

Markscheme

May 2023

Chemistry

Higher level

Paper 3

31 pages

© International Baccalaureate Organization 2023

All rights reserved. No part of this product may be reproduced in any form or by any electronic or mechanical means, including information storage and retrieval systems, without the prior written permission from the IB. Additionally, the license tied with this product prohibits use of any selected files or extracts from this product. Use by third parties, including but not limited to publishers, private teachers, tutoring or study services, preparatory schools, vendors operating curriculum mapping services or teacher resource digital platforms and app developers, whether fee-covered or not, is prohibited and is a criminal offense.

More information on how to request written permission in the form of a license can be obtained from https://ibo.org/become-an-ib-school/ib-publishing/licensing/applying-for-a-license/.

© Organisation du Baccalauréat International 2023

Tous droits réservés. Aucune partie de ce produit ne peut être reproduite sous quelque forme ni par quelque moyen que ce soit, électronique ou mécanique, y compris des systèmes de stockage et de récupération d'informations, sans l'autorisation écrite préalable de l'IB. De plus, la licence associée à ce produit interdit toute utilisation de tout fichier ou extrait sélectionné dans ce produit. L'utilisation par des tiers, y compris, sans toutefois s'y limiter, des éditeurs, des professeurs particuliers, des services de tutorat ou d'aide aux études, des établissements de préparation à l'enseignement supérieur, des fournisseurs de services de planification des programmes d'études, des gestionnaires de plateformes pédagogiques en ligne, et des développeurs d'applications, moyennant paiement ou non, est interdite et constitue une infraction pénale.

Pour plus d'informations sur la procédure à suivre pour obtenir une autorisation écrite sous la forme d'une licence, rendez-vous à l'adresse https://ibo.org/become-an-ib-school/ib-publishing/licensing/applying-for-a-license/.

© Organización del Bachillerato Internacional, 2023

Todos los derechos reservados. No se podrá reproducir ninguna parte de este producto de ninguna forma ni por ningún medio electrónico o mecánico, incluidos los sistemas de almacenamiento y recuperación de información, sin la previa autorización por escrito del IB. Además, la licencia vinculada a este producto prohíbe el uso de todo archivo o fragmento seleccionado de este producto. El uso por parte de terceros —lo que incluye, a título enunciativo, editoriales, profesores particulares, servicios de apoyo académico o ayuda para el estudio, colegios preparatorios, desarrolladores de aplicaciones y entidades que presten servicios de planificación curricular u ofrezcan recursos para docentes mediante plataformas digitales—, ya sea incluido en tasas o no, está prohibido y constituye un delito.

En este enlace encontrará más información sobre cómo solicitar una autorización por escrito en forma de licencia: https://ibo.org/become-an-ib-school/ib-publishing/licensing/applying-for-a-license/.

Subject details: Chemistry higher level paper 3 Markscheme

Candidates are required to answer **ALL** questions in Section A **[15 marks]** and all questions from **ONE** option in Section B **[30marks]**. Maximum total = **[45marks]**.

