All cells arise from other cells 2

Level: CIE AS 9700
Subject: Biology
Exam Board: Suitable for all boards
Topic: All cells arise from other cells 2
Type: Mark Scheme

To be used by all students preparing
for CIE AS Biology 9700 foundation or higher tier but also suitable for students of other boards.

Mark schemes

(a) DNA replicated/two DNA strands/molecules;

Coiled/condensed/wound up (to make visible);
Giving/made of (two) chromatids;
Attached at centromere;
Accept linear so eukaryote; with histone;
Accept have become shorter and fatter
(b) (i) Stage A, anaphase/prophase;

Chromatids/chromosomes moving to poles/chromosomes condensed/ coiled/wound up;

Points not linked but need correct description with stage in this case.
Accept prophase because the image could be interpreted as such
(ii) Stage B, metaphase;

Chromosomes on equator/attaching to spindle;
Points not linked
Accept equator of cell
Reject centre of cell
Accept chromatids for chromosomes

2 (a) (i) where mitosis / division / growing / occurs (reject growing cells)
(ii) to distinguish chromosomes / chromosomes not visible without stain;
(iii) to let light through / thin layer;
(b) (i) $74+18 / 982$;
= 9.4\% / 9\%;
(allow 1 mark for identifying prophase \& metaphase i.e. 92 or correct method using wrong figures)
(ii) genetic differences / different types of garlic; time of day;
chance; age of root tip; water availability; temperature;
nutrient availability;
(environmental factors = 1 but cannot be awarded in addition to a named environmental factor)
(ii) Chromosomes / chromatids moved apart;
(iii) A wide range of processes occurs during interphase. This list is by no means exhaustive, but we would expect to see answer such as:

Increase in volume of cell / volume of cytoplasm / increase in mass / cell bigger; increase in number of organelles;
synthesis of protein / named protein;
DNA replication / increase / chromosomes copied;
ATP synthesis / respiration;
(b) Divide real length of bar (in mm) / 10 by 0.02 ;
(c) $12 / 200 \times 24$ / single error in otherwise correct method;
1.44 hours (1 hour 26 min);

4 (a) Chromosomes attach to equator / middle of cell / spindle;
Prophase;
Anaphase;
DNA replication / synthesis / chromosome copying / duplication;
Telophase;
(b) (i) Meiosis;
(ii) 32 ;

1
(a) Later fertilisation / cell fusion; (NOT just 'sexual reproduction’)

Restoring diploid / original number / not doubling chromosome number;

$$
\text { ALLOW ref }{ }^{1} 1 / 2+1 / 2 \text { ' }
$$

(b) Any three pairs from:
need comparison of meiosis and mitosis each time

Meiosis	Mitosis
(Homologous) chromosomes associate in pairs	(Homologues) independent / do not pair (IGNORE ref. separation
Crossing-over / chiasmata formation	No crossing-over;
Two / (nuclear stages) divisions / $\rightarrow 4$ offspring cells	One / (nuclear stage) division / $\rightarrow 2$ offspring cells;
Genetically different (product)	Genetically identical (product);

IGNORE refs. To location
(b) (i) cell to show correct number of chromosomes; correct shape and position of centromere;
(ii) as (i) except everything halved - Ignore crossing over; (if mitosis and meiosis reversed, allow 1 if otherwise correct)
(c) to replace cells;
(a) (i) benign does not cause cancer /
does not invade other tissues causing damage /
with benign cancer, pieces which break off do not start new tumours elsewhere in body / metastasis;
(ii) may damage organ concerned;
may cause blockages / obstructions;
may damage / exert pressure on other organs;
(b) (i) because sun's radiation contains ultra violet radiation; this causes mutation of genes which control division;
(ii) because fair skin has little melanin which protects against u.v. radiation;
(iii) because cancer has genetic component / may have inherited (onco)gene / gene which gives predisposition to / causes cancer;

8 (a) produced by mitosis; genetically identical;
(accept identical genes / same genotype / WNA / genetic information)(reject same genes, same genetic code)
(b) cells lost ability to control development / no longer totipotent / cells have differentiated / become specialised;
(c) (many) offspring with favourable characteristics / high meat / milk yield; pedigree embryos into non-pedigree mothers / not risking pedigree mothers / rare breeds conserved;
sex / gender selection;
(a) (i) (D) B E A C;
(ii) metaphase;
(b) interphase / S phase;
(c) (i) 0.06×100;

6(\%);
(correct answer 2 marks)
(ii) more(cancer cells) killed, cancer cells divide more (often)
(so are more likely to be killed, more susceptible);
(iii) longer time to recover; reduced rate of mitosis / divide more slowly / increased doubling time;
(a) mitosis;
genetically / genes / genotype identical;
(reject same genes)
(ignore references to asexual reproduction)
(b) (different) environmental conditions / named environmental factor / mutation;
(c) dispersal / prevent overcrowding / competition / colonise ; increased number of (proven) offspring; (not quicker)
(a) 1 two strands therefore semi-conservative replication (possible); 2 base pairing / hydrogen bonds holds strands together 3 hydrogen bonds weak / easily broken, allow strands to separate; 4 bases (sequence) (exposed so) act as template / can be copied;
5 A with T, C with G / complementary copy;
6 DNA one parent and one new strand;
(b) 1 chromosomes shorten / thicken / supercoiling;

