理

Cell structure 1

Level: CIE AS 9700
Subject: Biology
Exam Board: Suitable for all boards
Topic: Cell structure 1
Type: Mark Scheme

To be used by all students preparing for CIE AS Biology 9700 foundation or higher tier but also suitable for students of other boards.

Mark schemes

1
(a) Differentiation / specialisation
(b) (i) (cellulose) Cell wall;

1
(ii) Two marks for correct answer 2350-2500;;

Accept measured and real lengths in different units for one mark.
One mark for a measured length divided by real length;
(iii) Chloroplasts absorb light;

Q Do not accept chlorophyll as alternative to chloroplasts
Or
Large vacuole pushes chloroplasts to edge (of cell);
Or
Thin / permeable (cell) wall to absorb carbon dioxide;

2
(a) (i) Crista / inner membrane;
(ii) Matrix;
(b) B ;
(c) (i) Reduce / prevent enzyme activity;
(ii) Prevents osmosis / no (net) movement of water;

So organelle / named organelle does not burst / shrivel;
Q Allow reference to cell rather than organelle for first mark point only.
Regard damage as neutral
(d) (Mitochondria) use aerobic respiration;

Mitochondria produce ATP / release energy required for muscles (to contract);
Q Do not accept reference to making / producing energy.

3 (a) $\times 20000$
Accept range from 18000 to 22000
(b)

1 mark for each correct column
(c) 1. DNA contains thymine and RNA contains uracil;
2. DNA contains deoxyribose and RNA contains ribose.
(a) 1. Starch formed from α-glucose but cellulose formed from β-glucose;
2. Position of hydrogen and hydroxyl groups on carbon atom 1 inverted.
(b) 1. Insoluble;
2. Don't affect water potential;

OR
3. Helical;

Accept form spirals
4. Compact;

OR
5. Large molecule;
6. Cannot leave cell.
(c) 1. Long and straight chains;
2. Become linked together by many hydrogen bonds to form fibrils;
3. Provide strength (to cell wall).
3. Provide strengh (to cellwal).

5 (a) 1. (If injected into egg), gene gets into all / most of cells of silkworm;
2. So gets into cells that make silk.
(b) 1. Not all eggs will successfully take up the plasmid;
2. Silkworms that have taken up gene will glow.
(c) Promoter (region / gene).
(d) 1. So that protein can be harvested;
2. Fibres in other cells might cause harm.
(a) 1. Add drop of water to (glass) slide;
2. Obtain thin section (of plant tissue) and place on slide / float on drop of water;
3. Stain with / add iodine in potassium iodide.
3. Allow any appropriate method that avoids trapping air bubbles
4. Lower cover slip using mounted needle.
(b) 1. \mathbf{W} - chloroplast, photosynthesis;
2. \mathbf{Z} - nucleus, contains DNA / chromosomes / holds genetic information of cell.
(c) 1. High resolution;
2. Can see internal structure of organelles.
(d) Length of bar in $\mathrm{mm} \times 1000$.

7 (a)

Feature	Bacterium	Human immunodeficiency virus (HIV) particle
RNA	\checkmark	\checkmark
Cell wall	\checkmark	
Enzyme molecules	\checkmark	\checkmark
Capsid		\checkmark

1 mark for each correct vertical column
(b) 1. (Complementary) nucleotides/bases pair

OR
A to T and C to G;
Ignore '(DNA polymerase) forms base pairs/nucleotide pairs'
2. DNA polymerase;
3. Nucleotides join together (to form new strand)/phosphodiester bonds form;

Ignore '(DNA polymerase) forms base pairs/nucleotide pairs'
If clearly writing rote answer about DNA replication 2 max e.g. helicase or separating strands
(c) 1. DNA double stranded/double helix and mRNA single-stranded;

Contrast requires both parts of the statement
2. DNA (very) long and RNA short;

Accept 'RNA shorter' or 'DNA bigger/longer'
3. Thymine/T in DNA and uraci/U in RNA;
4. Deoxyribose in DNA and ribose in RNA;

R Deoxyribonucleic/ ribonucleic acid
Ignore ref. to histones
Ignore ref. to helix and straight chain alone
5. DNA has base pairing and mRNA doesn't/ DNA has hydrogen bonding and mRNA doesn't;
6. DNA has introns/non-coding sequences and mRNA doesn't;

Ignore ref to splicing
(a) 1. From ADP and phosphate;

Accept $\mathrm{Pi}_{1} / \mathrm{PO}_{4}{ }^{3-} \mathrm{I} \mathrm{P}$
Reject P/Phosphorus
Reject use of water in the reaction
2. By ATP synthase;
3. During respiration/photosynthesis;
(b) 1. To provide energy for other reactions/named process;