- **1.** Each row in the "Question" column relates to the smallest subpart of the question.
- 2. The maximum mark for each question subpart is indicated in the "Total" column.
- **3.** Each marking point in the "Answers" column is shown by means of a tick (\checkmark) at the end of the marking point.
- **4.** A question subpart may have more marking points than the total allows. This will be indicated by "**max**" written after the mark in the "Total" column. The related rubric, if necessary, will be outlined in the "Notes" column.
- 5. An alternative word is indicated in the "Answers" column by a slash (*I*). Either word can be accepted.
- 6. An alternative answer is indicated in the "Answers" column by "*OR*". Either answer can be accepted.
- 7. An alternative markscheme is indicated in the "Answers" column under heading **ALTERNATIVE 1** etc. Either alternative can be accepted.
- 8. Words inside chevrons « » in the "Answers" column are not necessary to gain the mark.
- 9. Words that are <u>underlined</u> are essential for the mark.
- **10.** The order of marking points does not have to be as in the "Answers" column, unless stated otherwise in the "Notes" column.
- **11.** If the candidate's answer has the same "meaning" or can be clearly interpreted as being of equivalent significance, detail and validity as that in the "Answers" column then award the mark. Where this point is considered to be particularly relevant in a question it is emphasized by *OWTTE* (or words to that effect) in the "Notes" column.
- **12.** Remember that many candidates are writing in a second language. Effective communication is more important than grammatical accuracy.
- **13.** Occasionally, a part of a question may require an answer that is required for subsequent marking points. If an error is made in the first marking point then it should be penalized. However, if the incorrect answer is used correctly in subsequent marking points then **follow through** marks should be awarded. When marking, indicate this by adding **ECF** (error carried forward) on the script.
- 14. Do not penalize candidates for errors in units or significant figures, unless it is specifically referred to in the "Notes" column.
- **15.** If a question specifically asks for the name of a substance, do not award a mark for a correct formula unless directed otherwise in the "Notes" column. Similarly, if the formula is specifically asked for, do not award a mark for a correct name unless directed otherwise in the "Notes" column.
- **16.** If a question asks for an equation for a reaction, a balanced symbol equation is usually expected, do not award a mark for a word equation or an unbalanced equation unless directed otherwise in the "Notes" column.
- 17. Ignore missing or incorrect state symbols in an equation unless directed otherwise in the "Notes" column.

Section A

C	Questio	n Answers	Notes	Total
1.	(a)	gases «and others are solids» ✓	Do not accept "lower density" alone.	1
1.	(b)	smaller values are diatomic «gases» <i>OR</i> larger values are monatomic «gases» ✓	Accept "smaller values are species that exist as molecules". Do not accept answers referring only to noble gases or electron configurations.	1
1.	(c)	«different» allotropes ✓	Accept "different structural forms" OR "oxygen forms different molecules". Accept correct formulas or names of allotropes. Accept monatomic oxygen/O only if mentioned with respect to other allotropic form or explanation provided. Do not accept "different isotopes" alone.	1
1.	(d)	Any two of: increasing «effective» nuclear charge/Z/atomic number/number of protons ✓ increasing number of delocalized/bonding/valence electrons ✓ increasing attractions between positive «metal» ions/cations and delocalized electrons OR stronger metallic bonding OR decreasing radii ✓		2 max

C	Questio	Answers	Notes	Total
1.	(e)	any estimated value in the range of 20-40 «cm ³ mol ⁻¹ ». \checkmark	Accept any range of values also between 20 to 40 «cm ³ mol ⁻¹ ».	1
1.	(f)	 no AND probability of finding an electron is low OR no AND all measurements have uncertainties «even though there will always be uncertainty as to what the exact value is» OR yes AND X-ray diffraction can indicate separation of nuclei «in the element» OR yes AND can take a sample of the element, measure its volume and calculate number of particles OR yes AND bond length can be measured by microwave spectroscopy/electron diffraction/neutron diffraction ✓ 	Accept "no AND position of electron cannot be determined" for M1. Accept "no AND atoms made up of « mainly» empty space that cannot be measured" for M1. Accept "no AND atoms have different volumes in different states «of matter»" for M1. Accept "no AND the distance between two nuclei is measured and the radius/volume/size of atom is estimated" for M1. Accept references to the Heisenberg uncertainty principle for M1.	1

2.	(a)	(i)	green to purple <i>OR</i> green to brown <i>OR</i> green to purple-green ✓	Accept "colourless to purple". Accept "green to grey/blueish". Do not accept "clear" for "colourless". Do not accept "purple to "brown". Do not accept blue as final colour.	1
2.	(a)	(ii)	none / no effect ✓		1

Q	Question		Answers	Notes	Total
2.	(b)		systematic ✓	Class must be stated, not specific examples.	1
2.	(c)	(i)	$\langle\langle \frac{0.1}{3.1} \times 100 = \rangle\rangle 3 \langle\langle \% \rangle\rangle \checkmark$		1
2.	(c)	(ii)	using more dilute potassium manganate(VII) <i>OR</i> using more dilute titrant <i>OR</i> larger aliquot/volume of filtrate ✓	Accept "using a pipette with more precision" OR "using a volumetric flask" OR "using a better balance/scale" OR "determining a more accurate mass". Do not accept "weight" for "mass".	1

