Cell Structure

These practice questions can be used by students and teachers and is suitable for GCSE AQA Biology topic Questions 8641

Level: GCSE AQA Biology 8641

Subject: Biology

Exam board: GCSE AQA

Topic: Cell Structure

EXAM PAPERS PRACTICE

Q1.

This question is about the cell cycle.
(a) Chromosomes are copied during the cell cycle.

Where are chromosomes found?
Tick one box.

Cytoplasm

Nucleus

Ribosomes

Vacuole

(b) What is the name of a section of a chromosome that controls a characteristic?
\qquad
\qquad

Figure 1 shows information about the cell cycle.
Figure 1

(c) Which stage of the cell cycle in Figure 1 takes the most time?

Tick one box.

(d) During mitosis cells need extra energy.

Which cell structures provide most of this energy?
Tick one box.

(e) The cell cycle in Figure 1 takes two hours in total.

The cell growth stage takes 45 minutes.
Calculate the time taken for mitosis.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Time $=$ \qquad minutes

Figure 2 shows some cells in different stages of the cell cycle.

(f) Which cell is not dividing by mitosis

Tick one box.

(g) Cell E in Figure 2 contains 8 chromosomes.

Cell \mathbf{E} divides by mitosis.
How many chromosomes will each new cell contain?
Tick one box.

2 \square

4 \square

8 \square

16 \square
(h) Why is mitosis important in living organisms?

Tick one box.

Q2.
Plants are made up of cells, tissues and organs.
(a) Draw one line from each level of organisation to the correct plant part.

Level of organisation
Plant part

\square

Spongy mesophyll

Xylem

Figure 1 shows a plant cell drawn to scale.

Figure 1

(b) Where in a plant would the cell in Figure 1 be found?

Tick one box.

(c) Calculate the length of the chloroplast labelled in Figure 1.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Length $=$ \qquad micrometres
(d) Cells in plant roots do not photosynthesise.

Give one reason why.
\qquad
\qquad
\qquad
\qquad
(e) As a plant grows, new root hair cells are formed from unspecialised cells.

How does an unspecialised cell become a new root hair cell?
Tick one box.

Scientists can clone plants using tissue culture.
Figure 2 shows the process of tissue culture.

Figure 2

(f) Why might scientists want to clone plants?

Tick one box.

To create new species of plants. \square

To introduce variation into plants. \square

To protect endangered plants from extinction. \square

To reduce disease resistance in plants. \square
(g) What is the advantage of cloning plants using tissue culture?

Tick one box.

No special equipment is needed. \square

Plants can be produced quickly. \square

The flowers are all different colours. \square

The offspring are all genetically different. \square
(h) The growth medium in Figure 2 helps the plants to grow.

Name one substance in the growth medium.
\qquad
\qquad
\qquad
\qquad

Q3.
Eating food containing Salmonella bacteria can cause illness.
(a) Two symptoms of infection by Salmonella are vomiting and diarrhoea.

What causes these symptoms?
\qquad
\qquad
\qquad
-
(b) Give two ways a person with a mild infection of Salmonella can help prevent the spread of the bacteria to other people.
1.
\qquad
\qquad
\qquad
2.
\qquad
\qquad
\qquad
-
(c) In very serious infections of Salmonella, a doctor can prescribe drugs to kill the bacteria.

What type of drug can the doctor prescribe to kill the bacteria?

For more help, please our website www.exampaperspractice.co.uk
\qquad
\qquad
\qquad
\qquad
(d) A person with AIDS may take longer than a healthy person to recover from a Salmonella infection.

Explain why.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(e) Salmonella bacteria can be transmitted from chickens to humans. Chickens can be vaccinated to prevent the transmission of Salmonella bacteria to humans.

Suggest one other way farmers could prevent the transmission of Salmonella from chickens to humans.
\qquad
\qquad
\qquad
\qquad

A restaurant owner employed a scientist to test the effectiveness of two kitchen cleaning liquids.

The scientist took samples from two work surfaces:

- before the surfaces had been cleaned with the cleaning liquids
- after the surfaces had been cleaned with the cleaning liquids.

The samples were then analysed for the number of bacteria they contained.
The results are shown in Figure 1.

For more help, please our website www.exampaperspractice.co.uk

Figure 1

(f) Which cleaning liquid is the more effective?

Give a reason for your answer.
Cleaning liquid \qquad
Reason
\qquad
\qquad
\qquad
\qquad
\qquad

The scientist investigated the effect of cleaning liquid \mathbf{A} and cleaning liquid \mathbf{B} on Salmonella bacteria grown in a laboratory.

Figure 2 shows the way the investigation was set up.
Figure 2

The Petri dish was placed in an incubator at $25^{\circ} \mathrm{C}$ for 48 hours.
After 48 hours, the scientist calculated the area around each paper disc where no bacteria were growing.

The results are shown in the table below.

Filter paper disc	Area around disc with no bacteria growing in $\mathbf{c m}^{\mathbf{2}}$
Water	0
Cleaning liquid \mathbf{A}	11
Cleaning liquid \mathbf{B}	13

(g) What measurement would the scientist need to take to calculate the area where no bacteria were growing?
\qquad
\qquad
\qquad
\qquad
(h) Give one change to the investigation that would allow the scientist to check if the results are repeatable.
\qquad
(i) The scientist showed the results to the restaurant owner.

Both cleaning liquids cost the same per dm³
Suggest one other factor the restaurant owner should consider when choosing which cleaning liquid to use.
\qquad
\qquad
\qquad
\qquad

Q4.
Mycoprotein is a protein-rich food.
Mycoprotein is made from the fungus Fusarium.
The diagram below shows a fermenter used for growing Fusarium.

(a) Explain why the fermenter is sterilised before use.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
-
(b) Cold water is pumped through the cooling coil at point \mathbf{X}.

This maintains a constant temperature inside the fermenter.
Suggest the temperature at which Fusarium grows fastest.
Tick one box.

(c) Glucose and bubbles of air enter the fermenter.

The bubbles of air supply oxygen.
Explain why Fusarium needs glucose and oxygen.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(d) The bubbles of air also move materials around the fermenter.

Suggest why it is useful for bubbles of air and materials to move around inside the fermenter.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad -
(e) 100 grams of chicken meat contains 22 grams of protein.

100 grams of mycoprotein contains 11 grams of protein.
A man ate 100 grams of chicken in one meal.
How many grams of mycoprotein would the man need to eat to get the same mass of protein as in 100 grams of chicken?

Tick one box.

Q5.
Cells can be classified according to their structure.
(a) Complete Table 1 to show which features each cell type has.

Write a tick or a cross in each box.

Table 1

	Nucleus	Plasmids	Cytoplasm
Prokaryotic cell			
Eukaryotic cell			

Figure 1 shows a cell.

Figure 1

(b) What type of cell is shown in Figure 1.

Tick one box.

An animal cell \square

A bacterial cell \square

A plant cell \square
(c) The cell in Figure 1 contains ribosomes.

What is the function of ribosomes?
\qquad
\qquad
\qquad
\qquad
(d) There are 1000 micrometres $(\mu \mathrm{m})$ in a millimetre (mm).

The length of the cell in Figure 1 is 1.5 micrometres $(\mu \mathrm{m})$.
Give the length of the cell in millimetres (mm).
\qquad
\qquad
\qquad

Length of cell = \qquad mm

Figure 2 shows a mitochondrion viewed with a microscope.

Figure 2

(e) Give one reason why the cell in Figure 1 does not contain mitochondria.

Use information from Figure 1 and Figure 2.
\qquad
\qquad
\qquad
\qquad

The cell in Figure 1 divides once every 30 minutes.
Table 2 shows how many cells are present after a given time.

Table 2

Time in minutes	Number of cells present
0	1

For more help, please our website www.exampaperspractice.co.uk

30	2
60	4

(f) Calculate how many cells will be present after 2 hours.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Number of cells $=$ \qquad

Cells like the one in Figure 1 are kept in a culture solution for 25 hours.
The graph below shows the number of live cells present.

(g) Describe the changes in the number of live cells shown in the graph above in the first 20 hours.

Use data from the graph in your answer.

For more help, please our website www.exampaperspractice.co.uk

EXAM PAPERS PRACTICE
\qquad
(h) Suggest one reason why the number of live cells decreases after 20 hours.
\qquad
\qquad
\qquad
\qquad

Q6.
The image below shows part of a root from a cress plant.

(a) What type of microscope was used to create the image above?
\qquad
\square
(b) The magnification of the cress root in the image above is $\times 200$.

There are 1000 micrometres $(\mu \mathrm{m})$ in a millimetre (mm).
Calculate the real length of the root hair, \mathbf{X}.
Give your answer in micrometres ($\mu \mathrm{m}$).
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad

$$
\text { Real length } \mathbf{X}=
$$

\qquad $\mu \mathrm{m}$
(c) Root hair cells take up water from the soil.

Explain one way in which the root hair cell is adapted to this function.
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad

The table shows the water uptake by a plant's roots on two different days.

	Mean water uptake in $\mathbf{~ c m}^{\mathbf{3}}$ per hour
Cold day	1.8

For more help, please our website www.exampaperspractice.co.uk

Hot day	3.4

(d) Explain why the mean rate of water uptake is higher on a hot day than on a cold day.
\qquad
\qquad
\qquad

\qquad

\qquad

\qquad
\qquad
\qquad
\qquad
(e) The concentration of mineral ions in the soil is lower than in root hair cells.

Root hair cells take up mineral ions from the soil.
Root hair cells contain mitochondria.
Explain why root hair cells contain mitochondria.
\qquad
\qquad -

EXAM PAPERS PRACTICE
(4)
(Total 12 marks)

Q7.
A student carried out an investigation using leaf epidermis.
This is the method used.

1. Peel the lower epidermis from the underside of a leaf.
2. Cut the epidermis into six equal sized pieces.
3. Place each piece of lower epidermis into a different Petri dish.
4. Add $5 \mathrm{~cm}^{3}$ of salt solution to the six Petri dishes. Each Petri dish should have a different concentration of salt solution.
5. After 1 hour, view each piece of epidermis under a microscope at $\times 400$ magnification.
6. Count and record the total number of stomata present and the number of open stomata that can be seen in one field of view.

The student's results are shown in the table.

$\left.$| Concentratio
 n of salt
 solution in
 mol / dm |
| :--- | :---: | :---: | :---: |\quad| Number of |
| :---: |
| stomata in |
| field of view | | Number of |
| :---: |
| open |
| stomata in |
| field of view |\quad| Percentage (\%) |
| :---: |
| of open |
| stomata in field |
| of view | \right\rvert\,

(a) Calculate value \mathbf{X} in the table above.
\qquad
\qquad
\qquad
$X=$ \qquad \%
(b) Give one conclusion from the results in the table above.
\qquad
\qquad
\qquad
\qquad
(c) How could the student find out what concentration of salt solution would result in half of the stomata being open?
\qquad
\qquad
\qquad
——
(d) The student measured the real diameter of the field of view to be 0.375 mm .

Calculate the number of open stomata per mm^{2} of leaf for the epidermis placed in $0.4 \mathrm{~mol} / \mathrm{dm}^{3}$ salt solution.

Use information from the table above.
Take π to be 3.14
\qquad

Number of open stomata $=$ \qquad per mm²
(e) The diagram below shows two guard cells surrounding a closed stoma and two guard cells surrounding an open stoma.

When light intensity is high potassium ions are moved into the guard cells.
Describe how the movement of potassium ions into the guard cells causes the stoma to open.
\qquad

Q8.
Fresh milk contains bacteria.
Some students investigated decay caused by the bacteria in fresh milk.
This is the method used:

1. Put $200 \mathrm{~cm}^{3}$ of fresh milk in a sterilised flask.
2. Leave the flask for 3 days at $20^{\circ} \mathrm{C}$.
3. Measure the pH of the milk each day using universal indicator paper.

Figure 1 and Figure 2 show the apparatus the students used.

Figure 1

Figure 2

(a) Give one reason why the students sterilised the flask before adding the milk.
\qquad
\qquad
\qquad
\qquad
(b) Describe how the students could sterilise the flask in a school laboratory.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
-
(c) Why did the students put a cap on top of the flask?
\qquad
\qquad
\qquad
\qquad
(d) The table shows the students' results.

Table 1

Time in days	Colour of universal indicator paper	$\mathbf{p H}$
0	Olive-green	
1	Olive-green	
2	Olive-green	
3	Orange-green	

Complete Table 1.
Use information from Figure 2.
(e) The students repeated their investigation with two changes to the method:

- they used a pH meter to measure the pH
- they left the apparatus set up for 6 days instead of for 3 days.

Suggest a reason why each of these changes improves the investigation.
Using a pH meter

Leaving the apparatus set up for 6 days
\qquad
\qquad
\qquad

Table 2 shows the results of the students' second investigation.
Table 2

Time in days	$\mathbf{p H}$
0	7.0
1	7.0
2	6.7
3	6.0
4	5.0
5	4.5
6	4.5

(f) Complete the graph below.

You should:

- label the x-axis
- plot the data from Table 2
- draw a line of best fit.

(g) Give one reason for each of the following.

Use information from Table 2 and the graph above.
The pH did not change during the first day:

The pH decreased after day 1 :
\qquad
\qquad

There was no change in pH between days 5 and 6 :
\qquad
\qquad
\qquad
(h) The students did both of their investigations at $20^{\circ} \mathrm{C}$

The students then repeated the investigation with the pH meter, but at $25^{\circ} \mathrm{C}$
Predict how the new results would be:

- similar to the results at $20^{\circ} \mathrm{C}$
- different from the results at $20^{\circ} \mathrm{C}$

Similarity
\qquad
\qquad

Difference
\qquad
\qquad
\qquad

Q9.
Figure 1 shows a human cheek cell viewed under a light microscope.
Figure 1

(a) Label the nucleus and cell membrane on Figure 1.
(b) Cheek cells are a type of body cell.

Body cells grow through cell division.
What is the name of this type of cell division?
Tick one box.

Differentiation

Mitosis

Specialisation \square
(c) Ribosomes and mitochondria are not shown in Figure 1.

What type of microscope is needed to see ribosomes and mitochondria?
\qquad
\qquad
(d) What is the advantage of using the type of microscope you named in part (c)? Tick one box.

Cheaper \square

Higher magnification \square

Lower resolution \square
(e) The cheek cell in Figure 2 is magnified 250 times.

