

Circle Theorems

Model Answer

The points A, B, C and D lie on a circle centre O.
Angle $A O B=90^{\circ}$, angle $C O D=50^{\circ}$ and angle $B C D=123^{\circ}$.
The line $D T$ is a tangent to the circle at D.
Find
(a) angle $O C D$,

$$
\angle O C D=65^{\circ}
$$

(b) angle $T D C$,

$$
\angle T D C=25^{\circ}
$$

(c) angle $A B C$,

$$
\angle A B C=103^{\circ}
$$

(d) reflex angle $A O C$.

$$
\angle A O C=154^{\circ}
$$

$\because P R$ is diameter
\therefore the angle $P S R=90^{\circ}$
\because angle $P S Q=64^{\circ}$
\therefore angle $R S Q=$ angle $P S R$-angle $B S Q$
$\therefore w=26$
angle QSP and angle Qop corresponds to the same arc PQ angle $P O Q$ is a central angle ungle PSQ is a inscribed angle
angle $P O Q=$ double $P S Q$
$x=128$

(a) Work out the values of w and x.
(b) Showing all your working, find the value of y.

Now, we can use the fact that angles QSP and QPO add up to 180 degrees to solve for y . We have:
$\mathrm{QSP}+\mathrm{QPO}=180$ degrees
128 degrees $+y=180$ degrees
$y=180$ degrees -128 degrees
$y=52$ degrees
Therefore, the value of y is 52 .
$A B C D$ is a cyclic quadrilateral. The tangents at C and D meet at E. Calculate the values of p, q and r.

[4]
Soluoton: From the frgure, we know $\angle A B C$ and $\angle A D C$ are opposite angles
So $126^{\circ}+p^{\circ}=180^{\circ} \Rightarrow p^{\circ}=54^{\circ} \Rightarrow p=54$
And $75^{\circ}+p^{\circ}+q^{\circ}=180^{\circ} \Rightarrow q^{\circ}=180^{\circ}-75^{\circ}-p^{\circ}=51^{\circ} \Rightarrow q=51$.
And $C E$ and $D E$ are tangent. So $C E=D E$. Tangents length theorem.
So $\angle C D E=\angle D C E=q^{\circ}-51^{\circ}$.
So $r^{\circ}=180^{\circ}-2 q^{\circ}=180^{\circ}-2 \times 51^{\circ}=78^{\circ} \Rightarrow r=78$.

Calculate
(a) angle $D B A$,
angle $D B A=$ angle $D C A=20^{\circ}$
(b) angle $D A B, \quad D A B=180^{\circ}-$ angle $A D B-$ angle $D B A$ $=180^{\circ}-62^{\circ}-20^{\circ}$

[1]
(c) angle $D A C$,
$A D$ is parallel to $B C$

$$
\text { So angle } D A C=\text { angle } A C B=62^{\circ}
$$

(d) angle $A X B$,
$A X B$ is 62 degrees.
(e) angle $C D B$.

CDB is 62 degrees.

A, B, C, D and E lie on a circle, centre $O . A O C$ is a diameter.
Find the value of
(a) p,
(b) q.

$$
q^{\circ}+5 q^{\circ}=180^{\circ}
$$

$$
q=30
$$

$P Q R S$ is a cyclic quadrilateral. The diagonals $P R$ and $Q S$ intersect at X.
Angle $S P R=21^{\circ}$, angle $P R S=80^{\circ}$ and angle $P X Q=33^{\circ}$.
Calculate
(a) angle $P Q S$,

$$
\angle P Q S=\angle P R S=80^{\circ}
$$

(b) angle $Q P R$,

$$
\begin{aligned}
& \angle P Q X+\angle P X Q+\angle Q P X=180^{\circ} \\
& \angle Q P R=180^{\circ}-\angle P Q X-\angle P X Q \\
& =180^{\circ}-80^{\circ}-33^{\circ} \\
& =67^{\circ}
\end{aligned}
$$

The points P, Q and R lie on a circle, centre O.
$T P$ and $T Q$ are tangents to the circle.
Angle $T P Q=54^{\circ}$.
Calculate the value of
(a) x,
$x=72^{\circ}$
(b) y,

The diagram shows a circle, centre O.
$V T$ is a diameter and $A T B$ is a tangent to the circle at T.
U, V, W and X lie on the circle and angle $V O U=70^{\circ}$.
Calculate the value of
(a) e,

$$
e=\frac{70^{\circ}}{2}=35^{\circ}
$$

(b) f,

$$
f=90^{\circ}-35^{\circ}=55^{\circ}
$$

(c) g,

$$
g=\frac{180^{\circ}-70^{\circ}}{2}=55^{\circ} .
$$

(d) h.

$$
h=125^{\circ}
$$

O is the centre of the circle.
$D A$ is the tangent to the circle at A and $D B$ is the tangent to the circle at C.
$A O B$ is a straight line. Angle $C O B=50^{\circ}$.
Calculate
(a) angle $C B O$,
40°
(b) angle $D O C$.
65°

[1]

The points A, B, C and D lie on the circumference of the circle, centre O.
Angle $A B D=30^{\circ}$, angle $C A D=50^{\circ}$ and angle $B O C=86^{\circ}$.
(a) Give the reason why angle $D B C=50^{\circ}$.