Q	uestic	on	Answers	Notes	Total
2.	(c)	(iii)	ALTERNATIVE 1 mass Fe in the 79.6 g kale $\langle \langle = 8.66 \times 10^{-4} \times \frac{500}{10.0} \rangle \rangle$ = 0.0433 «g» \checkmark percent by mass $\langle \langle = \frac{0.0433}{79.6} \times 100 \rangle \rangle$ = 0.0544«%» \checkmark ALTERNATIVE 2 mass of kale in titration flask $\langle \langle = 79.6 \times \frac{10.0}{500} \rangle \rangle$ = 1.592 «g» \checkmark percent by mass $\langle \langle = \frac{8.66 \times 10^{-4}}{1.592} \times 100 \rangle \rangle$ = 0.0544«%» \checkmark	Award [2] for correct final answer. For ALTERNATIVE 2: Award M1 for either 1.59 «g» OR 1.592 «g» and Award M2 for 0.0545«%» OR 0.0544«%». M2 must be to 3 sig. fig. Award [1 max] for 0.00109«%».	2
2.	(d)		other substances in the leaves «as well as iron» react with the manganate(VII) «ion» OR kale modified to have more iron/Fe OR iron/Fe in water/pipes/container used for boiling OR manganate(VII) oxidized/reacted with other ions/substances/metals OR manganate(VII) concentration changes over time ✓	Accept "different species of kale can result in more iron/Fe «content»" OR "sample of kale not representative" OR "sample of kale grown in different soils" OR "kale sample being dry/dehydrated".	1

Section B

Option A — Materials

Q	uestic	on	Answers	Notes	Total
3.	(a)		Any one of: Zn, Cr, Fe, Cd, Co, Ni, Sn, Pb, Sb, As, Bi, Cu, Ag, Pd, Hg, Pt ✓	Accept "Au". Accept name or symbol of metal.	1
3.	(b)	(i)	$AI^{3+}+3 e^- \rightarrow AI(I) \checkmark$	Do not penalize if equilibrium arrow used.	1
3.	(b)	(ii)	$\langle \langle \frac{2 \times 26.98}{2 \times 26.98 + 3 \times 16.00} x 100 = \rangle \rangle$ 52.92% \checkmark	Accept "0.5229".	1
3.	(b)	(iii)	high energy consumption «that has environmental implications» <i>OR</i> large amounts of waste «produced by mining and purification of the ore» <i>OR</i> mining has negative impact on landscape <i>OR</i> greenhouse gas/pollution from transport/machinery ✓	Accept "fluorine/fluorine compounds produced" or their formulas. OR "carbon dioxide/carbon monoxide released".	1
3.	(b)	(iv)	average electronegativity 2.5 AND electronegativity difference 1.8 ✓ border between ionic and «polar» covalent ✓	Accept "partially covalent/high covalent character" for M2. Award [2] for calculation of %ionic character = «1.8/3.2 =» 56%.	2

Question		on	Answers	Notes	Total
3.	(c)	(i)	electrons AND «positive» ions «in gaseous state» ✓	Accept "gaseous atoms, «many of» which have lost their electrons". Do not accept "gaseous ions" alone.	1
3.	(C)	(ii)	<i>Identification:</i> «emit» light/photons of characteristic frequencies ✓ <i>Concentration</i> : intensity/brightness of light «proportional to concentration» ✓	For M1 accept "energies/wavelengths" for "frequencies". For M2 accept "signal strength/peak height".	
				Do not accept a general statement such as "concentrations can be detected by absorbance of the radiation «in OES»" for M2.	2
3.	(d)		«held together by strong» covalent bonds «and defect free/regular 2D/3D» \checkmark		1

4.	(a)	(i)	H H H C=C	Accept "-C₀H₅" for phenyl group.	1
4.	(a)	(ii)	B AND chains «of polymer» can align/pack more closely ✓	Do not accept "stronger intermolecular forces between chains".	1