Reject 'produce' energy
2. To add phosphate to other substances and make them more reactive/change their shape;
(c) (Can see) 3D image;
(d) Crista/cristae;

Ignore matrix
(e) Value between $20,750(83 \mathrm{~mm})$ and 21,250 (85 mm) two marks;;

Formula given/used but calculation wrong, award 1 mark
Magnification $=\frac{\text { image size }}{\text { Object size }}$
(Large number divided by 4)
(a)

White blood cell		\checkmark	\checkmark
Bacteria cell	\checkmark	\checkmark	

(b) $2.80(\mu \mathrm{~m}) ; ;$

Answer in range 2.76-2.83 scores 2 marks
If length incorrect but divided by 30 000, allow 1 mark
(c) (i) Circular DNA / smaller/70S ribosomes / no introns / no histones/proteins associated with DNA;

Ignore reference to plasmids
(ii) 1. Able to respire aerobically;
2. So make (more) ATP/ release (more) energy;

Reject 'producing energy' unqualified

10
(a) 1. Thin slice/section;
2. Put on slide in water / solution / stain;
3. Add cover slip;

Accept: 'between two slides'
(b) $200(\mu \mathrm{~m}) ;$;

OR

1. Divide image length by key length eg $64 / 16=4$;
2. Multiply by 50 eg 4×50;

Accept for 2 marks answers in the range of 185-217 ($\mu \mathrm{m}$)
Max 1 mark for responses not within the range
Accept: measurements in the ranges $63-65 \mathrm{~mm}$ and $15-17 \mathrm{~mm}$
(c) 1. Select large number of cells / select cells at random;

Accept: > 3 for "large number"
Accept: many fields of view for 'large number of cells'
Accept: all cells in field of view
2. Count number of chloroplasts;
3. Divide number of chloroplasts by number of cells;

Ignore: 'calculate the mean'
(a)

Protein synthesis	$\mathrm{L} ;$
Modifies protein	$\mathbf{H} ;$
Aerobic respiration	$\mathbf{N} ;$

(b) 1800-2200;
1.8, 2.0 or 2.2 in working or answer $=1$ mark. Ignore units in answer.

1 mark for an incorrect answer in which student clearly divides measured length by actual length (of scale).

Accept I / A or I / O for 1 mark but ignore triangle.
Accept approx 60mm divided by $30 \mu \mathrm{~m}$ for 1 mark
(a) 1. Large / dense / heavy cells;
2. Form pellet / move to bottom of tube (when centrifuged);
3. Liquid / supernatant can be removed.

Must refer to whole cells.
(b) Break down cells / cell parts / toxins.

Idea of 'break down / digestion' needed, not just damage
(c) 1. To stop / reduce them being damaged / destroyed / killed;

Reject (to stop) bacteria being denatured.
2. By stomach acid.

Must be in context of stomach.
(d) 1. More cell damage when both present / A;
2. Some cell damage when either there on their own / some cell damage in B and C;

MP1 and MP2 - figures given from the graph are insufficient.
3. Standard deviation does not overlap for A with B and C so difference is real;

MP3 and MP4 both aspects needed to gain mark.
4. Standard deviations do overlap between B and C so no real difference.

MP3 and MP4 accept reference to significance / chance for 'real difference'
(e) 1. Enzyme (a protein) is broken down (so no enzyme activity);

Accept hydrolyse / digested for 'broken down'.
2. No toxin (as a result of protein-digesting enzyme activity);

Must be in the correct context.
3. (So) toxin is protein.

This must be stated, not inferred from use of 'protein-digesting enzyme'.

13 (a) 1. Bilayer;
Accept double layer
Accept drawing which shows bilayer
2. Hydrophobic / fatty acid / lipid (tails) to inside;
3. Polar / phosphate group / hydrophilic (head) to outside;
2. \& 3. need labels
2. \& 3. accept water loving or hating
(b) (i) 1. (Rough endoplasmic reticulum has) ribosomes; accept "contains / stores"
2. To make protein (which an enzyme is);

Accept amino acids joined together / (poly)peptide Reject makes amino acids Ignore glycoprotein
(ii) (Golgi apparatus) modifies (protein)

OR
packages / put into (Golgi) vesicles
OR
transport to cell surface / vacuole;
Accept protein has sugar added
Reject protein synthesis
Accept lysosome formation

QWC

1. (Phagocyte engulfs) to form vacuole / vesicle / phagosome;