The width of the cell is shown by the line \mathbf{D} to \mathbf{E}.
Figure 2

Calculate the width of the cheek cell in micrometres ($\mu \mathrm{m}$).
Complete the following steps.
Measure the width of the cell using a ruler \qquad mm

Use the equation to work out the real width of the cell in mm:
real size $=\frac{\text { image size }}{\text { magnification }}$
Convert mm to $\mu \mathrm{m}$ \qquad $\mu \mathrm{m}$
(f) A red blood cell is $8 \mu \mathrm{~m}$ in diameter.

A bacterial cell is 40 times smaller.
Calculate the diameter of the bacterial cell.

Tick one box.
$0.02 \mu \mathrm{~m}$

For more help, please our website www.exampaperspractice.co.uk

上目
EXAM PAPERS PRACTICE

Q10.
Figure 1 shows photographs of some animal cells at different stages during the cell cycle.

Figure 1

(a) Which photograph in Figure 1 shows a cell that is not going through mitosis? Tick one box.
A \square
B \square
C \square
(b) Describe what is happening in photograph \mathbf{A}.
\qquad
(c) A student wanted to find out more about the cell cycle.

The student made a slide of an onion root tip.
She counted the number of cells in each stage of the cell cycle in one field of view.

The table below shows the results.

	Stages in the cell cycle					
	Non-dividing cells	Stage 1	Stage 2	Stage 3	Stage 4	Total
Number of cells	20	9	4	2	1	36

Each stage of the cell cycle takes a different amount of time.
Which stage is the fastest in the cell cycle?
Give a reason for your answer.
Stage \qquad
Reason
\qquad
\qquad
\qquad
(d) The cell cycle in an onion root tip cell takes 16 hours.

Calculate the length of time Stage 2 lasts in a typical cell.
Give your answer to 2 significant figures.

For more help, please our website www.exampaperspractice.co.uk
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Time in Stage $2=$ \qquad minutes
(e) Bacteria such as Escherichia coli undergo cell division similar to mitosis.

Figure 2 shows a growth curve for E. coli grown in a nutrient broth.
Figure 2

What type of cell division causes the change in number of E. coli cells at \mathbf{P} ?
(f) Suggest why the number of cells levels out at \mathbf{Q}.
\qquad

Q11.
Explain how the human circulatory system is adapted to:

- supply oxygen to the tissues
- remove waste products from tissues.
\qquad
(Total 6 marks)

Q12.

Pathogens are microorganisms that cause infectious diseases.
(a) The graph shows the percentage of children under 5 years old who died from infectious diseases, in the UK, in four different years.

(i) Between 1750 and 1850 vaccinations were also developed.

What is in a vaccine?

Tick (\checkmark) one box.
large amounts of dead pathogens \square

For more help, please our website www.exampaperspractice.co.uk
large amounts of live pathogens \square
small amounts of dead pathogens

(ii) The advances in medicine had an effect on death rate.

Describe the effect these advances had between 1750 and 1850.
To gain full marks you should include data from the graph above.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

(b) Antibiotics were developed in the 1940s. Antibiotics kill bacteria.
(i) Which one of the following is an antibiotic?

Draw a ring around the correct answer.
cholesterol
penicillin
thalidomide
(ii) The use of antibiotics has not reduced the death rate due to all diseases to zero.

Suggest two reasons why.
1.
\qquad
-
\qquad
2.

For more help, please our website www.exampaperspractice.co.uk
\qquad
(c) In school laboratories, bacteria should be grown at a maximum temperature of $25^{\circ} \mathrm{C}$.

Give one reason why companies testing new antibiotics grow bacteria at $37^{\circ} \mathrm{C}$.
\qquad
\qquad
\qquad
\qquad
(1)
(Total 7 marks)

Q13.

Living organisms are made of cells.
(a) Animal and plant cells have several parts. Each part has a different function.

Draw one line from each cell part to the correct function of that part.

Cell part

\square

Function

Where most energy is released in respiration

> Controls the movement of substances into and out of the cell

Controls the activities of the cell

Where proteins are made
(b) The diagram below shows a cell from a plant leaf.

Which two parts in the diagram above are not found in an animal cell?
1.
\qquad
2.
\qquad

Q14.
Enzymes are made and used in all living organisms.
(a) What is an enzyme?
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(b) Many enzymes work inside cells.

In which part of a cell will most enzymes work?
Draw a ring around the correct answer.

cell membrane
 cytoplasm
 nucleus

(c) We can also use enzymes in industry.

Hydrogen peroxide is a chemical that can be used to preserve milk.
Adding a small amount of hydrogen peroxide to the milk kills the bacteria that cause decay. Hydrogen peroxide does not kill all disease-causing bacteria.

The enzyme catalase can be added later to break down the hydrogen peroxide to oxygen and water.

A different way of preserving the milk is by heating it in large machines to 138 ${ }^{\circ} \mathrm{C}$ for a few seconds.

Suggest one advantage and one disadvantage of using hydrogen peroxide and catalase to preserve milk instead of using heat treatment.

Advantage of hydrogen peroxide and catalase
\qquad
\qquad
\qquad
\qquad

Disadvantage of hydrogen peroxide and catalase
\qquad
\qquad
\qquad
\qquad

Q15.

The image below shows an epithelial cell from the lining of the small intestine.

(a) (i) In the image above, the part of the cell labelled \mathbf{A} contains chromosomes.

What is the name of part \mathbf{A} ?
\qquad
\qquad
(ii) How are most soluble food molecules absorbed into the epithelial cells of the small intestine?

Draw a ring around the correct answer.
diffusion osmosis respiration
(b) Suggest how the highly folded cell surface helps the epithelial cell to absorb soluble food.
\qquad
\qquad
\qquad
\qquad
(c) Epithelial cells also carry out active transport.
(i) Name one food molecule absorbed into epithelial cells by active transport.
\qquad
\qquad
(ii) Why is it necessary to absorb some food molecules by active transport?
\qquad
\qquad
\qquad
\qquad
(ii) Suggest why epithelial cells have many mitochondria.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(d) Some plants also carry out active transport.

Give one substance that plants absorb by active transport.
\qquad
\qquad

Q16.

The diagram shows a method used to grow pure cultures of a bacterium.

(a) Name apparatus \mathbf{A} and apparatus \mathbf{B}.

Apparatus A \qquad
Apparatus B \qquad
(b) (i) Why should apparatus \mathbf{A} and apparatus \mathbf{B} be sterilised before they are used?
\qquad
\qquad
\qquad
\qquad
(ii) How should apparatus \mathbf{A} be sterilised?

Tick (\checkmark) one box.

Using enzymes

For more help, please our website www.exampaperspractice.co.uk

(iii) Adhesive tape is used to secure the lid on apparatus B.

Give one reason why the lid of apparatus B should be securely taped in place.
\qquad
\qquad
\qquad
\qquad
(c) What is the maximum temperature that should be used in schools to grow the bacteria in apparatus \mathbf{B} ?

Draw a ring around the correct answer.
$10{ }^{\circ} \mathrm{C} \quad 25^{\circ} \mathrm{C} \quad 50{ }^{\circ} \mathrm{C}$

Q17.

Human cells and yeast cells have some parts that are the same.
(a) The diagram shows a yeast cell.

Parts \mathbf{A} and \mathbf{B} are found in human cells and in yeast cells. On the diagram, label parts \mathbf{A} and \mathbf{B}.
(b) Many types of cell can divide to form new cells.

Some cells in human skin can divide to make new skin cells.
Why do human skin cells need to divide?
\qquad
\qquad
\qquad
——
(c) Human stem cells can develop into many different types of human cell.
(i) Use the correct answer from the box to complete the sentence.

embryos	hair	nerve cells

Human stem cells may come from
\qquad
\qquad
(ii) Use the correct answer from the box to complete the sentence.

cystic fibrosis	paralysis	polydactyly

Human stem cells can be used to treat

For more help, please our website www.exampaperspractice.co.uk

EXAM PAPERS PRACTICE
\qquad
\qquad
(1)
(Total 5 marks)

Q18.

The diagram below shows the parts of the body that digest and absorb food.
It also shows some details about the structure of the stomach.

(a) Complete the table to show whether each structure is an organ, an organ system or a tissue.

For each structure, tick (\checkmark) one box.

Structure	Organ	Organ system	Tissue
Stomach			
Cells lining the stomach			
Mouth, oesophagus, stomach, liver, pancreas, small and large intestine			

(b) (i) The blood going to the stomach has a high concentration of oxygen. The cells lining the stomach have a low concentration of oxygen.

Complete the following sentence.
Oxygen moves from the blood to the cells lining the stomach by the process of \qquad .
(ii) What other substance must move from the blood to the cells lining the stomach so that respiration can take place?

Draw a ring around the correct answer.

glucose protein starch

(iii) In which part of a cell does aerobic respiration take place?

Draw a ring around the correct answer.

cell membrane mitochondria nucleus

(1)
(Total 5 marks)

Q19.

The image below shows some muscle cells from the wall of the stomach, as seen through a light microscope.

(a) Describe the function of muscle cells in the wall of the stomach.
\qquad
\qquad
\qquad
-
\qquad
-

For more help, please our website www.exampaperspractice.co.uk
\qquad
\qquad
(b) The figure above is highly magnified.

The scale bar in the figure above represents 0.1 mm .
Use a ruler to measure the length of the scale bar and then calculate the magnification of the figure above.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Magnification $=$ \qquad times
(c) The muscle cells in Figure above contain many mitochondria.

What is the function of mitochondria?
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(d) The muscle cells also contain many ribosomes. The ribosomes cannot be seen in the figure above.
(i) What is the function of a ribosome?
\qquad
\qquad

For more help, please our website www.exampaperspractice.co.uk
\qquad
\qquad
(ii) Suggest why the ribosomes cannot be seen through a light microscope.
\qquad
\qquad
\qquad
\qquad

Q20.

The diagram below shows a single-celled alga which lives in fresh water.

(a) Which part of the cell labelled above:
(i) traps light for photosynthesis
\qquad
\qquad
(ii) is made of cellulose?
\qquad
\qquad
(b) In the freshwater environment water enters the algal cell.
(i) What is the name of the process by which water moves into cells?

For more help, please our website www.exampaperspractice.co.uk
\qquad
(ii) Give the reason why the algal cell does not burst.
\qquad
\qquad
\qquad
\qquad
(c) (i) The alga can photosynthesise.

Complete the word equation for photosynthesis.

(ii) The flagellum helps the cell to move through water. Scientists think that the flagellum and the light-sensitive spot work together to increase photosynthesis.

Suggest how this might happen.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(d) Multicellular organisms often have complex structures, such as lungs, for gas exchange.

Explain why single-celled organisms, like algae, do not need complex structures for gas exchange.
\qquad
\qquad
\qquad

For more help, please our website www.exampaperspractice.co.uk
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Q21.
The diagram below shows a cross-section of a plant root. The transport tissues are labelled.

(a) (i) What is tissue \mathbf{A} ?

Draw a ring around the correct answer. cuticle epidermis xylem
(ii) Name two substances transported by tissue A.
1.
\qquad
2.
\qquad
\qquad
(2)

For more help, please our website www.exampaperspractice.co.uk
(b) Phloem is involved in a process called translocation.
(i) What is translocation?
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(ii) Explain why translocation is important to plants.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(c) Plants must use active transport to move some substances from the soil into root hair cells.
(i) Active transport needs energy.

Which part of the cell releases most of this energy?
Tick (\checkmark) one box.

(ii) Explain why active transport is necessary in root hair cells.
\qquad

Q22.

Some infections are caused by bacteria.
(a) The genetic material is arranged differently in the cells of bacteria compared with animal and plant cells.

Describe two differences.
\qquad
\qquad
\qquad
-
\qquad
\qquad
\qquad
-
(b) Tuberculosis (TB) is an infection caused by bacteria.

The table below shows the number of cases of TB in different regions of southern England from 2000-2011.

Number of cases of TB per 100000 people

Year	London	South	South

For more help, please our website www.exampaperspractice.co.uk

		East	West
2000	37	5	3
2001	36	6	4
2002	42	6	6
2003	42	7	4
2004	42	7	5
2005	49	8	5
2006	44	8	3
2007	43	8	5
2008	44	8	5
2009	44	9	6
2010	42	9	5
2011	45	10	5

(i) How does the number of cases of TB for London compare with the rest of southern England?
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(ii) Describe the pattern in the data for cases of TB in the South East.
\qquad
\qquad
\qquad
\qquad
(iii) Describe the pattern in the data for cases of TB in the South West.

For more help, please our website www.exampaperspractice.co.uk

(c) (i) On the graph paper below:

- plot the number of cases of TB in London
- label both the axes on the graph
- draw a line of best fit.
(ii) Suggest why a student thought the value for 2005 in London was anomalous.
\qquad
\qquad
\qquad
\qquad
(d) People can be vaccinated against TB.

Suggest how a vaccination programme would reduce the number of people with TB.

Details of how a vaccine works are not required.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Q23.

The diagram below shows a cell.

(a) Draw a ring around the correct answer to complete each sentence.

(i) In the nucleus of a cell, genes are part of	chromosomes.
membranes.	
receptors.	.

(ii) Different genes control different

characteristics gametes nuclei

EXAM PAPERS PRACTICE
(iii) Studying the similarities and differences between organisms allows us to

(b) Complete the following sentence.

Living things can be grouped into animals, microorganisms and \qquad

Q24.

The image below shows some cells in the lining of the stomach.

(a) (i) Use words from the box to name structures \mathbf{A} and \mathbf{B}.

cell membrane	chloroplast	cytoplasm	vacuole

A \qquad

B \qquad
(ii) What is the function of the nucleus?

Tick (\checkmark) one box.

To control the activities of the cell \square

To control movement of substances into and out of the cell \square

To release energy in respiration \square
(b) Draw one line from each part of the human body to its correct scientific name.

Q25.

A student is given a tube containing a liquid nutrient medium. The medium contains one type of bacterium.
(a) In this question you will be assessed on using good English, organising information clearly and using specialist terms where appropriate.

The student is told to grow some of the bacteria on agar jelly in a Petri dish.
Describe how the student should prepare an uncontaminated culture of the bacterium in the Petri dish.

You should explain the reasons for each of the steps you describe.

