8823 - 6109M

Markscheme

November 2023

Chemistry

Higher level

Paper 3

39 pages

© International Baccalaureate Organization 2023

All rights reserved. No part of this product may be reproduced in any form or by any electronic or mechanical means, including information storage and retrieval systems, without the prior written permission from the IB. Additionally, the license tied with this product prohibits use of any selected files or extracts from this product. Use by third parties, including but not limited to publishers, private teachers, tutoring or study services, preparatory schools, vendors operating curriculum mapping services or teacher resource digital platforms and app developers, whether fee-covered or not, is prohibited and is a criminal offense.

More information on how to request written permission in the form of a license can be obtained from https://ibo.org/become-an-ib-school/ib-publishing/licensing/applying-for-a-license/.

© Organisation du Baccalauréat International 2023

Tous droits réservés. Aucune partie de ce produit ne peut être reproduite sous quelque forme ni par quelque moyen que ce soit, électronique ou mécanique, y compris des systèmes de stockage et de récupération d'informations, sans l'autorisation écrite préalable de l'IB. De plus, la licence associée à ce produit interdit toute utilisation de tout fichier ou extrait sélectionné dans ce produit. L'utilisation par des tiers, y compris, sans toutefois s'y limiter, des éditeurs, des professeurs particuliers, des services de tutorat ou d'aide aux études, des établissements de préparation à l'enseignement supérieur, des fournisseurs de services de planification des programmes d'études, des gestionnaires de plateformes pédagogiques en ligne, et des développeurs d'applications, moyennant paiement ou non, est interdite et constitue une infraction pénale.

Pour plus d'informations sur la procédure à suivre pour obtenir une autorisation écrite sous la forme d'une licence, rendez-vous à l'adresse https://ibo.org/become-an-ib-school/ib-publishing/licensing/applying-for-a-license/.

© Organización del Bachillerato Internacional, 2023

Todos los derechos reservados. No se podrá reproducir ninguna parte de este producto de ninguna forma ni por ningún medio electrónico o mecánico, incluidos los sistemas de almacenamiento y recuperación de información, sin la previa autorización por escrito del IB. Además, la licencia vinculada a este producto prohíbe el uso de todo archivo o fragmento seleccionado de este producto. El uso por parte de terceros —lo que incluye, a título enunciativo, editoriales, profesores particulares, servicios de apoyo académico o ayuda para el estudio, colegios preparatorios, desarrolladores de aplicaciones y entidades que presten servicios de planificación curricular u ofrezcan recursos para docentes mediante plataformas digitales—, ya sea incluido en tasas o no, está prohibido y constituye un delito.

En este enlace encontrará más información sobre cómo solicitar una autorización por escrito en forma de licencia: https://ibo.org/become-an-ib-school/ib-publishing/licensing/applying-for-a-license/.

Subject details: Chemistry higher level paper 3 Markscheme

Candidates are required to answer **ALL** questions in Section A **[15 marks]** and all questions from **ONE** option in Section B **[30 marks]**. Maximum total = **[45 marks]**.

- **1.** Each row in the "Question" column relates to the smallest subpart of the question.
- 2. The maximum mark for each question subpart is indicated in the "Total" column.
- 3. Each marking point in the "Answers" column is shown by means of a tick (\checkmark) at the end of the marking point.
- 4. A question subpart may have more marking points than the total allows. This will be indicated by "**max**" written after the mark in the "Total" column. The related rubric, if necessary, will be outlined in the "Notes" column.
- 5. An alternative word is indicated in the "Answers" column by a slash (/). Either word can be accepted.
- 6. An alternative answer is indicated in the "Answers" column by "OR". Either answer can be accepted.
- 7. An alternative markscheme is indicated in the "Answers" column under heading **ALTERNATIVE 1** etc. Either alternative can be accepted.
- 8. Words inside chevrons « » in the "Answers" column are not necessary to gain the mark.
- 9. Words that are <u>underlined</u> are essential for the mark.
- **10.** The order of marking points does not have to be as in the "Answers" column, unless stated otherwise in the "Notes" column.
- **11.** If the candidate's answer has the same "meaning" or can be clearly interpreted as being of equivalent significance, detail and validity as that in the "Answers" column then award the mark. Where this point is considered to be particularly relevant in a question it is emphasized by *OWTTE* (or words to that effect) in the "Notes" column.
- 12. Remember that many candidates are writing in a second language. Effective communication is more important than grammatical accuracy.
- **13.** Occasionally, a part of a question may require an answer that is required for subsequent marking points. If an error is made in the first marking point then it should be penalized. However, if the incorrect answer is used correctly in subsequent marking points then **follow through** marks should be awarded. When marking, indicate this by adding **ECF** (error carried forward) on the script.
- 14. Do not penalize candidates for errors in units or significant figures, unless it is specifically referred to in the "Notes" column.
- **15.** If a question specifically asks for the name of a substance, do not award a mark for a correct formula unless directed otherwise in the "Notes" column. Similarly, if the formula is specifically asked for, do not award a mark for a correct name unless directed otherwise in the "Notes" column.
- **16.** If a question asks for an equation for a reaction, a balanced symbol equation is usually expected, do not award a mark for a word equation or an unbalanced equation unless directed otherwise in the "Notes" column.
- **17.** Ignore missing or incorrect state symbols in an equation unless directed otherwise in the "Notes" column.