Accept surrounds bacteria with membrane
2. Lysosome empties contents into vacuole / vesicle / phagosome;

Accept joins / fuses
3. (Releasing) enzymes that digest / hydrolyse bacteria;

Ignore breakdown / destroy / Iytic enzymes
(b) Two suitable structures;;

Examples,

1. Cell wall;
2. Capsule / slime layer;
3. Circular DNA;

Reject "circular chromosome"
4. Naked DNA / DNA without histones;
5. Flagellum;
6. Plasmid;
7. Pilus;
8. $70 \mathrm{~s} / \mathrm{smaller}$ ribosomes;
9. Mesosome;

Accept converse statements for other vaccine
Reject references to the vaccine being alive or the disease reproducing etc

1. Heat(ing) supposed to kill bacteria;
2. Some might be alive / active / viable;

Accept active pathogens present
3. (If so) bacteria could reproduce;
4. Bacterium makes or contains toxin;
5. Toxin might not be affected / all destroyed by heat;
6. Bacteria or toxins attacking / killing person's cells;
(ii) (Whole-cell vaccine),

Ignore references to more / greater antigens unqualified. It is the variety of antigens that matters

1. (Contains) many different / greater range of antigens;
2. Each antigen causes its own immune response / production of / has a specific (type of) antibody;
(b) 1. Only patients who had whooping cough have toxin / antibody / immune response;

Accept converse e.g. those without antibody had another disease
2. Toxin is an antigen and is (only) produced by this bacterium;
3. Leading to presence of specific antibody / only 4% had this antibody / 13% did not have antibody;
(c) 1. There may not be large rises;
2. Might be the result of wrong diagnosis / reference to difference in figures / 13\% diagnosed with whooping cough didn't have it;

Ignore reference to new strains or antigenic variability
(a) 1. A: phospholipid (layer);

1. Reject hydrophobic / hydrophilic phospholipid
2. B: pore / channel / pump / carrier / transmembrane / intrinsic / transport protein;
3. Ignore unqualified reference to protein
(b) (i) Condensation (reaction);
(ii) Organelle named; Function in protein production / secretion;

Function must be for organelle named Incorrect organelle = 0
eg

1. Golgi (apparatus);
2. Accept smooth endoplasmic reticulum
3. Package / process proteins;

OR

3. Rough endoplasmic reticulum / ribosomes;
4. Accept alternative correct functions of rough endoplasmic reticulum. ER / RER is insufficient
5. Accept folding polypeptide / protein
6. Make polypeptide / protein / forming peptide bonds;

OR
5. Mitochondria;
6. Release of energy / make ATP;
6. Reject produce / make energy
6. Accept produce energy in the form of ATP

OR
7. Vesicles;
8. Secretion / transport of protein;

17 (a) (i) Substance that causes an immune response / production of antibodies;
lgnore foreign / non-self
(ii) 1. Not lipid soluble;
2. Too large (to diffuse through the membrane);
3. Antigens do not have the complementary shape / cannot bind to receptor / channel / carrier proteins (in membranes of other epithelial cells);
(b) 1. (Vaccine contains) antigen / attenuated / dead pathogen;

1. Reject if in context of injection of vaccine
2. T-cells activate B-cells;
3. B-cells divide / form clone / undergo mitosis;
4. Plasma cells produce antibodies;
5. Memory cells produced meaning more antibodies / antibodies produced faster in secondary response / on reinfection;
(a) (i) (Aerobic) respiration;

Accept ATP production / energy release
Reject anaerobic respiration
Reject energy production
(ii) Golgi (apparatus / body);
lgnore smooth ER
(b) ('It' = Optical microscope)

Ignore reference to magnification

1. Has low resolution / not high enough resolution;

Accept converse relating to EM
2. (Because) wavelength of light not short enough / too long;

Accept larger wavelength
Accept statements that microscopes have a wavelength

19 (a)

Statement	Starch	Cellulose	Glycogen
Found in plant cells	\checkmark	\checkmark	
Contains glycosidic bonds	\checkmark	\checkmark	\checkmark
Contains β-glucose		\checkmark	

One mark for each correct row
(b) Hydrolysis;

Accept: if phonetically correct Do not accept: 'hydration'
(c) 1. Coiled / helical / spiral;

Feature = one mark
Explanation = one mark
Note: these are independent marking points
These must be related for both marks but can be in reverse order
2. (So) compact / tightly packed / can fit (lots) into a small space;
3. Insoluble;
4. (So) no osmotic effect / does not leave cell / does not affect water potential;

