equation $x^2 + bx + c = 0$.

(a) Write down an inequality, in terms of b and c, that shows the equation has no real solutions.

[1 mark]

5 - 3i is one solution to the equation $x^2 + bx + c = 0$.

(b) Find the values of b and c.

[4 marks]

Let z = c + bi.

(c) Find z^5 using technology.

[1 mark]