Section A

C	Questio		Answers	Notes	Total
1.	а	i	concentration «of vitamin C» ✓	Do not accept "vitamin C" alone. Do not accept "pasteurization".	1
1.	а	ii	187 «µg cm ⁻³ » √	Accept values in the range of $180-200 \text{ «}\mu\text{g cm}^{-3}$ ».	1
1.	а	iii	«average rate = 40 µg cm ⁻³ / 56 days =» 0.71 «µg cm ⁻³ day ⁻¹ » \checkmark	Accept values in the range of 0.62–0.73 «μg cm ⁻³ day ⁻¹ ». Ignore negative sign.	1
1.	a	iv	no <i>AND</i> «average» gradients of both lines are the same <i>OR</i> no <i>AND</i> both lose 35-40 «μg cm ⁻³ » «in 56 days» <i>OR</i> no <i>AND</i> same concentration change «in time period» √	Accept "yes AND a mention of the «slightly» different concentration «for the same time period»". Accept "yes AND pasteurization has slightly lower/different rate". Accept "no AND same trend".	1

C	Question		Answers	Notes	Total
1.	a	v	pasteurized AND same «absolute» uncertainty divided by smaller value ✓	Accept numerical examples. Accept converse argument. Accept "error" for "uncertainty". Accept answers where the deduction may be inferred via any reasonably expressed mathematical perspective eg. "pasteurized AND larger percent uncertainty as it has lower concentration of vitamin C".	1
1.	b	i	UV/ultraviolet 🗸		1
1.	b	ii	white «crystal»/colourless «solution» AND does not absorb in visible/400–700 «nm» «region» √		1
1.	b	111	 «does not reach pathogens as UV» is absorbed by other chemicals/vitamin C/sugars/vitamins/aromatic ring/suspended particles OR absorption coefficient affected by turbidity OR «does not reach pathogens as» viscosity/density varies «affecting depth of light penetration» √ 	Accept "orange juice is not transparent «as it contains some fibre and oils», hence UV will not penetrate it". Do not accept "UV waves too small to eliminate bacteria/make an impact". Do not accept arguments based on why other wavelengths would be effective.	1

Q	uesti	on	Answers	Notes	Total
1.	b	iv	 Any two of: lower temperature ✓ seal under vacuum / put in a sealed container / absence of air/oxygen / store under a protective atmosphere/an inert gas ✓ add antioxidant/reducing agent ✓ store in dark «bottles» / limit exposure to UV/ultraviolet/light ✓ 	Accept "pasteurize" if answer to 1a iv is yes. Accept correct compound for antioxidant OR reducing agent. Do not accept just "adding additives".	2 max
1.	c		yes <i>AND</i> correlation coefficient is –0.7 «which is a moderate correlation» <i>OR</i> yes <i>AND</i> orange is an outlier <i>OR</i> no <i>AND</i> orange has the greatest concentration of vitamin C and intermediate pH √	Accept "yes/no AND any valid reason supporting the correlation or not, either mathematically OR qualitatively outlined from the data". Do not accept "yes/no AND negative/weak/moderate/strong correlation" alone. Do not accept "yes AND correlation coefficient is –0.7 and therefore weak".	1
1.	d	i	iodate/IO₃ [−] «aq» √		1

C	Questi	on	Answers	Notes	Total
1.	d	ii	equivalence point was not reached <i>OR</i> reaction «between iodine and ascorbic acid» is slow/not complete <i>OR</i> stirring not sufficient √	Accept "iodine evaporated". Do not accept "iodine oxidized". Do not accept "I ₂ turned to 2I ^{-"} .	1
1.	d	111	lower/decrease ✓	Accept "as end point increases, concentration of vitamin C increases" and vice-versa. Do not accept general definitions of an end point.	1
1.	d	iv	«starch-iodine complex is» same colour «as blueberry juice» <i>OR</i> end point colour obscured √	Do not accept "cannot determine end point" without reference to colour.	1