Question		on	Answers	Notes	Total
4.	(b)		forms an intermediate/activated complex ✓ «intermediate/activated complex» dissociates to form product « AND catalyst» ✓		2
4.	(c)		«lyotropic liquid crystals» exist over a given concentration range AND other liquid crystals exist over a certain temperature range \checkmark		1
4.	(d)	(i)	volatile hydrocarbon/pentane «incorporated in beads of the polymer» ✓ vaporizes/boils when heated «causing polymer to expand» ✓	Accept names or formulas for M1. Accept "carbon dioxide" for M1.	2
4.	(d)	(ii)	«good» thermal/electrical insulator <i>OR</i> soft/provides shock resistance <i>OR</i> low density <i>OR</i> easily moulded/versatile <i>OR</i> water resistant <i>OR</i> durable ✓	Accept "easy on-site usage" OR "environmentally sustainable" OR "non-toxic" OR «chemically» inert". Accept "lightweight" for "low density".	1
4.	(e)		<i>Type of polymerization:</i> condensation ✓ <i>Structural characteristic:</i> two functional groups ✓	Accept "polycondensation" for M1.	2
4.	(f)		strong covalent bonds ✓	Accept "close packing of chains" OR "hydrophobicity".	1
4.	(g)		«RIC» 7 ✓		1

Que	Question		Answers	Notes	Total	
5.	(a)	(i)	6 ✓		1	
5.	(a)	(ii)	6 on faces «shared between two unit cells» so $6x^{1/2} = 3 \checkmark$ 8 on corners «shared between eight unit cells» so $8x^{1/6} = 1 \checkmark$		2	
5.	(a)	(iii)	X-ray crystallography/diffraction ✓	Accept "electron/neutron diffraction".	1	
5.	(b)		$H^{+}] = 10^{-9} \cdot (\text{mol dm}^{-3}) \checkmark$ $[OH^{-}] \langle \langle = \frac{10^{-14}}{10^{-9}} \rangle \rangle = 10^{-5} \cdot (\text{mol dm}^{-3}) \checkmark$ $[Pb^{2+}] \langle \langle = \frac{1.43 \times 10^{-20}}{(10^{-5})^{2}} \rangle \rangle = 1.43 \times 10^{-10} \cdot (\text{mol dm}^{-3}) \checkmark$	Award [3] for correct final answer. Accept alternative ways of carrying out the calculation.	3	
5.	(c)			Accept circles around the carbonyl oxygens instead of those with the negative charges OR circles enclosing both carbonyl oxygens. Do not award the mark if more than 3 circles are drawn.	1	

Option B — Biochemistry

C	Question		Answers	Notes	Total
6.			$C_6H_{12}O_6(aq) + 6O_2(g) \rightarrow 6CO_2(g) + 6H_2O(I) \checkmark$		1

7. ((a)	Structure Level	Interactions between amino acids		
		primary	covalent bonding <i>OR</i> peptide bond <i>OR</i> amide bond ✓	Do not accept "amino acid sequence" for M1.	
		secondary	hydrogen bonding ✓	Do not accept "alpha helix" OR "beta sheets" for M2.	
		tertiary	interactions between R groups/side chains <i>OR</i> ionic/electrostatic «attraction» <i>OR</i> hydrogen bonding <i>OR</i> hydrophobic interactions <i>OR</i> disulfide bridges <i>OR</i> London/dispersion/van der Waals/«instantaneous» induced dipole-induced dipole ✓	Accept "covalent bonding" for M3.	3

C	Question	Answers	Notes	Total
7.	(b)	Any two of: sample spotted on paper/stationary phase AND solvent moves up the paper OR continuous cycles of adsorption and desorption/dissolution OR analyte moves when in solvent AND does not move when on paper ✓ different/depends on attractions to mobile phase AND stationary phase/paper OR «amino acids» separated based on solubilities in/affinity to the two phases OR separated based on polarities/polar attractions/molar masses of «amino acids» ✓ developed with ninhydrin/reagent/locating agent OR become identified with UV «light» ✓ «amino acids» identified by R _i /retention factor «values» OR R _i /retention factors «values» compared with known samples ✓		2 max
7.	(C)	product of reaction is inhibitor of enzyme OR product binds/bonds to allosteric site of enzyme ✓ regulates own production OR sets up feedback loop to control concentration/production ✓		2