2 chromosomes (each) two identical chromatids / strands / copies (due to replication);
3 chromosomes / chromatids move to equator / middle of the spindle / cell;
4 attach to individual spindle fibres;
5 spindle fibres contract / centromeres divide / repel;
6 (sister) chromatids / chromosomes (separate)
move to opposite poles / ends of the spindle;
7 each pole / end receives all genetic information / identical copies of each chromosome;
8 nuclear envelope forms around each group of chromosomes / chromatids / at each pole;
(c) cancer cells killed, normal body cells survive; cancer cells low oxygen (as blood supply cannot satisfy demand);

12 (a) (i) anaphase;
(ii) sister / identical chromatids (separate); move to opposite poles / ends / sides;
(b) (i) interphase;
(ii) ATP production / protein synthesis / replication of centrioles;
(iii) 1.2;

1

1
(c) short duration of interphase;

13 (a) (i) 8 'chromatids' each side; spindle drawn;
(ii) 4 chromosomes; 1 from each homologous pair;
(b) produces haploid cells / chromosome number halved; fertilisation maintains the diploid / chromosome number (in next generation);

14 (a) genetically identical cells / individuals;
(b) mitosis;
(c) no differentiation at this stage / same genes being expressed;
(d) brown - genes / DNA / genetic 'information' from the nucleus (expressed);
(e) embryo cell diploid, egg cell haploid; contain different alleles / forms of the colour gene;
(f) damage to nucleus / cells during transfer;

15 (a) (i) prophase;
chromosomes thickening / becoming visible;
(ii) anaphase;
chromatids / chromosomes moving to opposite poles / ends of spindles;
(b) DNA replication; synthesis or proteins / build-up of energy stores / growth / increase in cytoplasm;
replication of organelles / named example;
2 max
(a) (cut out gene using an) endonuclease / restriction enzyme;
reference to specificity / recognition site;
sticky ends;
use the same enzyme to cut;
plasmid / virus / potato DNA;
fixed by ligase;
method of introducing vector e.g. micropipette / virus injects DNA / remove plant cell wall;
(b) different genes are expressed;
producing different enzymes / proteins;

17 (a) mass of undifferentiated / unspecialised / totipotent cells; uncontrolled cell division;
(not 'repeated')
metastasis / (cells break off and) form new tumours / spread to other parts of body;
(b) cancer takes time to develop / exposure when young but cancer triggered later; other organs destroyed before death occurs / metastasis affects other organs; immune system less effective in old people; longer time of exposure to UV / accumulation of mutagenic effect;
(c) dark skin / melanin / pigment stops UV light / prevents burning; so less cancer risk in dark skinned people / less likely to develop tumours;
(allow converse)
(i) smoking and drinking increase risk;
risk increases for nonsmokers with more alcohol;
20-40 cigarettes increases risk; at all levels of alcohol consumption;
4 or more drinks increase risk in all groups;
worst risk with combination of $40+$ cigarettes and 4 or more drinks;
smoking and drinking together have a greater effect than either on its own;
over 40 cigarettes and no alcohol greater than 1 or 2 alcoholic drinks / valid comment about anomaly;
(ii) other environmental factor / e.g. passive smoking; genetic predisposition / inherited from parents; mutation;
(a) (i) A anaphase;
(ii) (C) B,A,D;
(iii) (original) chromosome / DNA has been replicated; each chromosome consists of two chromatids / chromatids attached at centromere;
(accept reference to condensed state of chromosomes)
(b) (i) it has doubled / now 8;
(ii) chromosome / DNA replication but no separation / anaphase / cell division;
(a) Sequence: C,A,D,B;

1 mark per correct box to 3 max
(b) (i) Q ;
(ii) Cell/nucleus has divided / is dividing (into two);

Accept - mitosis (occurring)
Ignore refs to chromosomes dividing

21 (a) Centromere;
(b) Same size;

Same shape;
Same genes;
In same sequence/locus/loci;
(c) Chromatids separate;
(Chromatids) pulled to opposite ends of cell;
By spindle fibres;
Become part of new nuclei;

22 (a) 1 Cut gene out of cell / make gene using mRNA / obtain gene with restriction enzymes;
2 Cut DNA using restriction enzyme / plasmid cut with restriction enzyme;
3 Correct reference to sticky ends;
4 Join DNA using ligase / insert gene into vector;
5 Plasmid / named vector transferred to cell;
6 Method of transfer e.g. heat shock;
7 Reference to marker gene;
8 Select bacteria containing new gene;
(b) Cells can metastasise / break off / spread to other parts of the body;

Remaining cells continue to divide forming a new tumour / secondary;
(c) Antibodies specific;

Normal cells have different antigen / cancer cell has particular antigen;
Enzyme only present in cancer cells so drug only activated at / near cancer cells;
(d) All cells contain DNA;

Would stop / inhibit DNA replication in normal cells;
Stops / inhibits cell division;
Named example on growth / repair e.g. no new blood cells made / no wound healing;