The reason why angle $D B C=50^{\circ}$ is because of the Angle Chaser Theorem ${ }_{[1]}$
(b) Find
(i) angle $A D C$,

Angle $\mathrm{ADC}=94^{\circ}$

(ii) angle $B D C$,

$$
\begin{equation*}
\text { Angle } \mathrm{BDC}=6^{\circ} \tag{1}
\end{equation*}
$$

(iii) angle $O B D$.

Angle $\mathrm{OBD}=168^{\circ}$

A, B, C and D lie on the circle, centre O.
$B D$ is a diameter and $P A T$ is the tangent at A.
Angle $A B D=58^{\circ}$ and angle $C D B=34^{\circ}$.
Find
(a) angle $A C D$,

$$
\angle \mathbf{A C D}=\mathbf{5 8}^{\circ}
$$

(b) angle $A D B$,

(c) angle $D A T$,

$$
\angle \mathbf{D A T}=58^{\circ}
$$

(d) angle $C A O$.

angle CAO must also be 58°.

A, B, C and D lie on the circle.
Find
(a) angle $A D C$,

$$
\angle A D C=110^{\circ}
$$

(b) angle $A D B$.

b)

A, B and C are points on the circumference of a circle centre O. $O A D$ is a straight line and angle $D A B=142^{\circ}$.

Calculate the size of angle $A C B$.
The size of angle ACB is 42 degrees.

The vertices of the rectangle $A B C D$ lie on a circle centre O. $M N$ is a line of symmetry of the rectangle. $A C$ is a diameter of the circle and angle $A C D=42^{\circ}$.

Calculate

(a) angle $C A M$,

The angle of CAM is 42 degrees.

(b) angle $D C M$.

The angle of DCM is 42 degrees.

NOT TO SCALE
A, B, C, D and E are points on a circle.
Angle $A B D=58^{\circ}$, angle $B A E=85^{\circ}$ and angle $B D C=19^{\circ}$.
$B D$ and $C A$ intersect at N.

Calculate
(a) angle $B D E$,

The angle BDE is $\mathbf{5 8}$ degrees.

(b) angle $A N D$.

$T A$ is a tangent at A to the circle, centre O.
Angle $O A B=50^{\circ}$.
Find the value of
(a) y,

$$
y=80
$$

(b) z,

$$
z=40
$$

(c) t.

$$
t=10
$$

NOT TO
SCALE
A, B and C are points on a circle, centre O.
$T A$ is a tangent to the circle at A and $O B T$ is a straight line.
$A C$ is a diameter and angle $O T A=24^{\circ}$.
Calculate
(a) angle $A O T$,
$\mathrm{AOT}=66^{\circ}$

(b) angle $A C B$,

(c) angle $A B T$.
(a)

NOT TO
SCALE
A, B, C and D are points on the circle.
$A D$ is parallel to $B C$.
The chords $A C$ and $B D$ intersect at X.
Find the value of u and the value of v.

- From parallel lines (interior alternate angles):
$A \hat{D} B=u^{\circ}=35^{\circ}$
- Angles in a \triangle add up to 180°

$V=180^{\circ}-\left(2 \times 35^{\circ}\right)=110^{\circ}$
(b)

Exam

F, G and H are points on the circle, centre O.
Find the value of p.

$$
\begin{array}{ll}
* p=\frac{F O G}{2} & \Rightarrow p=\frac{150^{\circ}}{2} \\
\cdot F \hat{O G}=360^{\circ}-210^{\circ} & \Rightarrow p=75^{\circ} \\
\Rightarrow F \hat{O} G=150^{\circ} &
\end{array}
$$

In the diagram, $P T$ is a tangent to the circle at P.
$P W$ is a diameter and angle $T P Q=42^{\circ}$.
Find angle $P W Q$.

$$
180-48^{\circ}-90^{\circ}=42^{\circ}
$$

A, B, C and D lie on the circle, centre O.
Find the value of x and the value of y.
$x=55$
$y=125$

Exam

The diagram shows four quadrilaterals A, B, C and D.
Which one of these could be a cyclic quadrilateral?

In cyclic quadrilateral, opposite angles are supplementary.
Thus property holds only in option (B)
Hence, correct option is (B)

A, B, P and Q lie on the circle, centre O. Angle $A P B=56^{\circ}$.

Find the value of
(a) x,
$x=2 \times 56=112$.

[1]
(b) y.
$y=56$.

In the diagram, A, B and C lie on the circumference of a circle, centre O.
Work out the size of angle $A C B$.
Give a reason for each step of your working.
$\mathrm{OA}=\mathrm{OB}$ radius of the circle
Therefore
$\triangle O A B$ is isosceles triangle
$\angle O A B=\angle O B A=28^{\circ}$ (isosceles triangles
base angles are equal)
$\angle \mathrm{OAB}+\angle \mathrm{OBA}+\angle \mathrm{AOB}=180^{\circ}$
$\angle \mathrm{AOB}=180^{\circ}-56^{\circ}=124^{\circ}$
$\angle A C B=124^{\circ} / 2=62^{\circ}$
$\angle \mathrm{ACB}=62^{\circ}$

In the diagram, $A P$ is a tangent to the circle at P.
O is the centre of the circle, angle $P A O=37^{\circ}$ and $A P=11 \mathrm{~cm}$.
(a) Write down the size of angle $O P A$.
engle $O P A=90^{\circ}$
(b) Work out the radius of the circle.

25 cm

Papers

NOT TO SCALE

The diagram shows a circle, centre O.

Find the value of x.
$x=53^{\circ}$