For more help, please our website www.exampaperspractice.co.uk
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
$-$
\qquad
\qquad
\qquad
\qquad
\qquad
-
\qquad
-
\qquad
\longrightarrow
\qquad
$\underline{ }$
(b) After the culture had been prepared, the student added one drop of each of five disinfectants, A, B, C, D and E, onto the culture.

The diagram shows the appearance of the Petri dish 3 days later.

For more help, please our website www.exampaperspractice.co.uk
(i) There are areas on the agar jelly where no bacteria are growing. Why?
\qquad
\qquad
\qquad
\qquad
(ii) The student concluded that disinfectant \mathbf{D} would be the best for using around the home.

Give one reason why the student might be correct.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Give one reason why the student might not be correct.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Q26.

The diagram shows a cell.

(a) (i) Use words from the box to name the structures labelled \mathbf{A} and \mathbf{B}. cell membrane chloroplast cytoplasm nucleus

A \qquad
B \qquad
(ii) The cell in the diagram is an animal cell.

How can you tell it is an animal cell and not a plant cell?
Give two reasons.
1.
\qquad
\qquad
-
2.
\qquad
\qquad
\qquad
\qquad
(b) Oxygen will diffuse into the cell in the diagram.

For more help, please our website www.exampaperspractice.co.uk

Why?
Use information from the diagram.
\qquad
\qquad
\qquad
(c) The cell shown in the diagram is usually found with similar cells.

Draw a ring around the correct answer to complete the sentence.

Scientists call a group of similar cells | an organ. |
| :--- |
| a system. |
| a tissue. |

Q27.

Diagram 1 shows a cell from the pancreas.
Diagram 2 shows part of the cell seen under an electron microscope.

Part \mathbf{A} is where most of the reactions of aerobic respiration happen.
(a) (i) Name part A.
\qquad
(ii) Complete the equation for aerobic respiration.

$$
\begin{gathered}
\text { glucose }+ \text { oxygen } \\
\text { energy) }
\end{gathered} \longrightarrow+\longrightarrow
$$

(iii) Part \mathbf{A} uses oxygen.

Explain how oxygen passes from the blood to part A.
\qquad
\qquad
\qquad

For more help, please our website www.exampaperspractice.co.uk
\qquad
(b) The pancreas cell makes enzymes.

Enzymes are proteins.
Describe how the ribosomes and part A help the cell to make enzymes.
\qquad
-
\qquad
\qquad

Q28.

The diagram shows some of the stages in IVF (in vitro fertilisation).

(a) Use words from the box to name structures $\mathbf{A}, \mathbf{B}, \mathbf{C}$ and \mathbf{D}.

egg	embryo	fertilised egg	ovary	sperm

Structure A \qquad
Structure B \qquad
Structure C \qquad
Structure D \qquad
(b) What do doctors do next with structure D?
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
-
(c) The table gives statistics for an IVF clinic.

	Age of women treated			
	Below 35 years	$\mathbf{3 5 - 3 7}$ years	$\mathbf{3 8 - 3 9}$ years	$\mathbf{4 0 - 4 2}$ years
Number of women treated	414	207	106	53
Number of women who produced one baby	90	43	17	1
Number of women who produced twins	24	8	4	1
Number of women who produced triplets	1	0	0	0

(i) About what proportion of the treated women aged $35-37$ years produced one or more babies?

Draw a ring around your answer. one quarter one third half
(ii) This clinic does not give IVF treatment to women over 42 years of age.

Use data from the table to explain why.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(iii) The committee which regulates IVF treatment now advises that only one embryo is used in each treatment.

Suggest one reason for this.
\qquad
\qquad

Q29.

The diagrams show four types of cell, A, B, C and \mathbf{D}.
Two of the cells are plant cells and two are animal cells.

B

C

(a) (i) Which two of the cells are plant cells?

Tick (\checkmark) one box.

A and B

A and D \square

EXAM PAPERS PRACTICE

C and D

(1)
(ii) Give one reason for your answer.
\qquad
\qquad
\qquad
\qquad
(1)
(b) (i) Which cell, $\mathbf{A}, \mathbf{B}, \mathbf{C}$ or \mathbf{D}, is adapted for swimming? \square
(ii) Which cell, $\mathbf{A}, \mathbf{B}, \mathbf{C}$ or \mathbf{D}, can produce glucose by

(c) Cells A, B, C and D all use oxygen.

For what process do cells use oxygen?
Draw a ring around one answer.

osmosis
 photosynthesis
 respiration

(1)
(Total 5 marks)

Q30.
Diagrams A, B and \mathbf{C} show cells from different parts of the human body, all drawn to the same scale.
A
B
C

Key

- Mitochondrion

Ribosome
(a) Which cell, A, B or C, appears to be best adapted to increase diffusion into or out of the cell?

Give one reason for your choice.
\qquad
\qquad
\qquad
——
(b) (i) Cell C is found in the salivary glands.

Name the enzyme produced by the salivary glands.
\qquad
\qquad
(ii) Use information from the diagram to explain how cell \mathbf{C} is adapted for producing this enzyme.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Q31.
(a) Mr and Mrs Smith both have a history of cystic fibrosis in their families. Neither of them has cystic fibrosis.
Mr and Mrs Smith are concerned that they may have a child with cystic fibrosis.

Use a genetic diagram to show how they could have a child with cystic fibrosis.

Use the symbol \mathbf{A} for the dominant allele and the symbol a for the recessive allele.
(b) Mr and Mrs Smith decided to visit a genetic counsellor who discussed embryo screening.

Read the information which they received from the genetic counsellor.

- Five eggs will be removed from Mrs Smith's ovary while she is under an anaesthetic.
- The eggs will be fertilised in a dish using Mr Smith's sperm cells.
- The embryos will be grown in the dish until each embryo has about thirty cells.
- One cell will be removed from each embryo and tested for cystic fibrosis.
- A suitable embryo will be placed into Mrs Smith's uterus and she may become pregnant.
- Any unsuitable embryos will be destroyed.
(i) Suggest why it is helpful to take five eggs from the ovary and not just one egg.
\qquad
\qquad
\qquad

(ii) Evaluate the use of embryo screening in this case.

Remember to give a conclusion to your evaluation.
\qquad
(c) In someone who has cystic fibrosis the person's mucus becomes thick.

The diagram shows how, in a healthy person, cells at the lung surface move

For more help, please our website www.exampaperspractice.co.uk
chloride ions into the mucus surrounding the air passages.

The movement of chloride ions causes water to pass out of the cells into the mucus.

Explain why.
\qquad

Q32.
The diagram shows how a student transferred some sour milk from a bottle to a Petri
dish of nutrient agar.

1 The student heated a

3 He removed a drop of sour milk from a bottle using the wire loop

4 He raised the lid a little from a Petri dish of sterilised nutrient agar

5 He spread the sample of sour milk across the nutrient agar

6 He replaced the lid and put the Peri dish in an incubator at $25^{\circ} \mathrm{C}$ for 2 days

List A gives four actions carried out by the student.
List B gives five possible effects of these actions.

For more help, please our website www.exampaperspractice.co.uk

EXAM PAPERS PRACTICE

Draw a straight line from each action in List A to its effect in List B.
Draw only one line from each action.

List A - Action

List B - Effect
Risk of contamination with bacteria increased

Q33.
(a) The diagrams show the structures of a yeast cell and a bacterial cell.

(i) Both the yeast cell and the bacterial cell have structures \mathbf{A} and \mathbf{B}.

Name structures A and B.
A \qquad
B \qquad
(ii) The yeast cell and the bacterial cell have different shapes and sizes.

Give one other way in which the structure of the bacterial cell is different from the structure of the yeast cell.
\qquad
\qquad
\qquad
\qquad
(b) Sourdough bread is light in texture and tastes slightly sour. The bread is made using two types of microorganism, a yeast and a bacterium. The bacterium can make acids such as lactic acid. The acid makes the bread taste sour.

The graph shows how the growth rates of the yeast and the bacteria change with temperature.

(i) Sourdough bread rises fastest at $27^{\circ} \mathrm{C}$.

Use information from the graph to explain why.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(ii) The bread tastes most sour if it rises at $32^{\circ} \mathrm{C}$.

Use information from the graph to explain why.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

For more help, please our website www.exampaperspractice.co.uk
\qquad
(2)
(Total 7 marks)

Q34.
(a) The diagram shows the structure of a bacterial cell.

(i) On the diagram use words from the box to label structures \mathbf{A}, \mathbf{B} and \mathbf{C}.
cell membrane cell wall chloroplast cytoplasm plasmid
(ii) Give one difference between the structure of the bacterial cell and an animal cell.
\qquad
\qquad
(iii) Name one structure that is found in a plant cell but is not found in a bacterial or an animal cell.
\qquad
\qquad
(b) Cells can be specialised for a particular job.

The diagram shows the structure of a human sperm cell.

Describe how the long tail and the mitochondria help the sperm to do its job.
Long tail

For more help, please our website www.exampaperspractice.co.uk
\qquad
\qquad
\qquad
\qquad

Mitochondria
\qquad
\qquad
\qquad
\qquad
(Total 9 marks)

Mark schemes

Q1.
(a) nucleus
(b) gene(s)
allow allele(s)
(c) copying of chromosomes
(d) mitochondria
(e) 60-45
or
120-105

15 (minutes)
1
an answer of 15 (minutes) scores 2 marks
(f) C
(g) 8
(h) to repair tissues

1

Q2.
(a)

additional line from a level of organisation negates the mark for that level of organisation
(b) palisade mesophyll
(c) $\frac{50}{8}$

6 / 6.25 / 6.3 (micrometres)
an answer of 6 / 6.25 / 6.3 scores 2 marks
(d) they have no chloroplasts / chlorophyll
allow they are underground
allow they don't get (access to) light
allow (because) photosynthesis needs light
allow they can't absorb light
ignore 'sun'
ignore 'it is dark'
(e) differentiation
(f) to protect endangered plants from extinction
(g) plants can be produced quickly
(h) any one from:

- glucose / sugars / starch
- amino acids / protein
- hormones
allow named hormones e.g. auxin
- ions / minerals
allow magnesium / nitrate
- vitamins
allow named vitamins e.g. vitamin B
- water
allow $\mathrm{H}_{2} \mathrm{O} / \mathrm{H} 2 \mathrm{O}$
ignore oxygen / carbon dioxide / agar / nutrients / fertiliser

Q3.
(a) toxins / poisons (secreted by / from / in bacteria)
(b) any two from:

- wash hands after using toilet / being sick
or
wash hands before preparing / handling food
or
do not prepare food (whilst infected)
ignore 'wash hands' unqualified ignore reference to coughing / sneezing
- isolate yourself
allow examples of how isolation could be achieved
- disinfect clothes / surfaces
- do not share utensils / cutlery / towels
(c) antibiotics
allow named examples of antibiotics
(d) immune system is damaged / weakened or immune system doesn't function properly
allow immunocompromised allow lack of / no white blood cells
(e) any one from:
- (give chickens) antibiotics
allow (give chickens) monoclonal antibodies
- don't sell infected chickens / eggs
allow don't sell the chickens / eggs ignore don't sell chickens / eggs
- keep infected chickens isolated / indoors
allow keep the chickens indoors ignore keep chickens indoors
- slaughter the infected chickens
ignore vaccination / chlorination / disinfection
(f) (cleaning liquid) B
and
greater reduction in number of bacteria (after cleaning) in both locations ignore few bacteria in both locations
allow neither / both and idea of experimental error
(g) radius (of area with no bacteria growing)
allow diameter (of the area with no bacteria growing)
ignore πr^{2} unqualified
allow idea of placing agar plate onto graph paper
and counting the squares not covered with bacteria
(h) repeat and look to see if results are similar ignore repeat unqualified allow repeat and look to see if results are different allow repeat and see if there are anomalies ignore repeat and identify anomalies ignore repeat and compare unqualified
(i) any one from:
- toxicity / side / health effects
ignore harmful / dangerous
allow reference to allergies
- effect on other types of bacteria / pathogens
allow not tested on other types of bacteria ignore germs
- interaction with other cleaners
- ease of use
- dilution factor of each cleaner (vs. cost)
ignore concentration unqualified
- time cleaner is effective for ignore how long the cleaner lasts for allow reference to odour of cleaning liquid ignore reference to cost unqualified ignore environmental effects / flammability

Q4.
(a) kills microorganisms / bacteria / fungi / viruses / microbes
allow to remove microorganisms / bacteria / fungi
/ viruses / microbes
ignore germs
allow so mycoprotein is not contaminated
(which) compete for food / oxygen
Or
which make toxins
allow so mycoprotein is safe to eat
or
which are pathogens
or
which might kill the fungus / Fusarium
(b) $30^{\circ} \mathrm{C}$
(c) for (aerobic) respiration do not accept anaerobic
(which) releases energy (for growth)
do not accept produces energy
allow glucose is used to make other organic substances e.g. protein
(d) any two from:
so Fusarium can

- grow faster / better
- get sufficient food / glucose / minerals
allow more / enough
- get sufficient oxygen
allow more / enough
- get rid of sufficient carbon dioxide
allow more / enough
allow waste
- be kept at a (suitable) temperature
allow to avoid 'clumping'

Q5.
(a)

\times	\checkmark	\checkmark
\checkmark	\times	\checkmark

1 mark for each correct row if no other marks awarded allow a mark for one correct column
(b) a bacterial cell
(c) make / synthesise / produce protein allow produce enzymes
(d) $0.0015(\mathrm{~mm})$ allow $1.5 \times 10^{-3}(\mathrm{~mm})$
(e) mitochondria are longer / bigger (than the cell)

allow too big

(f)

2^{4}

an answer of 16 scores 2 marks
allow $2 \times 2 \times 2 \times 2$ or a correct list showing doubling at each time interval

16
allow 90 mins = 8 for 1 mark
(g) (number of live cells / bacteria) stays level / the same until 11 hours answer must refer to number of live cells / bacteria (not the shape of the graph)
allow (number of cells / bacteria) is very low until 11 hours allow number in the range 10-11 hours
then (number of live cells / bacteria) increases rapidly to 2.5×10^{8} or
from 11 hours to 14.5 hours
allow (then) increases exponentially
then (number of live cells / bacteria) stays at 2.5×10^{8}
allow (number of live cells / bacteria) stays the same for the next 5 hours
or
stays the same from 15 to 20.5 hours
if no other mark awarded allow for 1 mark the idea that the graph is level, then increases, then levels off again
(h) any one from:

- lack of food / nutrients / oxygen / space
or
competition for space
- build-up of toxins allow ethanol
- temperature too high

Q6.
(a) electron (microscope)
(b) $\frac{30000}{200}$
an answer of $150(\mu \mathrm{~m})$ scores 2 marks

150 ($\mu \mathrm{m}$)
if answer is incorrect allow for $\mathbf{1}$ mark sight of 0.015 / 0.15 / 1.5 / 15
allow ecf for incorrect measurement of line \boldsymbol{X} for max $\mathbf{1}$ mark
(c) either
large surface area
allow (vacuole contains) cell sap that is more concentrated than soil water (1)
for more / faster osmosis
create / maintain concentration / water potential gradient (1)
or
allow thin (cell) walls
for short(er) diffusion distance
(d) (on hot day) more water lost
allow converse for a cold day if clearly indicated
more transpiration
or
more evaporation
so more water taken up (by roots) to replace (water) loss (from leaves)
(e) (aerobic) respiration occurs in mitochondria do not accept anaerobic respiration
(mitochondria / respiration) release energy
do not accept energy produced / made / created
(energy used for) active transport
to transport ions, against the concentration gradient
or
from a low concentration to a high concentration

Q7.
(a) 86
allow this answer only
do not accept 85.7
if no answer given, check for answer in the table
(b) as salt concentration increases, percentage of open stomata (in field of view) decreases (above $0.1 \mathrm{~mol} / \mathrm{dm}^{3}$)
or
allow percentage of open stomata stays the same between 0.0 and 0.1 ($\mathrm{mol} / \mathrm{dm}^{3}$ then decreases as salt concentration increases)
ignore references to number of open stomata
allow converse
allow idea that mean concentration (of salt) in guard cells is between 0.3 and 0.4 mol per dm^{3}
(c) use concentrations between $0.3\left(\mathrm{~mol} / \mathrm{dm}^{3}\right)$ and $0.4\left(\mathrm{~mol} / \mathrm{dm}^{3}\right)$ or
draw a graph of the data and read off the value at 50% (open stomata)
allow a list of appropriate concentrations i.e. $0.32 \mathrm{~mol} / \mathrm{dm}^{3}$), $0.34\left(\mathrm{~mol} / \mathrm{dm}^{3}\right), 0.36\left(\mathrm{~mol} / \mathrm{dm}^{3}\right)$ etc.
(d) $\quad\left(\pi \times 0.1875^{2}\right)=0.11\left(\mathrm{~mm}^{2}\right)$
an answer of 36 scores 3 marks
$\frac{4}{0.11}$

36 (per mm²)
allow 36.22 / 36.23 or 36.2
if answer is incorrect allow for $\mathbf{2}$ marks for sight of number of open stomata $=9$ per mm^{2} (diameter used instead of radius) if no other marks awarded allow for 1 mark any one from:

- sight of area $=0.44\left(\mathrm{~mm}^{2}\right)($ diameter used instead of radius)
- \quad sight of number of open stomata $=9.1 / 9.05$ / 9.06 per mm^{2} (diameter used instead of radius and no rounding)
(e) (potassium) ions increase the concentration of the solution (inside guard cells) or
(potassium) ions make cell more concentrated / less dilute allow (potassium) ions decrease concentration of water / water potential (of guard cells)

1
water moves into the (guard) cell by osmosis
cell swells unevenly (so stoma opens)
1

1
as inner wall is less flexible than outer wall or thick part of the wall is less flexible than the thin part (of the wall)

Q8.
(a) to kill microorganisms on / in the flask or so only microorganisms in the milk caused the results
allow bacteria / fungi / microbes
do not accept viruses
ignore germs
(b) heating
to over $100^{\circ} \mathrm{C}$
allow place in oven / pressure cooker do not accept disinfectant allow other suitable method - e.g. use of UV
(c) to prevent microorganisms entering from the air
allow bacteria / fungi / microbes for microorganisms do not accept viruses
ignore germs
(d)

0	olive-green	$\mathbf{7}$
1	olive-green	$\mathbf{7}$
2	olive-green	7
3	orange-green	6

all correct for 1 mark
(e) (pH meter) - more accurate / more precise
allow more exact
allow can measure to 0.1 pH unit
or to smaller intervals of pH
(leaving... 6 days) - obtain greater pH change
or
because there was (very) little change in 3 days
allow more acid will be made
(f) \quad scale $>\frac{1}{2}$ of x-axis
and
x-axis labelled (time in) days
points plotted correctly
all 7 correct $=2$ marks
5 or 6 correct = $\mathbf{1}$ mark
line of best fit = smooth curve through points
do not accept ruled point-to-point
(g) ($1^{\text {st }}$ day) too few bacteria
(after day 1 more bacteria so more) acid made
(days 5-6) sugar / food used up
or
low pH denatures enzymes
or
low pH kills bacteria
allow enzymes do not work
do not accept enzymes killed
(h) (similarity) - same start $\mathrm{pH} /$
pH 7 and end $\mathrm{pH} / \mathrm{pH} 4.5$
or
same pH change $/$ change $=2.5$
(difference) - faster

Q9.
(a) nucleus labelled correctly
cell membrane labelled correctly
(b) mitosis
(c) electron (microscope)
(d) higher magnification
(e) $45(\mathrm{~mm})$

45 / 250 or 0.18 (mm) allow ecf
$180(\mu \mathrm{~m})$
allow $180(\mu \mathrm{~m})$ with no working shown for 3 marks
(f) $0.2 \mu \mathrm{~m}$

Q10.
(a) \mathbf{C}
(b) cytoplasm and cell membrane dividing
accept cytokinesis for 1 mark
1
to form two identical daughter cells
(c) stage 4
only one cell seen in this stage
(d) $(4 / 36) \times 16 \times 60$
$107 / 106.7$

110 (minutes)
allow 110 (minutes) with no working shown for 3 marks
1
(e) binary fission
do not accept mitosis
(f) shortage of nutrients / oxygen
so cells die
or
death rate $=$ rate of cell division

Q11.

Level 3 (5-6 marks):

A detailed and coherent explanation is provided with most of the relevant content, which demonstrates a comprehensive understanding of the human circulatory system. The response makes logical links between content points.

Level 2 (3-4 marks):

The response is mostly relevant and with some logical explanation. Gives a broad understanding of the human circulatory system. The response makes some logical links between the content points.

Level 1 (1-2 marks):

Simple descriptions are made of the roles of some of the following: heart function, gas exchange, named blood vessels, named blood cells. The response demonstrates limited logical linking of points.

0 marks:

No relevant content.

Indicative content

- dual / double circulatory system which means that it has higher blood pressure and a greater flow of blood to the tissues
- heart made of specialised (cardiac) muscle cells which have long protein filaments that can slide past each other to shorten the cell to bring about contraction for pumping blood
- heart pumps blood to lungs in pulmonary artery so that oxygen can diffuse into blood from air in alveoli
- blood returns to heart via pulmonary vein where muscles pump blood to the body via aorta
- oxygen carried by specialised cells / RBCs which contain haemoglobin to bind oxygen and have no nucleus so there is more space available to carry oxygen
- arteries carry oxygenated blood to tissues where capillaries deliver oxygen to cells for respiration and energy release
- thin walls allow for easy diffusion to cells
- large surface area of capillaries to maximise exchange
- waste products removed eg CO_{2} diffuse from cells into the blood plasma
- blood goes back to the heart in veins which have valves to prevent backflow
- cardiac output can vary according to demand / is affected by adrenaline
accept annotated diagrams

Q12.
(a) (i) small amounts of dead pathogens
(ii) decrease
by 60 (\%)
allow from 70(\%) to 10(\%)
allow other correct data treatment
(b) (i) penicillin
(ii) any two from:

- antibiotics only kill bacteria allow antibiotics do not kill viruses
- \quad some bacteria are resistant (to antibiotics)
allow MRSA not killed by antibiotics
- (correct) antibiotics not always used allow course not completed
- deficiency disease(s) not caused by bacteria or cannot be treated by antibiotics
- inherited disease(s) not caused by bacteria or cannot be treated by antibiotics
- 'lifestyle' diseases not caused by bacteria or cannot be treated by antibiotics
eg heart disease / cancer
if no other mark given allow 1 mark for not all diseases are caused by bacteria or some diseases are caused by viruses
(c) bacteria grow faster
allow this is body temp (at which pathogens grow)

Q13.

(b) Cell wall
in either order

Chloroplast
allow (permanent) vacuole

Q14.
(a) a catalyst / speeds up a reaction
ignore it is not used up
it is a protein or it is specific / described or it has an active site allow it only acts on one molecule
(b) cytoplasm
(c) Advantage:
any one from:

- heat would denature proteins in milk
- heat alters texture or flavour of milk
- catalase / enzyme is specific or only affects hydrogen peroxide
- less energy / fuel / lower temperature used so less expensive or less pollution

Disadvantage:
any one from:

- (some pathogens may survive) causing illness
- catalase / enzyme left in milk or may cause allergies or may alter taste

Q15.
(a) (i) nucleus
(ii) diffusion
(b) increases / larger surface area (for diffusion)
ignore large surface area to volume ratio
(c) (i) sugar / glucose
accept amino acids / other named monosaccharides
(ii) against a concentration gradient
or
from low to high concentration
(d) minerals / ions
accept named ion ignore nutrients
do not accept water

Q16.

(a) A (inoculating / wire) loop

B Petri dish
allow (agar) plate
ignore ref to culture medium
(b) (i) to kill (unwanted) bacteria / microorganisms / microbes
allow fungi
ignore viruses / germs
(ii) Using a flame
(iii) any one from:

- so bacteria / microorganisms / microbes / pathogens / fungi
(growing in dish) do not get out
ignore reference to gases
ignore viruses / germs
- so bacteria / microorganisms / microbes / pathogens / fungi (from the air) do not get in.
ignore viruses / germs

Q17.
(a) $\mathbf{A}=$ nucleus
allow phonetic spelling
$\mathbf{B}=(\mathrm{cell})$ membrane
(b) for repair / growth or to replace cells ignore new cells / skin

Q18.
(a)

Structure	Organ	Organ system	Tissue
Stomach	\checkmark		
Cells lining the stomach			\checkmark
Mouth, oesophagus, stomach, liver, pancreas, small and large intestine		\checkmark	

all 3 correct $=2$ marks
2 correct = 1 mark
1 or 0 correct $=0$ marks
(b) (i) diffusion
allow phonetic spelling
(ii) glucose
(iii) mitochondria

Q19.
(a) contract / shorten
ignore relax
do not allow expand
to churn / move / mix food
accept peristalsis / mechanical digestion
ignore movement unqualified
(b) 400
acceptable range 390-410
allow 1 mark for answer in range of 39 to 41
allow 1 mark for answer in range of 3900 to 4100
(c) to transfer energy for use
allow to release / give / supply / provide energy
do not allow to 'make' / दproduce' / 'create' energy
allow to make ATP
ignore to store energy
by (aerobic) respiration or from glucose
do not allow anaerobic
energy released for respiration $=\max 1$ mark
(d) (i) to make protein / enzyme
ignore 'antibody' or other named protein
(ii) too small / very small
allow light microscope does not have sufficient magnification / resolution
allow ribosomes are smaller than mitochondria
ignore not sensitive enough
ignore ribosomes are transparent

Q20.
(a) (i) chloroplast
(ii) cell wall
(b) (i) osmosis
accept diffusion
(ii) cell wall (prevents bursting)
(c) (i) carbon dioxide
allow correct formula
glucose
allow sugar / starch
(ii) any two from:

- light sensitive spot detects light
- tells flagellum to move towards light
- more light = more photosynthesis
(d) (cell has) larger SA:volume ratio
short (diffusion) distance
allow correct description
(diffusion) via cell membrane is sufficient / good enough
or
flow of water maintains concentration gradient

Q21.
(a) (i) xylem
(ii) water
minerals / ions / named example(s)
ignore nutrients
(b) (i) movement of (dissolved) sugar
allow additional substances, eg amino acids / correct named sugar (allow sucrose / glucose)
allow nutrients / substances / food molecules if sufficiently qualified
ignore food alone
(ii) sugars are made in the leaves
so they need to be moved to other parts of the plant for respiration / growth / storage
(c) (i) mitochondria
(ii) for movement of minerals / ions

Do not accept 'water'

1
against their concentration gradient

Q22.
(a) any two from:

- only one 'chromosome’
allow one strand of DNA
- circular
allow loop
- may have plasmids
- not in a nucleus / no nucleus
(b) (i) any one from:
- London is much higher or converse
- more variable / wider range
allow 'on average it is 5 / 6 times greater'
(ii) increases

Included figures must be correct
(iii) overall slight increase
accept 'doesn't change much'
variable / goes up and down
(c) (i) both axes correctly labelled
x = Year
$y=$ Number of cases
correct points
all correct = 2 marks
1-2 errors = 1 mark
> 2 errors = 0 marks
suitable line of best fit
accept straight line or smooth curve
(ii) doesn't fit the pattern / line of best fit
(d) provides immunity / protection (to TB) ignore 'stops people catching it' ignore 'resistance'

1
prevents TB spreading
accept ref to herd immunity

Q23.
(a) (i) Chromosomes
(ii) Characteristics
(iii) Classify
(b) Plants
ignore algae

Q24.
(a) (i) $\mathrm{A}=($ cell $)$ membrane
$B=$ cytoplasm
do not accept cytoplast
(ii) To control the activities of the cell
(b)

extra lines cancel

Q25.
(a) Marks awarded for this answer will be determined by the Quality of Written Communication (QWC) as well as the standard of the scientific response.
Examiners should also refer to the information in the Marking guidance, and apply a 'best-fit' approach to the marking.

0 marks

No relevant content.

Level 1 (1-2 marks)

There is a brief description of at least one of the stages (pre-inoculation, inoculation, post-inoculation).

Level 2 (3-4 marks)

There is a simple description of at least two stages and an explanation of at least one of them.

Level 3 (5-6 marks)
There is a clear description of all three stages and an explanation of at least two of them.