Section B

Option A — Materials

C	Question	Answers Notes		Total
2.	а	base <i>AND</i> «hydride ion is a» proton/H⁺ acceptor ✓	Accept appropriate equation.	1
2.	b	Any two of: large surface area ✓ cage-like structure ✓ inexpensive ✓ plentiful ✓ higher selectivity «for calcium ions over sodium ions» ✓ non-toxic ✓	Do not accept "environmentally friendly" alone.	2 max

0	Question	Answers	Notes	Total
3.	а	«dipole» influenced by an «external» electric field ✓ change orientation ✓		2
3.	b	Good conductors along the tube: pi/delocalized electrons move freely «within electron cloud along tube» OR atoms bonded/in contact ✓ Poor conductors across the width of the tube: pi/delocalized electrons/electron cloud does not extend across walls/tubes OR atoms not bonded ✓		2
3.	C	Any three of: spark \checkmark spark \checkmark «produces some» free e ⁻ AND Ar ⁺ «gaseous ions» \checkmark charged particles oscillate back and forth \checkmark using alternating/high frequency current OR 		3 max

C	uesti	on		Ansv	vers	Notes	Total
3.	d	i	Extensive covalent cross-links: Few covalent cross-links:	Physical properties hard/rigid/high melting point/cannot be reshaped/more brittle/higher heat resistance ✓ flexible/able to return to shape/can be recycled ✓	Example «thermoset» Bakelite/HDPE/epoxies/ polyurethane ✓ «thermoplastics» rubber/PVC/polystyrene/nylon/ polypropene/polyethene ✓	 Accept any correct example. eg. billiard balls for thermoset. Accept "resins" for thermoset. Accept other valid examples. Accept "polyester" for either thermoset or thermoplastic for both. 	4
3.	d	11	c(N	Do not accept same physical property argument for both eg. higher mp for thermoset, lower mp for thermoplastics. Continuation bonds are necessary for the mark. Ignore any brackets.	
					H V	Ignore "n" for repeating brackets.	1

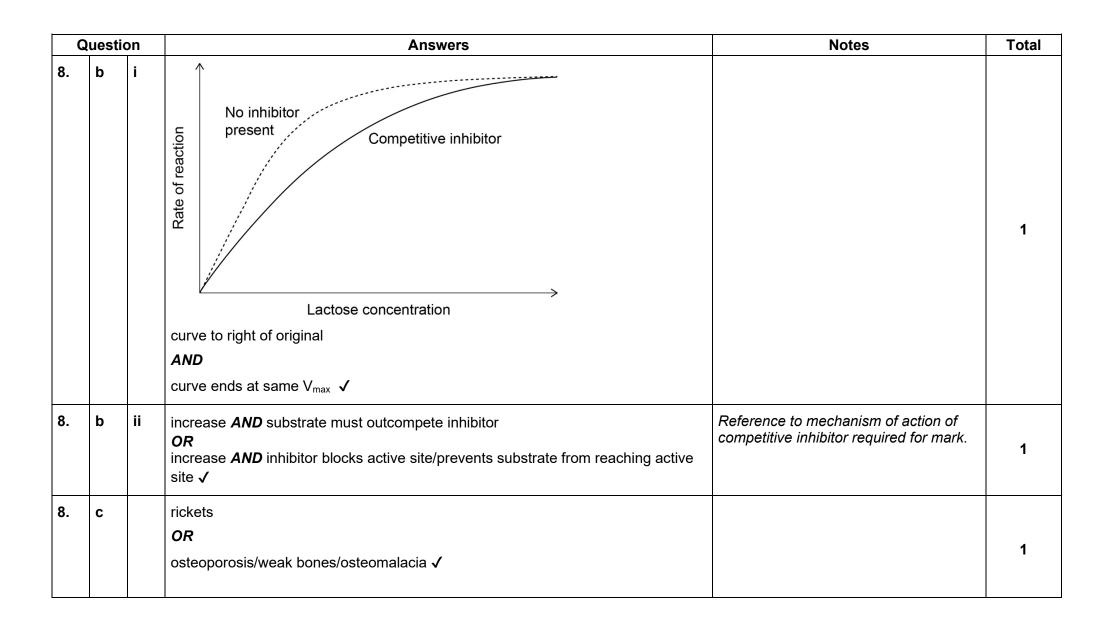
Qu	Jesti	on	Answers	Notes	Total
3.	d	iii	protonation of oxygen «in the hydrogen bonds» <i>OR</i> hydrolysis of amide linkage ✓ breaks hydrogen bonds/cross-links ✓	Accept "protonation of nitrogen".	2
3.	d	iv	 3 AND contains hazardous chemicals/chlorine OR 4 AND single use plastic bags clog recycling machinery OR 6 AND difficult to melt/breaks down/energy intensive OR 7 AND can be mixture/does not melt √ 	Accept "expense involved" as a reason for any of the stated RIC. Accept any specific valid example. Accept "7 AND can represent a wide variety of plastics" only if a specific plastic and issue are stated.	1