Accept: prevents osmosis
5. Large molecule / long chain;
6. (So) does not leave cell / contains large number of glucose units;
4. and 6. Accept: can't cross membranes
7. Branched chains;
8. (So) easy to remove glucose;

2 max
(d) Two marks for correct answer of 479-521;

Accept: measured and actual lengths in different but correct units for 1 mark

One mark for incorrect answers in which candidate clearly divides measured length by actual length;

The actual range is 23-25mm, If they just divide this by 48 they gain 1 mark
Just writing the formula is insufficient, numbers must be used
(a) (i) Golgi (apparatus / body);
(ii) 1. Nucleus;

Accept: nucleolus / nuclear envelope / nuclear membranes
2. Mitochondrion;

Accept cristae / mitochondrial membranes
3. Endoplasmic reticulum / ER;

Ignore reference to rough / smooth
4. Lysosome;

Reject lysozyme
(b) (Aerobic) respiration / ATP production / provide energy;

Accept Krebs cycle / electron transport.
Ignore 'produces energy'
Reject anaerobic respiration
Ignore what energy is used for
(c) 1. High / better resolution;
2. Shorter wavelength;
3. To see internal structures / organelles / named organelles;

Accept ultrastructure
(a) 1. Mitochondria respire to release energy / produce ATP;

1. Do not credit make energy
2. Transport against gradient;
3. Do not credit active transport as this is given in question.
4. Do not accept diffusion against.

OR

3. Infolding of membrane increases area;
4. Reject microvilli but if mentioned can still accept point 4.
5. More proteins for active transport;
(b) 1. Ribosomes make proteins / enzymes;

Ignore references to Golgi or rough ER.
2. Enzymes are proteins;

OR
3. Mitochrondria respire;
4. Release energy / produce ATP;
5. (Energy / ATP) for protein / enzyme synthesis;
(c) Microvilli increase area / have large area;

Ignore references to other properties of microvilli.
(a) 1. Granum / grana / thylakoid;

Ignore references to membranes, stacks or discs.
2. Stroma;

Allow phonetic spellings.
(b) 1. Absorbs / traps / uses light;

Light dependent reaction = marking point 1.
2. For photosynthesis;
3. Produces carbohydrates / sugars / lipids / protein;

Accept any named product of photosynthesis for marking point 3.
Reference to light dependent and light independent reactions = two marks
(c) Correct answer in range of 2.53-2.66;

Any length divided by $30000=1$ mark;
(a) (i) (Human cells) don't have a cell wall;

Accept "they" refers to human cells.
(ii) (Affects) protein synthesis;

Allow description e.g. 'amino acids not joined together / translation.
Reject: affects transcription.
(b) 1. Mutation present / occurs;

Ignore antibiotic causes mutation.
2. Resistance gene / allele;

1. or 2.

Reference to immunity disqualifies first credited marking point.
3. Resistant bacteria (survive and) reproduce;

Reference to mitosis negates marking point 3.
(a) (Plasma / cell) membrane;

Reject: nuclear membrane
(b) Nucleus / nuclear envelope / nuclear membrane / nucleolus;

Accept: membrane-bound organelles only if an example has not been given

Mitochondrion;
(Smooth / rough) ER;
Lysosome;
Microvillus / brush border;
Neutral: villi
Golgi;
Linear / non-circular DNA / chromosome;
Neutral: DNA strands
80 S / denser / heavier / larger ribosomes;
Neutral: ribosomes
(c) (i) Higher resolution / higher (maximum) magnification / higher detail (of image);

OR

Allows internal details / structures within (cells) to be seen / cross section to be taken;

Accept: 'better' instead of 'higher'
Neutral: shorter wavelength
Reject: longer wavelength
Reject: can be used on living specimens
Q Do not accept 'clearer' image
(ii) Thin sections do not need to be prepared / shows surface of specimen / can have 3-D images;

Accept: can be used on thick(er) specimens
Reject: can be used on living specimens
Neutral: refs. to staining / preparation / artefacts / colour
(d) Two marks for correct answer of $0.42-0.46$;;

One mark for incorrect answers in which candidate clearly divides measured width by magnification;

Correct answer = 2 marks outright
Accept: 0.4 or 0.5 only if working is correct for 2 marks Do not award a mark for 0.4 or 0.5 if there is no working out Ignore rounding up
(e) As height increases, the number of deaths decrease / inversely proportional / negative correlation;

Correct reference to increase / decrease at 14-30m;
Accept: converse statement
Must give a trend and not simply give individual points
Do not penalise for 'more likely to get cholera'
(a) Cell wall;

Starch (store);
Chloroplast;
Accept: phonetic spelling
(b) Insoluble;

Reduces / 'stops' water entry / osmosis / does not affect water potential / is osmotically inactive;

Accept: description for first point e.g. 'does not dissolve'.
(c) Light sensitive eyespot / eyespot detects light;

Flagellum enables movement towards light;
Chloroplast / chlorophyll absorbs light / for photosynthesis;
Do not penalise references to 'many chloroplasts'.