Examples of Biology points made in the response:

Pre-inoculation

- Petri dish and agar sterilised before use
- to kill unwanted bacteria
- inoculating loop passed through flame / sterile swab
- to sterilise / kill (other) bacteria

Inoculation

- loop/swab used to spread/streak bacterium onto agar

Allow other correct methods, eg bacterial lawns

- lid of Petri dish opened as little as possible
- to prevent microbes from air entering

Post-inoculation

- sealed with tape
- to prevent microbes from air entering
- incubate
- to allow growth of bacteria
(b) (i) bacteria killed / destroyed ignore fights / attacks / stops growth / got rid of
(ii) Might be correct
largest area / space where no bacteria are growing
allow most bacteria killed

Might not be correct
(need more evidence as) D may be harmful to people / animals / surfaces
ignore ref to cost / dangerous or harmful unqualified
or may work differently with different bacteria
or disinfectants may be different concentrations
ignore different amounts of disinfectant unless reference to different drop size
or may not last as long
ignore take longer to work
allow reference to anomalous result or not repeated

Q26.
(a) (i) $\mathrm{A}=$ nucleus
$\mathrm{B}=($ cell $)$ membrane
(ii) any two from:
ignore shape

- no (cell) wall
- no (large / permanent) vacuole
- no chloroplasts / chlorophyll
(b) because high to low oxygen / concentration or down gradient allow 'more / a lot of oxygen molecules outside' ignore along / across gradient
(c) a tissue

Q27.
(a) (i) mitochondrion / mitochondria must be phonetically correct
(ii) carbon dioxide / CO_{2}
water / $\mathrm{H}_{2} \mathrm{O}$
in either order accept CO2 but not CO² accept H 2 O or HOH but not $\mathrm{H}^{2} \mathrm{O}$
(iii) diffusion
high to low concentration
allow down a concentration gradient
through (cell) membrane or through cytoplasm do not accept cell wall
(b) ribosomes make proteins / enzymes
using amino acids
part A / mitochondria provide the energy for the process
allow ATP
do not accept produce or make energy

Q28.

(a) \mathbf{A} sperm

B egg

C fertilised egg

D embryo
(b) insert into mother
ignore fertilise / check fertilisation / check viability
womb / uterus
(c) (i) one quarter
(ii) no / little chance of success over 42
reference to table of only two women in the age bracket 40-42 years became pregnant
the statement 'only 2 out of 53 40-42 year old women became pregnant / had babies' gains 2 marks
(iii) so fewer twins / multiple births Or
multiple births more dangerous

Q29.
(a) (i) \mathbf{C} and \mathbf{D}
no mark if more than one box is ticked
(ii) any one from:
do not allow if other cell parts are given in a list

- (have) cell wall(s)
- (have) vacuole(s)
(b) (i) \mathbf{A}
apply list principle
(ii) D
apply list principle
(c) respiration
apply list principle

Q30.
(a) \mathbf{B}
no mark for " B " alone, the mark is for B and the explanation.
large(r) surface / area or large(r) membrane
accept reference to microvilli
ignore villi / hairs / cilia
accept reasonable descriptions of the surface eg folded membrane / surface
do not accept wall / cell wall
(b) (i) any one from:

- (salivary) amylase
- carbohydrase
(ii) many ribosomes
do not mix routes. If both routes given award marks for the greater.
ribosomes produce protein
accept amylase / enzyme / carbohydrase is made of protein
or
(allow)
many mitochondria
mitochondria provide energy to build / make protein accept ATP instead of energy

Q31.
(a) both parents $\mathbf{A a}$
accept other upper and lower case letter without key or
symbols with a key
allow as gametes shown in Punnett square
aa in offspring correctly derived from parents
or
aa correctly derived from the parents given
ignore other offspring / gametes
for this mark parents do not have to be correct
offspring aa identified as having cystic fibrosis
may be the only offspring shown or circled / highlighted / described
(b) (i) any one from:
accept converse if clear, eg if you (only) took one it might have cystic fibrosis / might not be fertilised

- (more) sure / greater chance of healthy / non-cystic fibrosis egg / embryo / child
accept some may have the allele
reference to 'suitable / good embryo' is insufficient
- greater chance of fertilisation
(ii) advantages
to gain 3 marks both advantage(s) and disadvantage(s) must be given
$\max 3$
any two from:
ignore references to abortion unless qualified by later screening
- greater / certain chance of having child / embryo without cystic fibrosis / healthy
- child with cystic fibrosis difficult / expensive to bring up
- cystic fibrosis (gene / allele) not passed on to future generations

disadvantages

any two from:

- operation dangers / named eg infection ignore risk unqualified
- ethical or religious issues linked with killing embryos accept wrong / cruel to embryos accept right to life argument ignore embryos are destroyed
- (high) cost of procedure
- possible damage to embryo (during testing for cystic fibrosis / operation)

plus

conclusion

a statement that implies a qualified value judgement eg it is right because the child will (probably) not have cystic fibrosis even though it is expensive
or
eg it is wrong because embryos are killed despite a greater chance of having a healthy baby
note: the conclusion mark cannot be given unless a reasonable attempt to give both an advantage and a disadvantage is made do not award the mark if the conclusion only states that advantages outweigh the disadvantages
(c) any three from:

- osmosis / diffusion
do not accept movement of ions / solution by osmosis / diffusion
- more concentrated solution outside cell / in mucus assume concentration is concentration of solute unless answer indicates otherwise or accept correct description of 'water concentration'
- water moves from dilute to more concentrated solution
allow correct references to movement of water in relation to concentration gradient
- partially permeable membrane (of cell)
allow semi / selectively permeable

Q32.

any box on the left joined to >1 other box - cancel

Q33.
(a) (i) $\mathrm{A}=$ (cell) wall ignore cellulose
(ii) any one from:
accept has DNA instead of a nucleus, but not just has DNA

- bacterial cell / it has no nucleus
allow no mitochondria
- DNA free in cytoplasm
ignore size
- has no vacuole / no vesicles
ignore strands of DNA
(b) (i) yeast grows best / better / well or optimum temperature for yeast / more yeast present
allow yeast works best / better / well
(yeast) makes CO_{2} or respires / respiration
allow fermentation
(ii) bacterium grows best / better / well / more bacteria present or optimum
temperature for bacterium
ignore microorganisms / microbes
allow works / respires best / better / well
(bacterium) makes (lactic) acid
do not allow wrong acid

Q34.
(a) (i) \mathbf{A} - (cell) wall

B - cytoplasm

C - plasmid
(ii) bacterium cell has cell wall / no nucleus / no mitochondria / plasmids present
accept its DNA / genetic material is not enclosed / it has no nuclear membrane
it = bacterium cell
accept converse for animal cell
ignore flagella
(iii) any one from:

- chloroplast
ignore chlorophyll
- (permanent) vacuole
(b) (Long tail) moves the sperm / allows the sperm to swim
towards the egg
allow correct reference to other named parts of the female reproductive system
(Mitochondria) release energy (for movement / swimming)
allow supply / produce / provide
in respiration

Q1.

Students in a school investigated the effect of five different antibiotics, A, B, C, D and E, on one type of bacterium.

The students:

- grew the bacteria on agar jelly in a Petri dish
- soaked separate paper discs in each of the antibiotics
- put the paper discs onto the bacteria in the Petri dish
- put the Petri dish into an incubator.

The diagram shows what the Petri dish looked like after 3 days.

(a) (i) What is the maximum temperature the incubator should be set at in the school?

Draw a ring around your answer.
$10^{\circ} \mathrm{C}$
$25^{\circ} \mathrm{C}$
$50^{\circ} \mathrm{C}$
(ii) Draw a ring around the correct answer to complete the sentence.

The incubator should not be set at a higher temperature because the higher
temperature might help the growth of
pathogens.
toxins.
viruses.
(b) Which antibiotic, A, B, C, D or E, would be best to treat a disease caused by this type of bacterium?

Write your answer in the box. \square

Give the reason for your answer.
\qquad
\qquad
(c) Antibiotics cannot be used to treat diseases caused by viruses.

Why?
Tick (\checkmark) one box.

Viruses are not pathogens

There are too many different types of virus

Viruses live inside cells

Q2.
Diagram 1 shows cells from the light-sensitive layer in the eye.
Diagram 1

(a) On Diagram 1, add labels to name part \mathbf{A} and part \mathbf{B} of the light-sensitive cell.
(b) There is a junction between the connecting neurone and the neurone carrying the impulse to the brain.
(i) What name is given to the junction?
\qquad
(ii) In what form is information passed across the junction?
\qquad
\qquad
(c) Diagram 2 shows a bee flying towards a man's eye.

Diagram 2

In the blink reflex, light from the bee reaches the light-sensitive cell in the eye. The muscles in the eyelid shut the man's eye before the bee hits the eye.

Describe the pathway taken by the nerve impulse in the blink reflex.
\qquad

Q3.
The diagrams show an animal cell and a bacterial cell.

(a) (i) Structures \mathbf{A} and \mathbf{B} are found in both the animal cell and the bacterial cell.

Use words from the box to name structures \mathbf{A} and \mathbf{B}.

cell membrane	chloroplast	cytoplasm	vacuole

A \qquad

B \qquad
(ii) Both cells contain genetic material.

Name the structure in the animal cell that contains genetic material.
\qquad
(b) List A gives three structures found in animal cells.

List B gives four functions of cell structures.
Draw one line from each structure in List \mathbf{A} to its correct function in List \mathbf{B}.

List A - Structure

Cell membrane

List B - Function

Controls what substances enter the cell

(Total 6 marks)

Q4.
The diagrams show four cells, A, B, C and D.
A
B

C

Use letters $\mathbf{A}, \mathbf{B}, \mathbf{C}$ or \mathbf{D} to answer these questions.
(a) Which cell can photosynthesise? \square
(b) Which cell is adapted for receiving and sending information?

(c) Which cell is adapted to respire quickly? \square

Q5.

The diagram shows a cell from a plant leaf.

(a) Name the part of this cell that:
(i) controls the passage of substances in and out of the cell
\qquad
(ii) is filled with cell sap.
\qquad
(b) Give the names of two parts of the leaf cell that would not be found in a human liver cell.
\qquad and \qquad
(c) The chloroplasts produce oxygen.

Draw a ring around the correct answer to complete the sentence.

The oxygen produced by the chloroplasts passes out of the cell by \begin{tabular}{l|l|}

diffusion.
digestion.
respiration.

\hline
\end{tabular}

Q6.

The diagram shows two cells, a bacterial cell and a plant cell.

What is the function of a ribosome?
\qquad
\qquad
(ii) The plant cell contains mitochondria but the bacterial cell does not contain mitochondria.

Give one other way in which the plant cell is different from the bacterial cell.
\qquad
\qquad
(b) (i) Both cells are drawn the same length, but the magnification of each cell is different.

The real length of the bacterial cell is 2 micrometres.
Calculate the real length, \mathbf{X}, of the plant cell. Give your answer in micrometres.

Show clearly how you work out your answer.
\qquad
\qquad
\qquad
$X=$ \qquad micrometres
(ii) Most mitochondria are about 3 micrometres in length.

The plant cell contains mitochondria but the bacterial cell does not contain mitochondria.

Use your answer to part (b)(i) and the information in the diagram to suggest why.
\qquad
\qquad

Q7.
Some students grew one species of bacterium in a flask.
Diagram 1 shows the flask.

Diagram 1

The students wanted to find the number of bacteria in $1 \mathrm{~cm}^{3}$ of the culture medium.
The students:

- diluted $1 \mathrm{~cm}^{3}$ of the culture medium from the flask with $999 \mathrm{~cm}^{3}$ of water
- added $1 \mathrm{~cm}^{3}$ of diluted culture to sterilised nutrient agar in a Petri dish
- placed the Petri dish in an incubator at $25^{\circ} \mathrm{C}$.

Diagram 2 shows the Petri dish after 3 days in the incubator.

Diagram 2

(a) Each colony of bacteria is formed where one bacterium landed on the agar jelly.

How is each colony formed?
\qquad
\qquad
(b) Complete the following calculation to find how many bacteria there were in $1 \mathrm{~cm}^{3}$ of the undiluted culture.

Number of colonies of bacteria in the Petri dish = \qquad
These colonies were formed from $1 \mathrm{~cm}^{3}$ of the culture diluted $\times 1000$.
Therefore, number of bacteria in $1 \mathrm{~cm}^{3}$ of undiluted culture $=$ \qquad
(c) It is important to sterilise the culture medium and all the apparatus before use.

Explain why.
\qquad
\qquad
\qquad
\qquad
(d) The bacteria would grow faster at $35^{\circ} \mathrm{C}$. In a school laboratory, the Petri dish should not be incubated at a temperature higher than $25^{\circ} \mathrm{C}$.

Why?
\qquad
\qquad
(e) The students decided to repeat their investigation.

Why?
\qquad
\qquad

Q8.
The table shows the concentrations of three mineral ions in the roots of a plant and in the water in the surrounding soil.

Mineral ion	Concentration in millimoles per kilogram	
	Plant root	Soil
Calcium	120	2.0
Magnesium	80	3.1
Potassium	250	1.2

(a) (i) The plant roots could not have absorbed these mineral ions by diffusion.

Explain why.
\qquad
\qquad
\qquad
\qquad
(ii) Name the process by which the plant roots absorb mineral ions.
\qquad
(b) How do the following features of plant roots help the plant to absorb mineral ions from the soil?
(i) A plant root has thousands of root hairs.
\qquad
(ii) A root hair cell contains many mitochondria.
\qquad
\qquad
\qquad
\qquad
(iii) Many of the cells in the root store starch.
\qquad
\qquad

Q9.
The diagram shows a plant cell from a leaf.

(a) List A gives the names of three parts of the cell.

List \mathbf{B} gives the functions of parts of the cell.
Draw a line from each part of the cell in List \mathbf{A} to its function in List \mathbf{B}.

List A

 Parts of the cell
List B Functions

(b) Respiration takes place in the cell.

Draw a ring around the correct answer to complete the sentence.

All cells use respiration to release	energy
oxygen.	
sugar.	

Q10.
Leaves are made from layers of cells.
The diagram shows a section through part of a leaf.

(a) (i) Which word in the table describes layer A?

Tick (\checkmark) one box.

Layer A	Tick (\checkmark)
Tissue	
Organ	
Cell	

(ii) Which word describes a whole leaf?

Draw a ring around one answer.
organ
tissue
organism
(b) (i) Which two layers of cells, A, B, C and D, can photosynthesise?

Use information from the diagram to help you.
Tick (\checkmark) two boxes.

Layer A \square

Layer B \square

Layer C

Layer D

(ii) Give one reason for your answer.
\qquad
\qquad
(c) List \mathbf{X} gives the names of two parts of a cell.