C	Questic	on	Answers	Notes	Total	
4.	а		copper/Cu«s» lost when drying cathode <i>OR</i> copper/Cu«s» falls from cathode to bottom of beaker «during electrolysis» √	Answer must specify electrode.	1	
4.	b			Accept 96,613 «C mol ⁻¹ ». Do not accept 96,500 «C mol ⁻¹ ». Award [2] for correct final answer.	2	
4.	С		$K_{sp} = [Cu^{2+}] \times [OH^{-}]^{2}$ OR $(Cu^{2+}] = \frac{2.2 \times 10^{-20}}{(1.0 \times 10^{-4})^{2}} \checkmark$ $(Cu^{2+}] = 2.2 \times 10^{-12} \text{ (mol dm}^{-3} \text{) } \checkmark$	Award [2] for correct final answer.	2	
4.	d		non-bonding/lone pair electrons on S AND N \checkmark bond to «empty» d-orbital of copper «ion»/Cu ²⁺ \checkmark forms two «coordination» bonds «to Cu ²⁺ » \checkmark	Accept O in place of either S or N for M1. Do not accept three coordination bond formation (since bidentate) involving S, N and O for M3.	3	

C	Question	Answers	Notes	Total
5.	а	Type 1 has sharp transition «to superconducting» AND Type 2 has gradual transition		
		OR		
		Type 1 has lower critical temperature/ T_c		1
		OR		
		Type 1 «most» metals AND Type 2 alloys/metal oxide ceramics/perovskites/composites √		
5.	b	Any three of:		
		«moving» electron attracts «nearby» positive charges/ions/cations \checkmark		
		creates «local» regions of increased positive charge \checkmark		
		positive charge/field attracts second electron «with opposite spin» \checkmark		3 max
		two electrons form a Cooper pair \checkmark		• max
		«all» Cooper pairs «in sample» interact/form «electron» condensate ✓		
		«electron» condensate/Cooper pairs move/flow «through sample» freely/without resistance \checkmark		

	Question		Answers	Notes	Total
6.	а		covalent «bonding» <i>OR</i> peptide «bond» <i>OR</i> amide «bond» √	Do not accept "amino acid sequence".	1

Q	luest	ion	Answers	Notes	Total
Q	b	ion	Answers Any three of: break down/hydrolyse polypeptide «to amino acids using HCl» ✓ sample spotted on paper/stationary phase AND solvent moves up the paper OR continuous cycles of adsorption and desorption/dissolution OR analyte moves when in solvent AND does not move when on paper ✓ components «in mixture» have different attractions to mobile phase AND stationary phase/paper OR «amino acids» separated based on solubilities in/affinity to the two phases OR separated based on polarities/polar attractions/molar masses «of amino acids» ✓	No marks awarded for separation based on electrophoresis.	Total 3 max
			developed with ninhydrin/reagent/locating agent OR identified with ultraviolet/UV «light» \checkmark calculate R_f /retention factor of each spot OR compare R_f /retention factor to known values \checkmark	<i>R</i> ⊧∕retention factor must be stated explicitly.	


G	Question		Answers	Notes	Total
6.	b	ii	H ₃ Ň—СН—СООН H ₃ C—CH—CH ₂ —CH _{3 √}	Positive charge must be on N for mark. Penalize incorrect bond connectivity or missing hydrogens once only in Option B.	1
6.	с		«0.5000 = 0.3826 × [protein] – 0.0015» «[protein] =» 1.311 «mg cm ⁻³ » ✓		1

(Questi	on	Answers	Notes	Total
7.	a		$ \begin{array}{ c c c c c } & & & & & & & \\ H_2C & & & & & & \\ H_2C & & & \\ H_2C$	Accept protonated phosphate/serine. Accept phosphodiester located in top or centre position also. Penalize incorrect bond connectivity or missing hydrogens once only in Option B. Do not accept R, unless specifically identified.	2
7.	b	i	stearic acid <i>AND</i> stronger London/dispersion/«instantaneous» induced dipole- induced dipole forces ✓ saturated/no C=C bond <i>OR</i> molecules pack closer together <i>OR</i> no kinks in the chain ✓	Accept "stearic acid AND stronger intermolecular/van der Waals/vdW forces" for M1. Accept "greater surface area/electron density" for M2. Do not accept "no double bond" alone. Do not accept arguments based on size/molar mass/molecular mass of molecule. Do not award ECF for linoleic acid in M2.	2