C	Question		Answers	Notes	Total
7.	(d)		0.520 «mg cm⁻³»√	<i>Accept any value in range 0.510-0.530</i> «mg cm ⁻³ ».	1
8.	(a)		Compare rancidity: «both produce» disagreeable smell/taste/texture/appearance ✓ Contrast reaction site: hydrolytic reaction occurs at ester link/COOC link AND oxidative reaction occurs at carbon-carbon double bond/C=C ✓	Do not accept "double bond" alone for oxidative reaction site.	2
8.	(b)		5 C=C ✓ «100 g/330.56 g mol ⁻¹ x 5 x 253.8 g mol ⁻¹ =» 383.89 «g l₂» ✓	Award [2] for correct final answer.	2
8.	(c)		lipids are more reduced <i>AND</i> release/store more energy than carbohydrates «per gram» ✓ lipids are less «water» soluble <i>AND</i> energy is released slower/less available than in carbohydrates ✓	Accept converse arguments. Award [1 max] for "carbohydrates used for short-term energy supply AND lipids used for long-term energy supply" OR "lipids more reduced AND less «water» soluble".	2

Q	Question		Answers	Notes	Total
9.			Bond: glycosidic✓ By-product: water/H₂O ✓	Accept "ether/C-O-C" OR "covalent/polar covalent" for M1.	2

10		«mostly» not synthesized by body «and needed for proper growth/metabolism» \checkmark	Do not accept "needed for proper growth/metabolism" alone.	1

11.	Any two of:	Accept "supermolecule" for "supramolecule".	
	host molecule/supramolecule forms complex/bond with guest/xenobiotic \checkmark		2 max
	binding between host and guest specific \checkmark		2 1110.
	bonding «usually» non-covalent «in both cases» ✓		

12.	DNA:		RNA:	Accept "additional methyl/CH ₃ group" for DNA OR "one less methyl group" for	
	thymine	AND	uracil 🗸	RNA for M1.	2
	deoxyribose	AND	ribose ✓	Accept "one less hydroxyl/OH group" for DNA OR "additional hydroxyl/OH	3
	double stranded	AND	single stranded \checkmark	group" for RNA for M2.	

Q	uestion	Answers	Notes	Total
13.	(a)	contains many/multiple conjugated «carbon–carbon/C=C» double bonds <i>OR</i> extended system of delocalized electrons ✓ absorbs blue <i>OR</i> complementary to orange «light» ✓	M1 requires the concept of many or multiple conjugated double bonds in structure for mark. Do not accept either "conjugation" OR "double bonds" alone for M1.	2
13.	(b)	Any two of: equilibrium shifts right OR H ⁺ ions lost ✓ red to blue ✓ loss of proton/H ⁺ changes extent of conjugation✓ affects frequency/wavelength of absorbed light ✓ complementary light transmitted ✓	Do not accept "cation red and base blue" alone. Apply ECF from M1 to M2.	2 max

Q	uestion	Answers	Do Notes	Total
14.	(a)	$\begin{array}{l} Similarity: \\ \text{polymers of glucose} \\ OR \\ \text{~~} (1-4) \text{~~} glycosidic ~~ (links) ~~ \\ \hline \\ Difference: \\ \text{starch contains α-glucose AND cellulose contains β-glucose} \\ OR \\ \text{starch contains α-glucose $contains β ~~ (1-4) ~~ glycosidic links} \\ OR \\ \text{starch contains α- AND$ cellulose contains β ~~ (1-4) ~~ glycosidic links} \\ OR \\ \text{starch "may contain" 1-6 glycosidic links AND cellulose does not} \\ OR \\ \text{starch "may be" branched AND cellulose unbranched \checkmark} \end{array}$	Do not accept "both are polysaccharides" for M1. Accept alpha or beta for symbols in M2.	2
14.	(b)	lack of cellulase/enzyme ✓		1