List \mathbf{Y} gives information about parts of a cell.
Draw one line between each part of the cell in list \mathbf{X} and information about it in list \mathbf{Y}.

List X

Part of a cell

List Y Information

Controls the passage of substances into the cell

Vacuole

Contains the cell sap

Nucleus

Controls the activities of the whole cell

Q11.

Cells contain a solution of salts and sugars.
A student is investigating how cells change when they are put into water.
(a) The student:

- looks at a plant cell using a microscope
- adds water to the cell.

The plant cell swells up.
Explain why, as fully as you can.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(b) When animal cells are put in water, they swell up, and then burst.

When plant cells are put in water, they swell up, but do not burst.
How does the structure of plant cells prevent them from bursting?
\qquad
\qquad

Q12.
Cells in the human body are specialised to carry out their particular function.
(a) The diagram shows a sperm cell.

The sperm cell is adapted for travelling to, then fertilising, an egg.
(i) How do the mitochondria help the sperm to carry out its function?
\qquad
\qquad
(ii) The nucleus of the sperm cell is different from the nucleus of body cells.

Give one way in which the nucleus is different.
\qquad
\qquad
(b) Stem cells from human embryos are used to treat some diseases in humans.

Explain why.
\qquad
\qquad
\qquad
\qquad

Q13.
Humans reproduce sexually.
Draw a ring around the correct answer to complete each sentence.

(a) (i) At fertilisation	chromosomes
genes	join together.

(ii) At fertilisation a single cell forms, which has new pairs of
chromosomes.
nuclei.
sex cells.
(b) Cystic fibrosis can be inherited by children whose parents do not have it.
(i) A person who has cystic fibrosis has $\begin{aligned} & \text { two } \\ & \text { three } \\ & \text { four }\end{aligned}$ copies of the cystic fibrosis allele.
(ii) The cystic fibrosis allele is $\begin{array}{ll}\text { large. } \\ \text { recessive. } \\ \text { strong. }\end{array}$
(c) The diagram shows a human body cell.

Choose the correct answer from the box to complete each sentence.

| cell membrane cell wall nucleus |
| :---: | :---: | :---: | :---: |

(i) The part of the cell labelled \mathbf{B} is the \qquad
(ii) The part of the cell labelled \mathbf{C} is the \qquad
(d) Which part of the cell, $\mathbf{A}, \mathbf{B}, \mathbf{C}$ or \mathbf{D} :
(i) contains the allele for cystic fibrosis \square
(ii) is affected by cystic fibrosis? \square

Q14.

Plants need mineral ions for healthy growth.
(a) Which part of a plant takes in mineral ions?

Tick (\checkmark) one box.

Flower

Leaf

Root

(b) Leaves are usually green.
(i) What is the green substance in leaves?

Draw a ring around your answer.
chlorophyll glucose starch
(ii) The green substance in leaves is important to plants.

Explain why.
\qquad
\qquad
\qquad
\qquad
(c) A shortage of mineral ions can affect a plant.

Draw one line from each mineral ion to the effect of its shortage.

Mineral ion
Magnesium
Nitrate

Effect of its shortage

Q15.
(a) It is important to prevent contamination when growing microorganisms.

The diagram shows the transfer and culturing of microorganisms.

Stage V \square A Petri dish with agar is heated to $150^{\circ} \mathrm{C}$ for 50 minutes, then cooled

Stage W

Stage X

Stage Y

Stage Z \square Petri dish kept at $25^{\circ} \mathrm{C}$ for 48 hours
(i) Name the apparatus labelled \mathbf{A} in stage \mathbf{W}.

Draw a ring around one answer.
inoculating loop pipette thermometer
(ii) Give the letters of the two stages from $\mathbf{V}, \mathbf{W}, \mathbf{X}, \mathbf{Y}$ and \mathbf{Z}, which are carried out to kill microorganisms.

(iii) Give the letter of the stage, $\mathbf{V}, \mathbf{W}, \mathbf{X}, \mathbf{Y}$ or \mathbf{Z}, where incubation takes place.

(b) A culture medium used for growing microorganisms contains various nutrients.

Which nutrient is the main source of energy for the microorganisms?

Draw a ring around one answer.
carbohydrates
mineral ions
vitamins

Q16.

The diagrams show four types of cell, A, B, C and D.
Two of the cells are plant cells and two are animal cells.

B

(a) (i) Which two of the cells are plant cells?

Tick (\checkmark) one box.

A and B

A and D \square

C and D \square
(ii) Which part is found only in plant cells?

Draw a ring around one answer.
cell membrane
cell wall
nucleus
(b) (i) Which cell, $\mathbf{A}, \mathbf{B}, \mathbf{C}$ or \mathbf{D}, is adapted for swimming? \square
(ii) Which cell, A, B, C or D, can produce glucose by photosynthesis?
(c) Cells A, B, C and D all use oxygen.

For what process do cells use oxygen?
Draw a ring around one answer.
osmosis
photosynthesis
respiration

Q17.
Diagrams A, B and C show cells from different parts of the human body, all drawn to the same scale.
A

B

C

Key
- Mitochondrion
Ribosome

(a) Which cell, \mathbf{A}, \mathbf{B} or \mathbf{C}, appears to have adaptations to increase diffusion into or out
of the cell? \square
Give one reason for your choice.
\qquad
\qquad
(b) (i) Cell \mathbf{C} is found in the pancreas.

Name one useful substance produced by the pancreas.
\qquad
(ii) Use information from the diagram to explain how cell \mathbf{C} is adapted for producing this substance.
\qquad
\qquad
\qquad
\qquad

Q18.

The diagram shows part of a plant root. A large number of structures like the ones labelled \mathbf{X} grow out of the surface of the root.

(a) (i) What is the name of structure \mathbf{X} ?

Draw a ring around one answer.
stoma
villus
(ii) Name two substances which structure \mathbf{X} absorbs from the soil.

1. \qquad
2. \qquad
(b) The substances in (a)(ii) are transported from the roots to the leaves. Carbon dioxide also enters the leaves.

Draw a ring round the correct answer to complete each sentence.
(i) Carbon dioxide enters leaves through
alveoli. stomata.
villi.

Q19.
This question is about cells.
(a) (i) The diagram shows a sperm cell.

Use words from the box to label parts \mathbf{A} and \mathbf{B}.
cell membrane
cytoplasm
nucleus
(ii) The diagram shows a cell from a leaf.

Give the letters of two parts of the leaf cell which would not be found in a sperm cell.

and

(b) Sperm cells have many mitochondria.

Why do sperm cells need many mitochondria?
Tick $\left({ }^{\prime}\right)$ one box.

Sperm cells are involved in fertilisation.

Sperm cells are produced in very large numbers. \square

Sperm cells need a lot of energy to swim. \square

Q20.

Some students investigated the effect of pH on the growth of one species of bacterium.
They transferred samples of bacteria from a culture of this species to each of eight flasks.
Each flask contained a solution of nutrients but at a different pH .
After 24 hours, the students measured the amount of bacterial growth.
(a) It was important that the flasks in which the bacteria grew were not contaminated with other microorganisms.

Describe two precautions the students should have taken to prevent this contamination.

1. \qquad
\qquad
2. \qquad
\qquad
(b) To see the effect of pH on the growth of the bacteria, other conditions should be kept constant.

Suggest two conditions which should have been kept constant for all eight flasks.

1. \qquad
2. \qquad
(c) The graph shows the results of the investigation.

The students wanted to find the best pH for the growth of this species of bacterium.
(i) Use the graph to estimate the pH at which the bacteria would grow best.
pH \qquad
(ii) What could the students do to find a more accurate value for the best pH for growth of the bacteria?
\qquad
\qquad

Q21.
Diagram 1 shows a cell from a leaf.

Diagram 1

(a) How is the leaf cell specialised to carry out photosynthesis?

Tick (\checkmark^{\prime}) one box.

It has a permanent vacuole. \square

It has many chloroplasts. \square
It has cytoplasm. \square

It has many mitochondria. \square
(b) Diagram 2 shows another type of plant cell.

Diagram 2

Give two ways in which this cell is different from an animal cell.

1. \qquad
2. \qquad

Q22.
(a) The diagrams show cells containing and surrounded by oxygen molecules. Oxygen can move into cells or out of cells.

Into which cell, A, B, C or D, will oxygen move the fastest?

Write your answer, $\mathbf{A}, \mathbf{B}, \mathbf{C}$ or \mathbf{D}, in the box. \square
(b) Draw a ring around the correct word to complete each sentence.

(ii) Cells need oxygen for
respiration
(iii) The parts of cells that use up the most oxygen are the

membranes
mitochondria
nuclei

(iv) Some cells produce oxygen in the process of
diffusion
photosynthesis respiration

Q23.
(a) Microorganisms can be grown on agar jelly in a Petri dish.

List A gives three actions used when growing microorganisms.
List B gives four possible effects of these actions.
Draw a straight line from each action in List A to its effect in List B.

List A-Action

The agar jelly is heated at $120^{\circ} \mathrm{C}$ for 30 minutes

Make sure the temperature for growing the microorganisms is no higher than $25^{\circ} \mathrm{C}$

The lid of the Petri dish is held on with tape

List B-Effect

To reduce the growth of pathogens

To kill unwanted microorganisms

To prevent microorganisms from the air getting into the Petri dish

To prevent oxygen entering the Petri dish
(b) UHT milk is milk that has been heated to $135^{\circ} \mathrm{C}$, then cooled.

In an investigation, three sterile Petri dishes containing sterile agar jelly were set up as follows.

- UHT milk was added to dish 1.
- Untreated milk was added to dish 2.
- Dish 3 was left unopened as a control.
- The dishes were kept at $25^{\circ} \mathrm{C}$ for two days.

The results are shown in the diagram below.

Dish 1
UHT milk

After 2 days at $25^{\circ} \mathrm{C}$

Dish 2
Untreated milk

Dish 3
Control

(i) Describe the difference in appearance between dishes $\mathbf{1}$ and $\mathbf{2}$ after two days.
\qquad
\qquad
(ii) Give one reason for this difference.
\qquad
\qquad
(iii) There was no change in the appearance of dish $\mathbf{3}$ after two days.

Give one reason why.
\qquad
\qquad

Q24.

The diagram shows a group of muscle cells from the wall of the intestine.

(a) On the diagram, use words from the box to name the structures labelled \mathbf{A}, \mathbf{B} and \mathbf{C}.

cell membrane	cell wall	chloroplast	cytoplasm	nucleus

(b) How are these muscle cells adapted to release a lot of energy?
\qquad
\qquad
\qquad

Q25.

The photograph shows part of the surface of a plant root. This part of the root is covered with hundreds of structures like the one labelled \mathbf{X}.

(a) What is the name of structure \mathbf{X} ?

Draw a ring around one answer.

root hair

stoma
villus
(b) (i) Use the scale to measure the length $\mathbf{Y}-\mathbf{Z}$ on the photograph.

On the photograph, length $\mathbf{Y}-\mathbf{Z}=$ \qquad mm .
(ii) The photograph shows the root magnified 100 times.

Calculate the actual length $\mathbf{Y}-\mathbf{Z}$.
\qquad
\qquad
\qquad
Actual length $\mathbf{Y}-\mathbf{Z}=$ \qquad mm .
(iii) Structure \mathbf{X} is very small. There are thousands of structures like \mathbf{X} on a plant root.

How does this help the plant?
\qquad
\qquad
\qquad
\qquad

Q26.
The diagram shows how a student transferred some sour milk from a bottle to a Peri dish of nutrient agar.

1 The student heated a

3 He removed a drop of sour milk from a bottle using the wire loop

4 He raised the lid a little from a Peri dish of sterilised nutrient agar

List A gives four actions carried out by the student.

List B gives five possible effects of these actions.
Draw a straight line from each action in List \mathbf{A} to its effect in List \mathbf{B}.
Draw only one line from each action.

List A-Action

Heating loop in flame

Placing loop on bench to cool

Only lifting lid of petri dish a little

Flacing petri dish in incubator at $25^{\circ} \mathrm{C}$ rather than $35^{\circ} \mathrm{C}$

List B-Effect

Risk of contamination with
bacteria increased

Risk of bacteria entering
decreased

Kills bacteria

Frevents air entering

Risk of growth of pathogens decreased

Q27.

The pancreas is involved in digestion and controlling the internal conditions of the body.
(a) Name two digestive enzymes produced by the pancreas.

1. \qquad
2. \qquad
(b) Diabetes may be caused by a lack of insulin.

Part of the treatment for someone with diabetes is to pay careful attention to the diet.
(i) Give one symptom of diabetes.
\qquad
\qquad
(ii) Give one way in which a diabetic may be advised to change their diet.
\qquad
\qquad
(iii) How does this change in diet help the diabetic?
\qquad
\qquad
(iv) State one other way in which the symptoms of diabetes may be treated.
\qquad
(c) Many of the cells in the pancreas contain large numbers of ribosomes.

What is the function of ribosomes in a cell?
\qquad
\qquad

Q28.
The small intestine is lined with millions of villi.
The diagram shows the structure of a villus.

In the small intestine, some of the products of digestion are absorbed into the blood by active transport.
(a) Explain what is meant by active transport.
\qquad
\qquad
\qquad
\qquad
(b) How do microvilli and mitochondria help in the active transport of the products of digestion from the small intestine into the blood?

Microvilli \qquad
\qquad
Mitochondria \qquad
\qquad
(Total 4 marks)

Q29.

The diagram shows a cell from the lining of the lung. This cell is specialised to allow gases to pass through quickly.

(a) Use words from the box to label structures A, B and C.

```
    cell
membrane
chloroplast cytoplasm mitochondria nucleus
```

(b) (i) Which feature of this cell allows oxygen to pass through quickly?

Put a tick (\checkmark^{\prime}) in the box next to your choice.

It is thin. \square

It has a large nucleus. \square

It has many mitochondria. \square
(ii) Complete the sentence by drawing a ring around the correct answer in the box.

Oxygen passes through this cell by | diffusion |
| :--- |
| osmosis |
| respiration |.

Q30.
The diagram shows a small part of a lung.

(a) The arrow on the diagram shows the movement of oxygen from the air in the alveolus to cell \mathbf{X}.

Complete the sentences by drawing a ring around the correct answer.

