

Question	Answer	Marks
1(a)	Haber (process)	1
1(b)	fractional distillation	1
1(c)	electrolysis	1
1(d)	filtration	1
1(e)	hydrolysis	1
1(f)	chromatography	1

Question	Answer	Marks
2	Mg: 12 and 13 (1) Cu ²⁺ : 29 and 27 (1) 37(above) and17(below) (1) Cl (1) 1- (1)	5

Question	Answer	Marks
3(a)	$2K + Cl_2 \rightarrow 2KCl$ Cl_2 on left hand side (1) equation fully correct (1)	2
3(b)	K outer shell with 8 crosses (1) Cl outer shell with 7 dots and 1 cross (1) † and - (1)	3
3(c)(i)	breakdown by (the passage of) electricity (1) of an ionic compound in molten or aqueous (state) (1)	2

Question	Answer	Marks
3(c)(ii)	(anode) chlorine (cathode)potassium	1
3(d)(i)	$2H^+ + 2e() \rightarrow H_2$ H+ and e($$) on left hand side (1) equation fully correct (1)	2
3(d)(ii)	chlorine	1
3(d)(iii)	potassium hydroxide (1)	1
3(e)	one shared pair of electrons and 6 non-bonding electrons on each chlorine atom	1
3(f)(i)	liquid (1) BOTH melting point is below –75 °C AND boiling point is above –75 °C	2
	OR BOTH –75 °C is higher than –101 °C / melting point AND lower than –35 °C / boiling point	
	OR75 °C is between melting point or _101 °C and boiling point or _35 °C	
3(f)(ii)	ionic bonds in KC $l(1)$ attraction between molecules in C $l_2(1)$ weaker attraction (between particles) in C l_2 ORA (1)	3

Question	Answer	Marks
4(a)	the rate of forward reaction equals the rate of the reverse reaction (1) concentrations of reactants and products are constant (1)	2
4(b)(i)	(increased pressure) nitrogen dioxide particles or molecules (forced) clos er together OR same number of nitrogen dioxide particles or molecules in a small er volume	1

Question	Answer	Marks
4(b)(ii)	fewer number of gas moles or molecules on left hand side or reactant side (of the equation) ORA	1
4(c)(i)	shifts to the right	1
4(c)(ii)	increase / faster (1) increase / faster (1)	2

Question	Answer	Marks
5(a)	(add) water (to both salts) (1) dissolve both salts / make solutions (1) filter (lead(II) iodide)(1) wash (residue of lead(II) iodide) with water AND dry e.g. with filter paper / description of washing and drying (1) $Pb(NO_3)_2 + 2 NaI \rightarrow 2NaNO_3 + PbI_2$ OR $Pb^{2+} + 2I^- \rightarrow PbI_2$ (1)	5
5(b)(i)	glowing splint (1) relights / rekindles (1)	2
5(b)(ii)	2 ZnO(s) and 4 NO2(g) (1) 12 H2O(g) (1)	2
5(c)(i)	heat again and weigh again / repeat steps 2 and 3 (1) until mass is constant (1)	2
5(c)(ii)	0.005 (1) 0.9 (1) (0.9 ÷ 18 =) 0.05 (1) (0.05 ÷ 0.005 =) 10 (1)	4

Question	Answer	Marks
6(a)(i)	hematite	1
6(a)(ii)	air	1
6(a)(iii)	slag / calcium silicate	1
6(a)(iv)	any two from: • (coke) releases heat (when it reacts with oxygen or reacts in air) OR (acts as a) fuel OR increases temperature (in the furnace) / heats (the furnace) OR source of energy • (coke or carbon monoxide) reduces iron oxide OR is a reducing agent OR converts iron oxide to iron / removes oxygen from iron oxide • (coke) reacts with oxygen to form carbon monoxide OR reacts with carbon dioxide to form carbon monoxide	2
6(b)	S ₂ ²⁻ or S ⁻	1
6(c)(i)	any two from: • (iron forms) coloured compounds • (iron has) variable oxidation states • (iron acts as a) catalyst	2
6(c)(ii)	any two from: • (iron is) good conductor of electricity • (iron) forms a basic oxide • (iron salts are) soluble (in water)	2

Question	Answer	Marks
6(d)(i)	magnesium is more reactive than iron / steel ORA (1) iron is not oxidised	2
	OR iron does not lose electrons	
	OR magnesium loses electrons more easily than or in preference (to iron) ORA	
	OR magnesium is oxidised more easily or reacts with oxygen more easily or corrodes more easily or in preference (to iron) ORA (1)	
6(d)(ii)	copper is less reactive than iron / copper is lower in the reactivity series than iron ORA	1

Question	Answer	Marks
7(a)	48.65 / 12 8.11 / 1 43.24 / 16 (1) OR evaluation 4.05 8.11 2.7(0) divide all by smallest OR 1.5:3:1 OR 6:3:2 (1)	3
	C ₃ H ₆ O ₂ (1) ALLOW symbols in any order	
7(b)	$(M_{\rm r} \text{ of CH}_4{\rm O} = 32)$ CH ₄ O (1)	1
7(c)(i)	C _n H _{2n} O ₂ OR C _n H _{2n+1} COOH	1

Question	Answer	Marks
7(c)(ii)	butanoic acid (1)	3
	fully displayed carboxylic acid group (1)	
	—с О—Н	
	correct structure of butanoic acid showing all atoms and bonds (1)	
7(c)(iii)	homologous series	1
7(d)(i)	brown to colourless	1
7(d)(ii)	C ₉ H ₂₀ (1) 2C ₃ H ₆ (1)	2
7(d)(iii)	addition	1
7(d)(iv)	CH ₃ H CH ₃ H H H H H any one repeat unit (1) both repeat units fully correct (1)	2