Questio	Answers	Notes	Total
7. b	 Advantage: increased melting point OR decreased rate of oxidation OR longer shelf life OR spreadability OR less expensive/more profitable √ 	Do not accept converse of a stated advantage as a disadvantage.	2
	Disadvantage: formation of trans fats OR may increase levels of low-density lipoprotein/LDL OR increased risk of atherosclerosis/cholesterol deposition OR increased risk of heart attack/stroke cardiovascular/heart disease/CHD √	Accept answers around hydrogenation process and industry for Disadvantage such as "use of «potentially toxic» metals as catalysts", "«explosive» hydrogen", "energy demand" etc. Accept "bad cholesterol" for LDL.	

Que	estion	Answers		Notes	Total	
7. c		Site of reactivity Conditions that favour reaction	Hydrolytic ester «group»/ -OCO- «high» moisture <i>OR</i> acid «conditions» <i>OR</i> enzymes/lipases/ bacteria	Oxidative C=C/carbon to carbon double bond/alkene ultraviolet/ UV/light OR metal ions OR O2/oxygen/air	Award [1] for any two correct answ Award [2] for all four correct. Do not accept "temperature change/heat" as a condition. Do not accept "double bond" alone site of oxidative rancidity. Do not accept "enzymes" for oxida rancidity.	e for 2
			1		$\checkmark\checkmark$	

Q	Question		Answers	Notes	Total
8.	a	i	$\begin{array}{c} \begin{array}{c} H_{2}OH \\ H \\$	M1 is scored for C-O-C in glycosidic link. Do not penalize for position of hydrogens in glycosidic link. Penalize incorrect bond connectivity or missing hydrogens once only in Option B.	2
8.	а	ii	condensation «reaction» ✓		1

C	Question	Answers	Notes	Total
9.	а	chemicals found in an organism/environment/organic substances that are foreign/not normally present \checkmark	Do not accept an answer based around the biomagnification of the xeonbiotic.	1
9.	b	wboth» selectively bind/bond OR wboth can» bond non-covalently OR reversible √	Do not accept "specifically bind" as this is rare for synthetic host molecules.	1
9.	C	removal of radioactive isotope/Cs-137/heavy metals <i>OR</i> removal of aromatic amines <i>OR</i> removal of N-nitroso compounds <i>OR</i> removal of PCB's/polychlorinated biphenyls <i>OR</i> removal of dioxins ✓	Accept "removal of radioactive caesium/material". Accept "removal of caesium". Accept other reasonable example. Do not accept "removal of plastic".	1

C	Question	Answers	Notes	Total
10.	а	red ✓ «wavelength of maximum absorbance» 530 «nm»/green <i>AND</i> shows complementary colour ✓	Accept any value in the range 520–540 «nm» in M2.	2
10.	b	conjugated system is changed «in basic pH due to deprotonation» \checkmark absorbs different wavelength «in basic pH» <i>OR</i> appears different colour «in basic pH» \checkmark	Award [1 max] for "protonation/deprotonation".	2

C	Question	Answers	Notes	Total
11.	a	<i>Any two of:</i> RNA has ribose <i>AND</i> DNA has deoxyribose ✓ RNA contains uracil/U <i>AND</i> DNA contains thymine/T ✓ RNA is a single strand <i>AND</i> DNA is a double helix ✓	Accept "strand/helix". Accept "RNA forms an A-helix AND DNA forms a B-helix".	2 max
11.	b	larger set of data ✓	Accept other valid reason not related to improved technology, such as improved algorithms, changes in legal requirements etc.	1

Option C — Energy

Q	uesti	on	Answers	Notes	Total
12.	а		energy needed to separate «a nucleus into» protons and neutrons/nucleons <i>OR</i> energy released when nucleus formed «from protons and neutrons» √		1
12.	b	i	mass defect = $\sum(p + n) - {}^{2}H$ <i>OR</i> «mass defect =» 1.672622 × 10 ⁻²⁷ «kg» + 1.674927 × 10 ⁻²⁷ «kg» – 3.343583 × 10 ⁻²⁷ «kg» = 3.966 × 10 ⁻³⁰ «kg» ✓ «nuclear binding energy = Δmc^{2} = 3.966 × 10 ⁻³⁰ kg × (3.00 × 10 ⁸) ² =» 3.57 x10 ⁻¹³ «J» √	Award [2] for correct final answer.	2
12.	b	ii	4 × binding energy per nucleon (BEN) ⁴ He – (2 × BEN ² H + 3 × BEN ³ H) <i>OR</i> 4 × 7.1 «MeV» – (2 × 1.1 «Mev» + 3 × 2.8 «MeV») √ «28.4 – 2.2 – 8.4 =» 17.8 «MeV» √	Accept answers in range 17.4–18.2 «MeV». Award [2] for correct final answer. Do not penalize a negative sign. Award [1 max] in range 2.9-3.5 «MeV».	2
12.	с	i	$ \frac{193.4 \text{ MeV} \times 1.60 \times 10^{-19} \text{ MJ MeV}^{-1} \times 6.02 \times 10^{23} \text{ mols}^{-1}}{235 \text{ g mol}^{-1}} = $ $7.93 \times 10^4 \text{ «MJ g}^{-1} \text{ ~~} \checkmark $		1