(i) Cell \mathbf{X} is a | platelet |
| :--- |
| red cell |
| white cell |

(ii) Oxygen moves from the air in the alveolus into cell \mathbf{X} by | diffusion |
| :--- |
| filtration |
| respiration |

(iii) The substance in cell \mathbf{X} that combines with oxygen is called	glycogen
haemoglobin	
lactic acid	,

(iv) Cell \mathbf{X} does not have
a cell membrane
cytoplasm
a nucleus
(b) On the diagram, draw an arrow to show the movement of carbon dioxide during gas exchange.

Q31.
The diagram shows an animal cell.

(a) (i) Name structures \mathbf{A} and \mathbf{B} by choosing the correct words from the box.

cell membrane	cell wall	cytoplasm	nucleus	vacuole

Structure A \qquad
Structure B \qquad
(ii) Which structure named in the box controls the passage of substances in and out of the cell?
\qquad
(b) Distance \mathbf{P} to \mathbf{Q} on the diagram is the diameter of the cell. This distance was measured on three cells using a microscope. The results were as follows:
cell 1: 63 micrometres
cell 2: 78 micrometres
cell 3: 69 micrometres
Calculate the average diameter of these cells. Show clearly how you work out your final answer.
\qquad
\qquad
Average diameter $=$ \qquad micrometres

Q32.

The photograph shows a red blood cell in part of a blood clot. The fibres labelled \mathbf{X} are produced in the early stages of the clotting process.

(a) Suggest how the fibres labelled \mathbf{X} help in blood clot formation.
\qquad
(b) The average diameter of a real red blood cell is 0.008 millimetres.

On the photograph, the diameter of the red blood cell is 100 millimetres.
Use the formula to calculate the magnification of the photograph.
Diameter on photograph $=$ Real diameter \times Magnification
\qquad
\qquad
\qquad
Magnification $=$ \qquad
(c) Some blood capillaries have an internal diameter of approximately 0.01 millimetres.
(i) Use information given in part (b) to explain why only one red blood cell at a time can pass through a capillary.
\qquad
(ii) Explain the advantages of red blood cells passing through a capillary one at a time.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Q33.

The diagram shows a cell from a plant leaf.

(a) Name structures \mathbf{A} and \mathbf{B}.

A \qquad
B \qquad
(b) Structure \mathbf{C} is a chloroplast. What is the function of a chloroplast?
\qquad
(c) The table gives one difference between a plant cell and an animal cell. Complete the table to give two more differences.

Plant cell	Animal cell
1. Has chloroplasts	1. No chloroplasts
2.	2.
3.	3.

Q34.
(a) (i) Name the red pigment found in red blood cells.
\qquad
(ii) Describe, in detail, the function of this red pigment.
\qquad
\qquad
\qquad
\qquad
(b) Describe one other way in which the structure of a red blood cell is different from the structure of a white blood cell.
\qquad
\qquad

Q35.
The diagram shows an animal cell.

(a) Name each labelled part and give its function.

A Name \qquad

Function \qquad

B Name \qquad
Function \qquad
\qquad
C Name \qquad
Function \qquad
\qquad
(b) (i) This plant cell also contains chloroplasts, a cell wall and a vacuole. Label each of these parts on the diagram.

(ii) Give the function of these parts of a plant cell.

Chloroplast function \qquad
\qquad
Cell wall function \qquad
\qquad
Vacuole function \qquad
\qquad

Mark schemes

Q1.
(a) (i) $25^{\circ} \mathrm{C}$
(ii) pathogens
(b) D
more / most bacteria killed
accept biggest area / ring where no bacteria are growing
(c) viruses live inside cells

Q2.
(a) A cytoplasm in this order only

B (cell) membrane
do not accept (cell) wall
(b) (i) synapse
(ii) (as) chemical
accept neurotransmitter or named ignore references to how the chemical is passed do not accept electrical
(c) (from light-sensitive cell to connecting neurone) to sensory neurone ignore references to synapses accept 'nerve cell' for neuron(e) throughout penalise 'nerve' for neurone once only
(sensory neurone) to brain / CNS
allow (sensory neurone) to relay neurone / spinal cord
(brain / CNS) to motor neurone
allow (relay neurone / spinal cord) to motor neurone
(motor neurone) to (eyelid) muscle
ignore effector

Q3.
(a) (i) A = cytoplasm
$B=$ (cell) membrane
(ii) nucleus
accept chromosome / DNA / genes accept phonetic
(b)

Q4.
(a) B
(b) D
(c) A

Q5.
(a) (i) (cell) membrane
(ii) vacuole
(b) any two from:

- (cell) wall
- chloroplast(s)
ignore chlorophyll
- vacuole
ignore cell sap
(c) diffusion

Q6.
(a) (i) makes / produces / synthesises protein / enzyme
(ii) plant cell has nucleus / vacuole / chloroplasts / chlorophyll or plant cell is much larger
' t ' = plant cell
allow correct reference to DNA or chromosomes
allow plant cell has fewer ribosomes
allow cellulose (cell wall)
(b) (i) 200
correct answer with or without working gains 2 marks
if answer incorrect, allow 1 mark for $\frac{2 \times 50,000}{500}$ or $\frac{100,000}{500}$ or 100
(ii) bacterial cell is too small / bacterial cell about same size as a mitochondrion / 'no room'
ignore references to respiration

Q7.
(a) cell division / bacterium divides / multiplies / reproduces
allow asexual / mitosis
ignore growth
(b) 18
do not accept 1.8 / 1.8^{04} / 1.8^{4}
allow ecf from wrong count
(c) to kill / destroy other microorganisms / named type or to prevent contamination
ignore germs / viruses
to prevent other microorganisms affecting the results or other microorganisms would be counted
allow to give accurate / reliable results
(d) prevent growth of pathogens / disease-causing microorganisms / dangerous microorganisms
do not accept microorganisms become pathogenic ignore germs / viruses
ignore general safety / biohazards / harmful products produced by bacteria
(e) to improve the reliability of the investigation / check for anomalies do not accept accuracy / precision / fairness / validity ignore averages / repeatability / reproducibility

Q8.
(a) (i) diffusion is down the concentration gradient for a description of diffusion ignore along / across gradients to enter must go up / against the concentration gradient accept by diffusion ions would leave the root
or
concentration higher in the root / plant
or
concentration lower in the soil
(ii) active transport
allow active uptake
(b) (i) (root hairs \rightarrow) large surface / area
(ii) (aerobic) respiration
do not allow anaerobic

```
releases / supplies / provides / gives energy
    accept make ATP (for active transport)
    do not allow 'makes / produces / creates' energy
```

(iii) starch is energy source / store (for active transport) allow starch can be used in respiration do not allow 'makes / produces / creates' energy

Q9.
(a)

1 mark for each correct line
mark each line from left hand box
two lines from left hand box cancels mark for that box
(b) energy

Q10.
(a) (i) tissue
extra box ticked cancels the mark
(ii) organ
extra ring drawn cancels the mark
(b) (i) Layer B
each extra box ticked cancels 1 mark

Layer C
(ii) (contain) chloroplasts / chlorophyll other parts disqualify
(c)

two correct = $\mathbf{2}$ marks
one correct = 1 mark
extra line from a part of a cell cancels the mark

Q11.
(a) because water enters (the cell / it / named cell)
do not accept salt / sugar / solution entering
by osmosis / diffusion
if osmosis / diffusion not given accept concentration inside cell greater than outside cell
assume concentration refers to solute concentration unless answer indicates otherwise
allow water goes up the concentration gradient
allow water goes down its concentration gradient do not accept if diffusion of salt / sugar
through a partially permeable membrane allow semi / selectively permeable membrane or description
(b) (plant cells) have (cell) wall accept animal cells have no (cell) wall ignore reference to cell membrane do not accept reference to other organelles or any implication that animal cells have a cell wall eg plant cells have a thicker cell wall

Q12.
(a) (i) release energy
allow provide / supply / give energy
do not accept produce / create / generate / make energy do not allow release energy for respiration
(ii) contain half the (number of) chromosomes or contains one set of chromosomes or contains 23 chromosomes
allow genetic information / DNA / genes / alleles instead of chromosomes accept haploid
(b) any two from:

- (stem cells) are unspecialised / undifferentiated allow description eg 'no particular job'
- are able to become differentiated or can form other types of cell / tissue / organ
- stem cells can / able to divide / multiply

Q13.

(a) (i) sex cells
(ii) chromosomes
(b) (i) two
(ii) recessive
(c) (i) cell membrane
allow membrane
(ii) cytoplasm
(d) (i) A
(ii) B

Q14.
(a) root
(b) (i) chlorophyll
(ii) absorbs / traps / takes in light do not accept attracts / solar energy /sunshine / sun
(for) photosynthesis accept to make food / glucose / sugar/ biomass

Mineral ion | Effect of its |
| :---: |
| shortage |

White
flowers
1 mark per correct line
extra line from a mineral ion cancels the mark

Q15.
(a) (i) inoculating loop
(ii) V

W

either order
(iii) Z
(b) carbohydrates

Q16.
(a) (i) C and D
(ii) cell wall
(b) (i) A
(ii) D
(c) respiration

Q17.

(a) B
no mark for ÉBÉ, alone
large(r) surface / area or large(r) membrane
accept reference to microvilli
accept reasonable descriptions of the surface
do not accept wall / cell wall
ignore villi / hairs / cilia
(b) (i) any one from:

- insulin / hormone
if named hormone / enzyme must be correct for pancreas
- enzyme / named enzyme
(ii) many ribosomes
(ribosomes) produce protein
accept insulin / hormone / enzyme named is (made of) protein
or
allow many mitochondria (1)
provide energy to build protein or to make protein (1) accept ATP for energy

Q18.
(a) (i) root hair
(ii) any two from:
ignore food

- water
- ions / minerals / nutrients / salts / correct named eg nitrates ignore N,P,K
- oxygen
(b) (i) stomata
(ii) diffusion

Q19.

(a) (i) A cytoplasm
accept clear indications

B nucleus
(ii) any two from:
two required for $\mathbf{1}$ mark

- P
- $\quad \mathrm{R}$
- T
accept lower case letters
(b) sperm cells need a lot of energy to swim

Q20.
(a) any two from:

- sterilise / kill microorganisms ignore 'cleaning' / 'disinfect' ignore 'germs'
- method of sterilisation eg apparatus / media sterilised in oven / autoclave allow pressure cooker / boiling water
- pass flask mouth / pipette tip / loop / test tube mouth through flame
- work near a flame
- minimise opening of flask / test tube or hold non-vertical allow idea of sealing / covering or prevent entry of air
(b) any two from:
- temperature
ignore references to time / type of bacterium
- concentration / amount of nutrients / ions
- type of nutrient
- volume / amount of solution
- amount of bacteria added
- agitation or amount of oxygen
(c) (i) 7.5
accept in range 7.4-7.6
(ii) use more pH values around / close to pH 7.5 / between 7 and 8

Q21.
(a) it has many chloroplasts.
(b) (has) cell wall
(has) vacuole or large / permanent vacuole do not allow chloroplasts assume plant cell throughout accept converse for animal cell

Q22.
(a) A
(b) (i) diffusion
(ii) respiration
(iii) mitochondria
(iv) photosynthesis

Q23.

(a) Liast A - Action List B - Effect

1 mark per correct line
each extra line cancels 1 mark
(b) (i) dish 2 has (colonies of) microorganisms / bacteria / (but there are none in dish 1)
allow fungi / pathogens / microbes / germs allow more microorganisms in dish 2
(ii) untreated milk contains living microorganisms
or
microorganisms killed by UHT
or
no living microorganisms in UHT milk
ignore microorganisms enter from the air
(iii) dish 3 was not opened
do not allow no growth of microorganisms because of lack of air / oxygen
or
it was sterilised ignore microorganisms cannot enter from the air
or
nothing / no milk was added

Q24.
(a) A nucleus

B (cell) membrane

C cytoplasm
(b) any two from:

- (contain mitochondria
- many (mitochondria)
- respiration (occurs in mitochondria)

Q25.
(a) root hair
(b) (i) 85
if incorrect unit added $=0$
(ii) 0.85
ignore working or lack of working accept correct answer from candidate's (i) for 2 marks
$\frac{85}{100}$ with no answer or wrong answer gains 1 mark
accept ecf
(iii) absorb more water / ions
allow 'get / collect / take in / take up / soak up / suck up' for absorb
allow 'lots' for more
allow 'moisture' for water
allow 'minerals / salts / nutrients' for ions
do not allow food or named foods
absorb water / ions gains 1 mark
or
large surface area to absorb water / ions (2)
large surface area linked to incorrect function =1 ignore small so short diffusion pathway

Q26.

1 mark for each line
extra line from List A Action cancels the mark

Q27.
(a) any two from:

- amylase / carbohydrase
- protease
allow trypsin
- lipase
(b) (i) high / above normal blood sugar or cannot control blood sugar
allow other symptoms eg frequent / plentiful urination or sugar in urine or thirst or weight loss or coma ignore consequential effects eg blood pressure / circulation / glaucoma / tiredness
(ii) any one from:
- small / regular meals
- low sugar (meals) or low GI / GL or carbohydrates as starch allow high fibre
ignore reference to low carbohydrate
(iii) any one from:
- keep constant(blood) sugar or prevent high (blood) sugar or reduces surge / rush of sugar into blood
- reduce the need for insulin
(iv) (take) insulin allow pancreas transplant
(c) protein / hormone / enzyme synthesis or synthesis of named example or combine amino acids

Q28.
(a) any two from:

- transport up / against concentration gradient / low to high concentration
- uses energy
- use of protein / carrier
(b) microvilli - large(r) surface area accept have carriers
mitochondria - release energy or make ATP do not accept 'makes energy'

Q29.