Option C — Energy

Q	luesti	on	Answers	Notes	Total
15.	(a)	(i)	$6CO_2(g) + 6H_2O(I) \rightarrow C_6H_{12}O_6(aq) + 6O_2(g) \checkmark$		1
15.	(a)	(ii)	conjugated «electronic» structure/delocalized «pi» electrons/alternate «single and» double bonds ✓	Accept "many/delocalized double bonds". Do not accept "tetrapyrrole group" alone without reference to idea of conjugation.	1
15.	(a)	(iii)	reduces/sequesters CO₂/carbon dioxide «concentration from atmosphere» ✓ «planting» more plants/trees ✓	Do not accept "carbon capture" alone for M1. Do not accept just "plants/trees" alone for M2.	2
15.	(b)	(i)	Photosynthesis: chemical AND Photovoltaic: electrical ✓	Accept "electricity" for "electrical".	1

Q	Question		Answers	Notes	Total
15.	(b)	(ii)	Any three of: n-type AND p-type «silicon layers» OR n-type doped with Gp 15 element/P AND p-type doped with Gp 13 element/B \checkmark potential difference/charge separation created between layers of silicon \checkmark «sunlight produces» free electrons that flow between layers «from p-type to n- type» OR «sunlight produces» positive holes that flow between layers «from n-type to p- type» \checkmark «excess» electrons move "from n-type to p-type" through an external circuit \checkmark	Do not accept movement of electrons or holes in wrong direction for M3.	3 max
15.	(c)	(i)	«(2x-1367 / -2803) x 100 =» 97.54% <i>OR</i> 2.46% loss «in energy efficiency» ✓		1
15.	(c)	(ii)	liquid <i>OR</i> easier ignition <i>OR</i> more volatile ✓	Accept "complete combustion more likely"" OR "better octane rating" OR "engine must be converted in order to use glucose". Do not accept "less viscous".	1

Q	Question		Answers	Notes	Total	
15.	(d)	(i)	material provides energy in fuel cells <i>OR</i> fuel continually added in fuel cells ✓	Accept converse statement. Do not accept "fuel cells are rechargeable and primary are not easily recharged".	1	
15.	(d)	(ii)	reduce «internal» resistance ✓	Accept "increase surface area" OR "reduce separation of electrodes" OR "increase concentration of electrolyte/ion mobility/temperature".	1	
16.	(a)	(i)	reflects «sun» light ✓	Accept "results in global dimming"		

16	(a)	(i)	reflects «sun» light ✓	Accept "results in global dimming" OR "reduces the amount of energy reaching the Earth" OR "acts as nucleation points for cloud formation". Do not accept answers that only indicate increases in global temperatures.	1	
16	(a)	(ii)	electrical/electricity ✓	Accept "heat/thermal".	1	

Question	Answers	Notes	Total
16. (b)	Fractional distillation (Any one of): separates compounds according to boiling points/vapor pressure OR physical process OR involves breaking intermolecular forces OR separates based on molar masses OR does not use catalyst ✓ Cracking (Any one of): shorter hydrocarbon chains formed/lower molar masses OR increased branching formed OR increased aromatic ring formation OR produces alkenes/unsaturated hydrocarbons OR chemical process OR new compounds formed/breaking «and remaking»/changing covalent bonds OR uses catalyst ✓	M1 is for Fractional distillation. M2 is for Cracking.	2

Q	uestic	on	Answers	Notes	Total
16.	(c)	(i)	ALTERNATIVE 1 5470 «kJ» produced when 8 «mol» produced \checkmark «8 x 44.01 =» 352 «g» to produce 5470 «kJ» \checkmark 1 «kJ» would release «352/5470 =» 0.0644 «g» \checkmark ALTERNATIVE 2 1 «kJ»/5470 «kJ=» 1.828x10 ⁻⁴ \checkmark 8/5470 «mol =» 0.001463 mol \checkmark «8/5470 «mol» x 44.01 «gmol ⁻¹ =» 0.0644 «g» \checkmark	Award [3] for correct final answer. Accept "0.0643 «g»".	3
16.	(c)	(ii)	many fluctuations of temperature have occurred in the «geological» past <i>OR</i> different global models produce different outcomes <i>OR</i> industrial emissions are less than natural ones ✓	Do not accept statements about current temperatures.	1