C	Questi	on	Answers	Notes	Total
12.	С	ii	specific energy <i>AND</i> low density <i>OR</i> specific energy <i>AND</i> a small mass occupies a large volume √	Do not accept "specific energy AND gas/gaseous" alone.	1
12.	d	i	${}^{235}_{92}U \rightarrow {}^{231}_{90}Th + {}^{4}_{2}He \checkmark$	Accept "α" for helium-4 species in equation. Do not penalize missing atomic numbers.	1
12.	d	11	Alternative 1:	Penalize incorrect atomic numbers. Award [2] for correct final answer.	2
			«25.5 × $\frac{ln(\frac{1.000}{0.03125})}{ln 2}$ = » 127.5 «hours» √		

Q	uesti	on	Answers	Notes	Total
13.	а	i	Carbon dioxide: absorbs infrared radiation/IR ✓ bending/stretching/vibration «of bonds» √	Do not accept "traps" for "absorbs".	
			<i>Chlorophyll:</i> absorbs visible light ✓ electron excitation/promotion/release ✓	Do not accept "reflects «green» visible light" for M3.	4
13.	а	ii	Carbon dioxide: 10 ⁻⁴ to 10 ⁻⁶ «m» AND Chlorophyll: 400 to 700 «nm» ✓	Accept any range inside the given range. Accept Carbon dioxide: infrared/IR AND Chlorophyll: visible/Vis. Ignore incorrect or missing units.	1
13.	b		infrared/IR «radiation» from earth's surface absorbed «by bonds of greenhouse gasses» in the «lower» atmosphere \checkmark lower amounts «of re-radiated IR» reach upper atmosphere \checkmark	Do not accept "heat for infrared/IR" in M1. Do not accept "greenhouse gases trap infrared/IR radiation" alone for M1.	2

Questic	n Answers	Notes	Total
13. c	large surface area AND increases light absorption/chance photon will be absorbed \checkmark		
	«dye allows absorption of a» wide range of wavelengths		2
	OR		
	dye converts most/all absorbed photons into electrons \checkmark		

C	Questior	Answers	Notes	Total
14.	а	reduction/loss of oxygen/gain of hydrogen \checkmark	Accept "decomposition".	1
14.	b	methane/CH₄ «(g)» ✓		1
14.	c	Advantage: Any one of: cleaner combustion/less soot/ash ✓ less CO2 per unit of heat ✓ lower carbon footprint ✓ higher specific energy ✓ Disadvantage: Any one of: highly combustible/explosive ✓ emits greenhouse gas/methane/CH₄ if leaks occur ✓ lower energy density ✓	Do not accept converse of stated advantage for disadvantage.Accept "easy to transport/no need to store locally" as an advantage.Do not accept vague answers such as "less pollution" OR "clean fuel" OR "less CO2 produced" for Advantage or "hazardous" for Disadvantage.	2 max
		transported under pressure \checkmark difficult to detect leaks \checkmark	Accept "odourless" as a Disadvantage.	

Q	uestion	Answers	Notes	Total
14.	d	coal more plentiful «than crude oil»		
		OR		
		«can be» produced from renewable source		
		OR		
		«can be» carbon neutral		
		OR		
		can undergo liquefaction to form octanes		1
		OR		
		«can be» produced by gasification underground		
		OR		
		coal gasification produces other usable products/slag \checkmark	Accept "easy to capture/store «to not release CO ₂ to the atmosphere».	
			Accept "carbon capture as part of the process".	