(a) A nucleus
B (cell) membrane

C cytoplasm
(b) (i) it is thin
(ii) diffusion

Q30.
(a) (i) red cell
(ii) diffusion
(iii) haemoglobin
(iv) a nucleus
(b) (on diagram) arrow from any part of blood to air

Q31.
(a) (i) $\mathbf{A}=$ nucleus
(ii) (cell) membrane
(b) 70
if correct answer, ignore working or lack of working $\frac{63+78+69}{3}$ for 1 mark

Q32.
(a) hold cells together or prevent flow of cells or trap cells
(b) 12500
if correct answer, ignore working / lack of working
$\frac{100}{0.008}$ for 1 mark
ignore any units
(c) (i) size RBC approximately same size capillary or no room for more than one cell or only one can fit or
RBC is too big
allow use of numbers
do not accept capillaries are narrow
(ii) more oxygen released (to tissues) or more oxygen taken up (from lungs)
and any two from:

- slows flow or more time available
- shorter distance (for exchange) or close to cells / capillary wall
- more surface area exposed

Q33.
(a) $\mathbf{A}=$ nucleus
accept phonetic spelling only
$\mathbf{B}=($ cell $)$ membrane
accept plasma membrane
(b) any one from:
photosynthesis
makes sugar / starch / carbohydrate / organic material accept 'makes food' do not accept makes chlorophyll ignore stores starch / food / light / chlorophyll
traps or absorbs light
(c) any two from:

Plant cell	Animal cell
- (has) vacuole or has cell sap	- no vacuole or small/temporary vacuole or no cell sap
- (has) wall/cellulose	- no wall/cellulose or only membrane
- (stores) starch or doesn't store glycogen	- doesn't store/have starch or stores glycogen
ignore reference must be clear in ignore reference	shape tion in all four boxes chlorophyll

Q34.
(a) (i) haemoglobin / oxyhaemoglobin must be phonetic
(ii) carries oxygen or forms oxyhaemoglobin Ignore references to CO_{2} / iron cancel if extras like food / glucose
from lungs to tissues
(b) no nucleus or biconcave disc (described)
ignore references to size
ignore vague references to being 'round' / 'donut' shaped etc.

Q35.
(a) A cytoplasm
where (chemical) reactions take place
do not accept where cell functions take place

or

carries/holds the organelles/named organelles / named chemicals (including nutrients)
do not accept keeps the shape of the cell
or
contains water
or
presses out on the membrane
allow: keeps cell turgid
allows transport through the cell
B membrane
do not accept by themselves:
protects cell
gives shape
or
contains the cell/holds the cell together
do not accept keeps harmful substances out
or
allows movement into and out of the cell C nucleus
contains the genetic
material/DNA/genes/chromosomes
do not accept:
brain of the cell
stores information/instructions
tells cell what to do
or
controls (the activity) of the cell
(b) (i) one mark for each correctly labelled part
cell wall
do not accept anything inboard of the inner edge vacuole accept anything inboard of transplant
chloroplast: site of photosynthesis/ for photosynthesis
accept word equation or balanced equation
cell wall: supports the cell/keeps the shape/keeps it rigid do not accept protects the cells
(ii) vacuole: acts as reservoir for water / chemicals/(cell)/sap
or
keeps cell turgid/pushes content to edge
or
maintains concentration gradient or
allows cell elongation (not growth)

Q1.

The following are precautions taken when preparing a streak of bacteria on an agar jelly plate.

Give a reason for each.
(i) The inoculating loop is heated in a hot bunsen flame.

REASON:
\qquad
\qquad
(ii) The loop is allowed to cool before putting it into the bacterial culture.

REASON:
\qquad
\qquad
(iii) The lid of the petri dish is only partly opened.

REASON:
\qquad
\qquad
(iv) The petri dish is sealed with sticky tape.

REASON:

\qquad
\qquad

Q2.
The diagram shows a human sperm. Inside the tail of the sperm is a filament mechanism that causes the side to side movement of the tail, which moves the sperm.

(a) Describe the function of the mitochondria and suggest a reason why they are arranged around the filament near the tail of the sperm.
\qquad
\qquad
\qquad
\qquad
(b) Explain the significance of the nucleus in determining the characteristics of the offspring.
\qquad
\qquad
\qquad

Q3.
The drawing shows an animal cell, seen at a very high magnification using an electron microscope.

(a) (i) Label a mitochondrion [plural = mitochondria].
(ii) What happens in the mitochondria?
\qquad
(b) (i) Name and label the structure where you would find chromosomes.
(ii) What are chromosomes made of?
\qquad
(c) What controls the rate of chemical reactions in the cytoplasm?
\qquad

Q4.
(a) Put a tick (\checkmark^{\prime}) in the correct boxes in the table below to show which of the parts given are present in the cells and organisms listed.

	CYTOPLASM	NUCLEUS	CELL WALL	GENES
Leaf mesophyll cell				
Sperm				

(b) (i) What is the main job of a leaf mesophyll cell?
\qquad
\qquad
(ii) Explain one way in which the structure of the leaf mesophyll cell helps it to carry out its job.
\qquad
\qquad
\qquad
\qquad

Q5.
The drawing shows a white blood cell ingesting a bacterium.

(i) Use words from the list to label the parts of the white blood cell.
cell membrane cell wall cytoplasm nucleus vacuole
(ii) The scale shows that the white blood cell is 10 micrometres long.

How long is the bacterium? Show your working.
\qquad micrometres

Q6.
The drawing shows a white blood cell ingesting a bacterium.

Label the parts of the white blood cell.
(Total 3 marks)

Q7.
The drawing shows part of a root hair cell.

(a) Use words from the list to label the parts of the root hair cell.
cell membrane cell wall cytoplasm nucleus vacuole
(b) The diagram shows four ways in which molecules may move into and out of a cell. The dots show the concentration of molecules.

The cell is respiring aerobically.
Which arrow, A, B, C or D represents:
(i) movement of oxygen molecules;
(ii) movement of carbon dioxide molecules? \qquad
(c) Name the process by which these gases move into and out of the cell.
\qquad

Q8.
(a) Balance the following equation for photosynthesis.
\qquad $\mathrm{CO}_{2}+$ \qquad $\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+$ \qquad O_{2}
(b) Give two conditions necessary for photosynthesis apart from a suitable temperature range and the availability of water and carbon dioxide.

1. \qquad
2. \qquad
(a) Plants have leaves which contain guard cells and palisade cells. Explain how each of these kinds of cell assists photosynthesis.

Guard cells \qquad
\qquad
\qquad
\qquad

Palisade cells \qquad
\qquad
\qquad
\qquad
(d) Glucose is a product of photosynthesis. Give three uses which green plants make of glucose.

1. \qquad
2. \qquad
3. \qquad
(Total 10 marks)

Q9.
The diagrams show a cheek cell from a human and a leaf cell from a plant.

(a) The two cells have a number of parts in common.
(i) On the cheek cell, label three of these parts which both cells have.
(ii) In the table, write the names of the three parts you have labelled above and describe the main function of each part.

Part	Function

(b) Blood contains white cells and red cells. State the function of each type of cell in the blood.

White cells \qquad
\qquad
Red cells \qquad
\qquad
(Total 8 marks)

Q10.

Oxygen from our lungs is carried, by our blood, to cells in our body where aerobic respiration takes place.
(i) Complete the two spaces to balance the chemical reaction for aerobic respiration.

$$
\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+6 \mathrm{O}_{2} \rightarrow \ldots \mathrm{CO}_{2}+\ldots \mathrm{H}_{2} \mathrm{O}
$$

(ii) Name the substance with the formula $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$.
\qquad
(iii) Name the structures in the cytoplasm of our cells where aerobic respiration takes place.
\qquad

Q11.
(a) The diagrams show what happens to the shape of a plant cell placed in distilled water.

(i) Explain why the cell swells and becomes turgid. Name the process involved.
\qquad
\qquad
(ii) Give one feature of the cell wall which allows the cell to become turgid.
\qquad
(b) Describe the change which will occur if a piece of peeled potato is placed in a concentrated sugar solution and explain why this change occurs.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Q12.
(a) How many pairs of chromosomes are there in a body cell of a human baby?
\qquad
(b) Place the following in order of size, starting with the smallest, by writing numbers 1-4 in the boxes underneath the words.

(c) For a baby to grow, its cells must develop in a number of ways.

Explain how each of the following is part of the growth process of a baby.
(i) Cell enlargement
\qquad
(ii) The process of cell division by mitosis
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(d) Why is cell specialisation (differentiation) important for the development and growth of a healthy baby from a fertilised egg?
\qquad
\qquad

Mark schemes

Q1.
(i) the loop is sterilised accept to kill anything on the loop
or
to kill any bacteria on it;
do not credit to clean the loop
(ii) if hot it would kill bacteria picked up (from culture);
accept 'microorganisms' or 'microbes' accept entry of contaminated air but reject entry of air unqualified
(iii) to prevent entry (from the air) of unwanted bacteria or bacterial spores or fungal spores; accept so can't breath on it accept 'microorganisms' or 'microbes'
(iv) so that the (petri) dish is not opened (after bacteria are cultured) or to reduce evaporation or drying of the agar,
accept 'microorganisms' or 'microbes' accept to prevent anything relevant getting in/out reject references to spillage

Q2.
(a) award one mark for each key idea
energy released or energy transferred or respiration
allow provides or gives
do not allow produces or makes
near to the site of movement or energy available quickly or more energy
accept allows more mitochondria to fit in
(mitochondria) packed (around filament) or efficient arrangement or spiral arrangement
(b) contains chromosomes or genes or

DNA
not genetic material
(which) contribute half (the genes) to the fetus or offspring

> 23 chromosomes or half the genes or reference to X, Y chromosome determining sex (if the notion of halfness is there)
> nucleus contains half genes for the offspring = 2 marks

Q3.
(a) (i)

award 1 mark for any of the mitochondria correctly labelled if a number are labelled and one is incorrect award 0 marks
(ii) respiration or the release or transfer of energy or it contains the enzymes for respiration
do not accept energy produced
(b) (i) nucleus (named and correctly labelled)

arrow or line must touch or go inside the nuclear membrane
(ii) DNA or genes or nucleic acids
accept protein or histones or nucleotides or ATGC
(c) enzymes or nucleus
do not accept factors that affect the rate rather than control it eg pH or temperature

Q4.

(a) mesophyll / / / (all correct) sperm / / x / (all correct) for 1 mark each
(b) (i) absorbs light/to produce food/photosynthesis (allow references to gaseous exchange) for 1 mark
(ii) has chlorophyll/chloroplasts to absorb light/produce food for 1 mark each (if linked to gas exchange allow - moist surface/ dissolve gases)

Q5.
(i) cytoplasm
(cell) membrane nucleus
all correctly labelled each for 1 mark
(ii) 0.5
gains 2 marks
(5/100 $\times 10$ or ½ /1 gains 1 mark if 0.5 not given)

Q6.
cytoplasm reject protoplasm
(cell) membrane
nucleus
all correctly labelled
each for 1 mark

Q7.
(a) (cell) wall
(cell) membrane
cytoplasm
vacuole for 1 mark each
(b) (i) A
(ii) B for 1 mark each
(c) diffusion (reject osmosis) for 1 mark

Q8.
(a) 666 all required accept a '6n 6 n n 6n' version of the balanced equation provided it is correct in every detail
(b) any two of

- (presence of) chlorophyll or (amount of) chloroplasts accept green leaves (or other green parts)
- (sufficient) light (intensity)
- (light) of a suitable wavelength any light other than green light do not credit Sun's energy or sunshine or Sun
(c) guard cells
any two of
* control by osmosis
* the movement of gases
accept movement of carbon dioxide or oxygen or water vapour beware movement of CO_{2} out accept a diagram or description
* through the stoma
palisade cells
any two of
* near the upper surface
* contain (a great) many or more chloroplasts
* (so) contain the most chlorophyll
(d) any three of
* for respiration
* conversion to (insoluble) starch
or to food store or to (other)carbohydrates
* (conversion to) sucrose or to food store or to (other) carbohydrates
or polysaccharides
do not credit just to grow or live
or survive
accept conversion to food store
or to (other) carbohydrates once only
* (conversion to) lipids or fats or oils
* (conversion to) amino acids or (plant) proteins or auxins or (plant) hormones or enzymes

Q9.
(a) (i) the three features correctly labelled on cheek cell (which are referred to in part (ii)
label lines should touch or end very close to part no marks if leaf cell labelled
nucleus
cytoplasm
cell membrane
mitochondrion
accept mitochondria or one of these could be labelled vacuole
(ii) any three from

feature function

nucleus controls cell
accept contains genetic material or genes or chromosomes or stores information do not credit the brain of the cell
cytoplasm where respiration
occurs
accept contains food or mitochondria
or reactions occurs
membrane less water or
chemicals
accept surrounds the cell or lets some things in but not others
do not credit keeps things out or protection
in and or out
mitochondria where energy released
ecf from leaf cell labelling accept chloroplasts make sugar or glucose accept vacuole contains sap accept if cell wall mis labelled on cheek cell, support or hold together
(b) fight or ingest or kill bacteria or germs or viruses or microbes
accept produce antitoxins or antibodies fight disease (organisms)
do not credit fungus
(transport) oxygen or carry
haemoglobin
accept transport carbon dioxide or helps form scabs

Q10.
(i) 6 in both spaces
do not credit if any formula has been altered
(ii) glucose

> allow fructose or dextrose
(iii) mitochondria accept organelles

Q11.

(a) (i) water (molecules) enter(s) (the cell)
or water (molecules) pass(es) through the (semi-permeable) cell membrane
by osmosis
or because the concentration of water is greater outside (the cell than inside it the vacuole)
accept because of the concentration gradient provided there is no contradiction
(ii) any one from
(it is) elastic
(it is) strong
(it is fully) permeable (to water)
or water can pass through it
do not credit semi-permeable
do not credit cell membrane is semi-permeable
(b) (the piece of) potato shrinks
or loses its turgor
or becomes flabby
or becomes flaccid
or plasmolysis occur
or cytoplasm pulls away from the cell wall
(because) concentration of sugar
or because concentration of water
(solution) is greater than concentration inside the cell / vacuole inside the cell / vacuole is greater than concentration (of water) outside
water is drawn out of the cell

Q12.
(a) 23
(b) chromosome $\begin{array}{cccc}\text { nucleus } & \text { gene } & \text { cell } \\ 2 & 3 & 1 & 4\end{array}$
(c) (i) any one from
(cells which are bigger) take up more space
(cells) have to get bigger or mature to divide
(ii) chromosomes duplicate or make exact copies of self
accept forms pairs of chromatids
nuclei divide
accept chromatids or chromosomes separate
identical (daughter) cells formed
accept for example, skin cells make more skin cells or cells are clones
(d) any two from

Differentiation mark
babies need or are made of different types of cells or cells that have different functions
accept different cells are needed for different organs

Division or specialisation mark
as fertilised egg starts to divide each cell specialises to form a part of the body accept specialised cells make different parts of the body

Growth mark
specialised cells undergo mitosis to grow further cells
accept cells divide or reproduce to form identical cells

