

Circle Theorems

Model Answer

(b) Showing all your working, find the value of y.

[2]

Now, we can use the fact that angles QSP and QPO add up to 180 degrees to solve for y. We have: QSP + QPO = 180 degrees 128 degrees + y = 180 degrees y = 180 degrees -128 degrees y = 52 degrees Therefore, the value of y is 52.

ABCD is a cyclic quadrilateral. The tangents at C and D meet at E. Calculate the values of p, q and r.

Solucton: From the frgure, we know $\angle ABC$ and $\angle ADC$ are opposite angles So $126^{\circ} + p^{\circ} = 180^{\circ} \Rightarrow p^{\circ} = 54^{\circ} \Rightarrow p = 54$ And $75^{\circ} + p^{\circ} + q^{\circ} = 180^{\circ} \Rightarrow q^{\circ} = 180^{\circ} - 75^{\circ} - p^{\circ} = 51^{\circ} \Rightarrow q = 51$. And CE and DE are tangent. So CE = DE. Tangents length theorem. So $\angle CDE = \angle DCE = q^{\circ} - 51^{\circ}$. So $r^{\circ} = 180^{\circ} - 2q^{\circ} = 180^{\circ} - 2 \times 51^{\circ} = 78^{\circ} \Rightarrow r = 78$.

A, *B*, *C*, *D* and *E* lie on a circle, centre *O*. *AOC* is a diameter. Find the value of

The points *P*, *Q* and *R* lie on a circle, centre *O*. *TP* and *TQ* are tangents to the circle. Angle $TPQ = 54^{\circ}$.

Calculate the value of

O is the centre of the circle.

DA is the tangent to the circle at *A* and *DB* is the tangent to the circle at *C*. *AOB* is a straight line. Angle $COB = 50^{\circ}$. Calculate

The points A, B, C and D lie on the circumference of the circle, centre O.

Angle $ABD = 30^\circ$, angle $CAD = 50^\circ$ and angle $BOC = 86^\circ$.

(a) Give the reason why angle $DBC = 50^{\circ}$.

The reason why angle $DBC = 50^{\circ}$ is because of the Angle Chaser Theorem^[1]

(b) Find

(ii) angle BDC,

Angle BDC = 6° [1]

(iii) angle OBD.

$$\mathrm{Angle} \ \mathrm{OBD} = 168^\circ$$

(d) angle CAO.

angle CAO must also be $58^\circ.$

NOT TO SCALE

A, *B* and *C* are points on the circumference of a circle centre *O*. *OAD* is a straight line and angle $DAB = 142^{\circ}$.

Calculate the size of angle *ACB*.

The size of angle ACB is 42 degrees.

[3]

[2]

The vertices of the rectangle *ABCD* lie on a circle centre *O*. *MN* is a line of symmetry of the rectangle. *AC* is a diameter of the circle and angle $ACD = 42^{\circ}$.

Calculate

(a) angle CAM,

The angle of CAM is 42 degrees.

(b) angle DCM. Papers Practic^[2] The angle of DCM is 42 degrees.

TA is a tangent at *A* to the circle, centre *O*. Angle $OAB = 50^{\circ}$.

Find the value of

A, *B* and *C* are points on a circle, centre *O*. *TA* is a tangent to the circle at *A* and *OBT* is a straight line. *AC* is a diameter and angle $OTA = 24^\circ$.

[2]

 $ABT = 123^{\circ}$

D

Find the value of *p*.

$$\begin{split} *p &= \frac{FOG}{2} \qquad \Rightarrow p = \frac{150^{\circ}}{2} \\ \cdot F\hat{OG} &= 360^{\circ} - 210^{\circ} \quad \Rightarrow p = 75^{\circ} \\ \Rightarrow F\hat{OG} &= 150^{\circ} \end{split}$$

In the diagram, *PT* is a tangent to the circle at *P*. *PW* is a diameter and angle $TPQ = 42^{\circ}$.

[2]

A, B, C and D lie on the circle, centre O.

Find the value of *x* and the value of *y*.

x = 55 y = 125

[1]

:6

The diagram shows four quadrilaterals A, B, C and D.

Which one of these could be a cyclic quadrilateral?

In cyclic quadrilateral, opposite angles are supplementary. Thus property holds only in option (B) Hence, correct option is (B)

A, *B*, *P* and *Q* lie on the circle, centre *O*. Angle $APB = 56^{\circ}$.

In the diagram, A, B and C lie on the circumference of a circle, centre O.

Work out the size of angle *ACB*. Give a reason for each step of your working.
[4] OA = OB radius of the circle Therefore $\triangle OAB$ is isosceles triangle $\angle OAB = \angle OBA = 28^{\circ}$ (isosceles triangles) base angles are equal) $\angle OAB + \angle OBA + \angle AOB = 180^{\circ}$ $\angle AOB = 180^{\circ} - 56^{\circ} = 124^{\circ}$ $\angle ACB = 124^{\circ}/2 = 62^{\circ}$ $\angle ACB = 62^{\circ}$

[1]

In the diagram, AP is a tangent to the circle at P. O is the centre of the circle, angle $PAO = 37^{\circ}$ and AP = 11 cm.

(a) Write down the size of angle *OPA*.

engle $OPA = 90^{\circ}$

(b) Work out the radius of the circle.

 $25~{
m cm}$

The diagram shows a circle, centre O.

Find the value of *x*.