C	Question	Answers	Notes	Total
15.	a	Negative electrode (anode): CH ₃ COO ⁻ (aq) + 2H ₂ O (l) → 2CO ₂ (g) + 7H ⁺ (aq) + 8e ⁻ ✓ Positive electrode (cathode): O ₂ (g) + 4H ⁺ (aq) + 4e ⁻ → 2H ₂ O (l) ✓	Award [1 max] for correct half-equations at wrong electrodes. Accept any correct fractional or multiple coefficients. Ignore equilibrium sign.	2
15.	b	 Fuel cells: refilled AND with fuel/hydrogen/methanol/reducing agent √ Secondary cells: recharged AND by reversing «chemical» reaction OR recharged AND by external power source √ 	Award [1 max] for Fuel cells: refilled AND Secondary cells: recharged with no or incorrect details given.	2
15.	C	$ {}^{\textit{w}}E = E^{\theta} - \frac{RT}{nF} \ln {}^{\textit{w}} \frac{[Mg^{2+}]}{[Ag^{+}]^{2}} $ $ {}^{\textit{OR}} $ $ {}^{\textit{w}}E = 3.17 - \frac{8.31 \times 298}{2 \times 96500} \ln {}^{\textit{w}} \frac{2.00}{(0.0100)^{2}} \checkmark $ $ = {}^{\textit{w}}3.17 - 0.0128 \times 9.90 = 3.17 - 0.127 = {}^{\textit{w}} 3.04 \text{ eV} {}^{\textit{w}} \checkmark $	Award [2] for correct final answer. Award [1 max] for 3.10 «V».	2

Option D — Medicinal chemistry

Q	Question		Answers	Notes	Total
16.	а		Site of action: «at the» source/«site of» pain/injury √ Mode of action: interferes with the production of substances that cause pain/swelling/fever OR blocks the production/formation of prostaglandins OR cyclooxygenase enzyme/COX inhibition √		2
16.	b	i	«melts» over a «larger» range of temperatures \checkmark observed «melting point» is lower than accepted value \checkmark	Do not accept "different than accepted value" for M2.	2
16.	b	ii	3200–3600 «cm⁻¹» ✓	Accept any value/range within the range.	1

C	uestion	Answers	Notes	Total
16.	c	drugs broken down/metabolized from digestive system <i>OR</i> not all «of the drug is» absorbed √	Accept "drugs not easily absorbed from digestive system" OR "oral drugs have slower absorption and distribution than IV drugs" OR "drugs affected by acid" OR "pass through digestive system".	1
			Do not accept "IV administration has 100% bioavailability AND oral administration does not" - reason must be stated.	
16.	d	<i>Any two of:</i> morphine has «two» hydroxyl «groups» <i>AND</i> diamorphine has «two» ester/ethanoate/acetate «groups» √	Accept "heroin" for "diamorphine". Accept formulas. Accept "hydroxy" for "hydroxyl" but not "hydroxide". Accept "acyl" for "ester «groups»".	
		morphine is more polar than diamorphine <i>OR</i> groups in morphine are replaced with less polar/non-polar groups in diamorphine ✓	Do not accept just "diamorphine is non- polar" for M2.	
		morphine is «more» soluble in blood «plasma» <i>OR</i> diamorphine is «more» soluble in lipids <i>OR</i>	Accept "morphine soluble in water «medium»" for M3.	2 max
		diamorphine is more soluble in non-polar environment of CNS/central nervous system than morphine \checkmark	Accept "fats" for "lipid".	
		diamorphine crosses the blood–brain barrier/BBB in greater concentration/more rapidly/easily \checkmark	Do not accept "diamorphine crosses blood-brain barrier/BBB" alone without reference to rate or concentration.	

Qu	Question		Question		Question		Answers	Notes	Total
16.	e		<u>Diamorphine</u> ester/carbonyl «groups» <i>AND</i> peaks «around» 1700–1750 «cm ⁻¹ » √ absence of hydroxyl/phenol «groups» <i>AND</i> absence of peak «around» 3200–3600 «cm ⁻¹ » √	Do not award mark for mentioning diamorphine alone. If morphine selected, no marks awarded. Accept any value(s) within the range.	2				

1

Answers	Notes	Total
inhibits the secretion of stomach acid/H $^+$ \checkmark		
«active metabolites» bind «irreversibly» to «receptors of the» proton pump \checkmark	Accept "PPI/proton pump inhibitor" for M2.	
	Accept "specific H+/K+ATPase inhibitor" for M2.	2
	Do not accept "binds to H2/histamine receptors" for M2.	
	Accept "H ⁺ /K ⁺ ATPase" for "proton pump".	
NaHCO ₃ (aq) + HCl (aq) \rightarrow H ₂ O (l) + CO ₂ (g) + NaCl (aq) \checkmark	Correct state symbols must be included.	
	Accept net ionic equation.	
	Do not accept "H ₂ CO ₃ (aq)".	1
no AND «mode of action is to» inhibit acid production	Do not accept answers that only	
OR	describe binding to H2 receptors.	1

Accept identification of omeprazole

on the aromatic ring.