Q	uestic	on	Answers	Notes	Total
17.	(a)		Similarity: increase binding energy «per nucleon» OR «can» produce chain reactions ✓ Difference: fusion forms one product/products with a greater «atomic» mass AND fission multiple products/products with a lower mass OR fission produces «long lived» radioactive products/nuclear waste AND fusion does not ✓	Similarity: Accept "converts mass to energy". Accept "produces ionizing radiation". Accept "produces heat". Accept "produces mass defect". Difference: Accept "fission requires critical mass AND fusion does not". Accept "fuel for fission is radioactive AND fuel for fission is not". Accept "fuel for fission is not". Accept "fuel for fission are heavy elements/U/Th/Pu AND fuel for fusion are light elements/H/He/Li".	2
17.	(b)	(i)	uranium hexafluoride/UF ₆ ✓		1
17.	(b)	(ii)		Award [2] for correct final answer. Do not accept "100.4%" as answer for M2.	2

Q	uesti	on	Answers	Notes	Total
17.	(b)	(iii)	rate of diffusion proportional to $\sqrt{\checkmark}$ v inversely proportional to \sqrt{m} <i>OR</i> v = (2E/m) ^{1/2} <i>OR</i> $\frac{v_1}{v_2} = \frac{(^{2E}/m_1)^{\frac{1}{2}}}{(^{2E}/m_2)^{\frac{1}{2}}} \checkmark$	Accept "both particles have same «kinetic» energy" OR " $E_1 = E_2$ " for either M1 or M2.	2
17.	(c)	(i)	X: ^{«1»} n/neutron ✓ Y: ²³⁹ Pu/Pu-239/plutonium-239 ✓	Do not accept "N" for "neutron" for M1. Do not accept "plutonium/Pu" alone for M2.	2
17.	(c)	(ii)	time for half the number of atoms/nuclei/mass to decay ✓	Accept "time for the radioactivity «produced by that decay» to fall by half". Do not accept "molecules" for "atoms/nuclei".	1

Option D — Medicinal chemistry

Question	Answers	Notes	Total	
18.	<i>Oral:</i> low/lower «bioavailability» <i>AND</i> drugs pass through digestive system «and breakdown» ✓	Accept "low/lower AND drugs not easily absorbed from digestive system" OR "low/lower AND drugs broken down in digestive system" OR "low/lower AND drugs affected by acid" for M1. Do not penalize use of "slow" for "low/lower" or "fast" for "high/higher".		
	<i>Intravenous:</i> high/higher «bioavailability» AND «more» direct route to bloodstream ✓	Accept "100% bioavailability" for "high/higher" within Intravenous answer in M2. Award [1 max] for "oral drugs have slower absorption/distribution than intravenous drugs" OR "Oral: low/lower «bioavailability» AND intraveneous: high/higher «bioavailability»".	2	

Question	Answers	Notes	Total
19.	Any two of: reduce fever/antipyretic ✓ anti-inflammatory ✓ anti-coagulant/reduces blood clotting/blood thinner OR prevent cardiovascular disease/stroke ✓	Accept "prevents/reduces «risk of» heart attack" for M3. Accept "prevents heart disease" for M3. Accept "may reduce colon/colorectal cancer" for M3.	2 max
20.	bacterial resistance «to older penicillin's/antibiotics» ✓ prevent penicillinase/beta-lactamase/enzyme in bacterium to deactivate/open penicillin/beta-lactam ring ✓	Accept "antibiotic resistant bacteria" but not "antibiotic resistance" for M1. Accept "reduce allergic reactions from penicillin" for M2. Award [1 max] for "increased efficiency/bioavailability" OR "increased stability in GIT". Do not accept "bacterial tolerance".	2

Question		on	Answers	Notes	Total
21.			«temporarily» binding to receptors in the nervous system/spinal cord/brain \checkmark	Accept "bonding" for "binding" in M1.	
			preventing transmission of pain impulses \checkmark	Accept "without depressing the central nervous system" for M2.	2