26
(a) Peptide;

Q Do not accept polypeptide Neutral: covalent
(b) (F) $\mathrm{HJE}(\mathrm{K})$;

All three boxes correct $=2$ marks
Two boxes correct $=1$ mark
(c) (Site of aerobic) respiration;

Release ATP / energy for active transport / transport against the concentration gradient / protein synthesis / exocytosis;

Q Reject: anaerobic respiration
Q Reject: produces / makes energy
Accept: produces ATP for energy
Reject: produces ATP for respiration
Neutral: protein secretion
(d) (i) Breaks open cells / disrupts cell membrane / releases cell contents / releases organelles / break up cells;

Reject: breaks down cell wall
Neutral: separates the cells
Reject: breaks up cells so they can be separated
Reject: breaks up / separates organelles
(ii) Removes (cell) debris / complete cells / tissue;

Neutral: to isolate organelle \mathbf{G} / mitochondria
Neutral: removes unwanted substances / impurities
Reject: removes organelles / cell walls
(iii) Reduces / prevents enzyme activity;

Reject: ref. to denaturation
(iv) Prevents osmosis / no (net) movement of water / water does not enter organelle / water does not leave organelle;

So organelle / named organelle is not damaged / does not burst / does not shrivel;

Neutral: ref. to water potential
Q Ref. to cells rather than organelles negates the second mark only
Reject: ref. to turgid / flaccid for second mark
Reject: organelle 'explodes' for second mark

27
Fatty acids used to make phospholipids;
Phospholipids in membranes;
More phospholipids more membranes made;

Fatty acids respired to release energy;
More triglycerides more energy released;
Energy used for cell production / production of named cell component;
Do not allow credit for 'making' energy
(a) (i) Mitochondrion;

Neutral: cristae
(ii) (Site of aerobic) respiration / ATP production / energy release;

Q Reject: anaerobic respiration
Q Reject: energy produced
Active transport / transport against the concentration gradient;
Accept: energy produced in the form of ATP
(b) $89-91$ gains 2 marks;

Correct answer gains 2 marks outright
Principle of:
correct measurediength
magnification
89-91 (mm) / 1000 or 8.9-9.1 (cm) / 1000 gains 1 mark
(c) Suitable explanation given e.g.

Accept: converse arguments
Reduced surface area; (So) less absorption;
Neutral: structure \boldsymbol{Z} incorrectly named
(Membrane-bound) enzymes less effective;
(So) proteins / polypeptides not digested;
Reduced surface area for absorption gains 2 marks
Cell membranes damaged;
(So) Fewer / less effective carrier / channel proteins;
Accept: references to diffusion and active transport for 'absorption'
Carrier / channel proteins damaged;
(So) less absorption;
Reject: active transport if linked to channel proteins
(a) B Golgi (body / apparatus);

C Mitochondria / mitochondrion;
(b) 1. Chloroplasts / plastids
2. Cell wall
3. Cell vacuole
4. Starch grains / amyloplasts;

Any 2 for 1 mark
(c) 1. Ice-cold - Slows / stops enzyme activity to prevent digestion of organelles / mitochondria;
2. Buffered - Maintains pH so that enzymes / proteins are not denatured;

Reject reference to cells
3. Same water potential - Prevents osmosis so no lysis / shrinkage of organelles / mitochondria / C;
lgnore damage
For each mark must link reason to relevant property
(d) 1. Break open cells / homogenise / produce homogenate;
2. Remove unbroken cells / larger debris;
(e) Nucleus / nuclei;
(f) Mitochondria / organelle C less dense than nucleus / organelle in first pellet;

Accept 'lighter' for less dense
(a) 1. How to break open cells and remove debris;
2. Solution is cold / isotonic / buffered;
3. Second pellet is chloroplast.
(b) 1. A stroma;
2. B granum.

Accept thylakoid
(c) $\quad\left(\frac{\text { length of chloroplast }}{\text { length of bar }}\right) \mu \mathrm{m}$
(d) Two of the following for one mark:

Mitochondrion / ribosome / endoplasmic reticulum / lysosome / cell-surface membrane.