(either named or drawn) with a clear indication of the presence of the proton

Question

17. a

17. b

17.

17.

С

d

no **AND** «mode of action» does not neutralize acid \checkmark

omeprazole AND presence of aromatic ring/benzene/phenyl «H atom» ✓

Q	Question		Answers	Notes	Total
18.	а	i	inhibit/bind neuraminidase «found on surface of influenza virus» ✓ prevents virus from leaving «host» cell ✓	Accept "enzyme" for "neuraminidase". Do not award M2 if response also states "prevents virus from entering cell".	2
18.	а	11	genetic engineering of bacteria «to produce shikimic acid» <i>OR</i> extraction/isolation «of shikimic acid» sourced from pine needles/other sources <i>OR</i> suspension cultures of «Indian» sweetgum tree ✓ «synthesis no longer depends on» star anise «which is» in limited supply <i>OR</i> less waste/energy/«organic» solvents/steps <i>OR</i> improves atom economy ✓	Accept "sourced from pine needles/other sources" OR "sourced from «Indian» sweetgum tree".	2

C	Question		Answers	Notes	Total
18.	b	i	Any two of: ring is «sterically» strained OR angles of 90° instead of 109.5/109/120° angles OR angles smaller than 109.5/109/120°/tetrahedral/trigonal planar/triangular planar angles smaller than 109.5/109/120°/tetrahedral/trigonal planar/triangular planar angles was up/opens/reacts «easily» OR amido/amide group «in ring» is «highly» reactive √ «irreversibly» binds/bonds to enzyme/transpeptidase OR inhibits enzyme/transpeptidase «in bacteria» that produces cell walls √ prevents transpeptidase/enzyme from catalyzing the cross-linking «in the cell wall» OR weakens bacterial cell wall √	Accept arguments using correct descriptions of hybridization for M1. Do not accept "breaks/binds to cell walls" – a reference to the enzyme is needed for alternatives 1 and 2 for M3. Do not accept "cell membrane" for "cell wall" in M3 or M4.	2 max
18.	b	ii	current medication ineffective <i>OR</i> new antibiotic/drugs must be developed ✓	Accept "creation of superbugs". Do not accept answers related to health effects OR costs.	1

C	Question		Answers	Notes	Total
	а	i	hair loss OR nausea OR fatigue OR	Accept any other valid side effect.	
			loss of appetite OR sterility OR «localized» tissue damage OR secondary cancers √		1
19.	а	ii	low ionizing «power» <i>OR</i> high penetration «power» √	Accept "less damage to tissue".	1
19.	a	iii	${}^{177}_{71}Lu \rightarrow {}^{177}_{72}Hf + {}^{0}_{-1}e^{-}\checkmark$	Do not penalize missing atomic numbers. Penalize incorrect atomic numbers. Ignore the inclusion of the antineutrino, ${}_{0}^{0}\overline{\nu}$. Accept " β , β^{-} , ${}_{-1}^{0}\beta^{-}$, etc." for " ${}_{-1}^{0}e^{-}$ ".	1

C	uesti	on	Answers	Notes	Total
19.	a	iv	ALTERNATIVE 1: $\lambda = \ll \frac{\ln 2}{t_{\frac{1}{2}}} = \frac{\ln 2}{6.71} \text{ days} = \gg 0.103 \text{ wdays}^{-1} \gg \checkmark$ $N = \ll N_0 e^{-\lambda t} = 2.00 \mu\text{g} e^{(-0.103 \text{days}^{-1} \times 7 \text{days})} = \gg 0.970 \text{w} \mu\text{g} \gg \checkmark$ ALTERNATIVE 2: $\ll \frac{7 \text{days}}{6.71 \text{days}} = \gg 1.04 \text{whalf-lives passed} \gg \checkmark$ $\text{wmass remaining} = 2.00 \mu\text{g} \times (0.5)^{1.04} = \gg 0.970 \text{w} \mu\text{g} \gg \checkmark$	Award [2] for correct final answer. Accept any value in range 0.968–0.972 «μg».	2
19.	b	i	added/connected/attached «to substrate» <i>AND</i> removed «at the end of the synthesis to obtain desired product» ✓ one enantiomer produced <i>OR</i> chiral auxiliary creates stereochemical condition «necessary to follow a certain pathway» <i>OR</i> stereochemical induction <i>OR</i> existing chiral centre affects the configuration of new chiral centres ✓		2
19.	b	ii	H₂O/water ✓	Accept OH containing a heavier isotope of hydrogen or oxygen. Ignore charge on H ₂ O.	1