22.	(a)	(i)	$AI(OH)_{3}(s)+ 3HCI(aq) \rightarrow AICI_{3}(aq) + 3H_{2}O(I)$		
			OR		1
			$AI(OH)_{3}(s) + 3H^{+}(aq) \longrightarrow AI^{3+}(aq) + 3H_{2}O(I)\checkmark$		
22.	(a)	(ii)	«100 cm³ / 1000 cm³ x 5.00x10⁻³ mol dm⁻³ = » 5.00x10⁻⁴ «mol HCl» ✓	Award [2] for correct final answer.	2
			«5.00x10 ⁻⁴ mol HCl /3 x 78.01 g mol ⁻¹ Al(OH)₃ = » 0.0130 «g Al(OH)₃» ✓		2
22.	(b)		blocks/binds to H2/histamine receptors «in cells of stomach lining»	Do not accept "antihistamine" by itself.	
			OR	Accept "H2-receptor antagonist/H2RA" OR	
			prevents histamine binding to H2/histamine receptors «and triggering acid secretion» \checkmark	"blocks/inhibits action of histamine" for M1.	2
			prevents «parietal cells from» releasing/producing acid \checkmark	Do not accept "blocks receptors" alone for M1.	
				Do not accept "proton pump/ATPase inhibitor".	

Question	Answers	Notes	Total
23.	 Any two of: alters «viral» enzyme AND prevent virus from entering the cell ✓. alter the cell DNA AND virus cannot multiply ✓ block «cell» enzyme activity AND prevent virus multiplication ✓ alters «viral» enzyme AND prevents release of «new» viral particles «from the cell» ✓ 	Do not accept "just interferes with viral reproductive cycle". Award [1 max] for two partial answers.	2 max
24.	high-level has large amounts of «ionizing» radiation ✓ high-level has long half-lives <i>OR</i> high-level last longer/persists ✓	 Accept converse statements for low-level. Accept "high radioactivity for high-level" for M1. Do not accept "high-level has ionizing radiation" alone for M1. Do not accept answers based on storage or disposal differences alone. Accept "high-level releases heat" for M2. Do not accept "high-level has more penetrating radiation" OR "high-level has higher frequency radiation" for M1. 	2

Q	Question	Answers	Notes	Total
25.		bark of yew tree ✓ kills tree OR tree grows slowly OR low yield ✓	Accept "Taxus brevifolia" for "yew tree". Do not accept "yew tree" alone for M1.	2

26.	(a)	${}^{60}_{27}\text{Co} \rightarrow {}^{60}_{28}\text{Ni} + {}^{0}_{-1}\beta \checkmark$	Accept "e/e ⁻ / β for beta particle.	
			Penalize incorrect Z even if elemental symbol is correct. Penalize incorrectly placed A and Z on nuclear symbol.	1
			Do not penalize missing Z on nuclear symbol.	

26.	(b)	radiation source delivered directly to cancer cells ✓ by a carrier drug/protein/antibody ✓ several sites in body can be targeted «at same time» ✓	Accept "radioisotope «selectively» absorbed by cancer cells" OR "targeted to cancer cells" for M1. Reference to "cells" required in M1.	3	
-----	-----	---	---	---	--

Question		Answers	Notes	Total
27.	(a)	Any three of: $CH_3CH_2OH^+ \checkmark$ $CH_3CH_2^+ \checkmark$ $CH_3^+ \checkmark$ $CH_2OH^+/CH_3O^+ \checkmark$ $OH^+ \checkmark$	Penalize missing charge once only. Accept any other reasonable fragments or m/z values.	3 max
27.	(b)	Any two of: ethanoic acid ✓ chromium(III) ✓ water ✓	Accept "ethanal" for M1. Accept correct name or formula. Accept systematic name or preferred IUPAC name (e.g. "acetic acid" OR "acetaldehyde"). Accept any chromium(III) salt for M2.	2 max

Question			Answers		Total
28.	(a)	OR carcinogenic ✓ «some can be» greenhou ozone-depleting ✓	acineration can produce toxic products/dioxins/phosgene use gases ✓ on of «photochemical» smog ✓ er ility ✓	Do not accept "harmful to the environment". Do not accept just "pollutes water". Do not accept "increases acid rain/acidity/acid deposition".	1 max
28.	(b)	use solvent-free synthetic <i>OR</i> use water/supercritical ca compounds as a solvent <i>OR</i> recover/reuse solvents <i>OR</i> use a non-chlorinated sol	rbon dioxide/non-toxic/low-toxic/biodegradable	Accept arguments based on atom economy. Do not accept "use solvents safer for environment" alone.	1