

Studying cells 2

Level: CIE A Level 9700

Subject: Biology

Exam Board: Suitable for all boards

Topic: Studying cells 2

Type: Mark Scheme

To be used by all students preparing for CIE Biology A Level 9700 foundation or higher tier but also suitable for students of other boards.

Mark schemes

1

(a) Correct answer: 1.25;

Ignore working

OR (if wrong answer)

$$\frac{\text{measurement in } \mu \text{m}}{40000} / \frac{\text{measurement in mm}}{40} = 1 \text{ mark}$$

125 but wrong order of magnitude = 1 mark

2

(ii) **C** has myosin / thick (and actin / thin) filaments;

OR

A has only actin / thin (/ no myosin / no thick) filaments;

1 max

(b) When contracted:

Thick & thin filaments/myosin & actin overlap more;

Interaction between myosin heads & actin / cross-links form;

Movement of myosin head;

Thin filaments / actin moved along thick filaments / myosin;

Movement of thin filaments / actin pulls Z-lines closer together;

Displacement of tropomyosin to allow interaction;

Role of Ca²⁺:

Role of ATP:

Allow ref. to 'sliding filament mechanism' / described if no other marks awarded

4 max

(c)	(i)	8 has DMD but 3 and 4 do not / 12 has DMD but 6 and 7 do not / neither parent has the condition but their child has; Allow parents 3 and 4 give 8, parents 6 and 7 give 12	1
	(ii)	4 AND 7;	1
	(iii)	Parental genotypes: $6 = \mathbf{X}^{D}\mathbf{Y}$ AND $7 = \mathbf{X}^{D}\mathbf{X}^{d}$	
		AND	
		Gametes correct for candidate's P genotypes – e.g.	
		\mathbf{X}^{D} and $\mathbf{Y} + \mathbf{X}^{D}$ and \mathbf{X}^{d} ;	
		Offspring genotypes correctly derived from gametes e.g.	
		$X^{D}X^{D} + X^{D}X^{d} + X^{D}Y + X^{d}Y;$	
		Male offspring with MD correctly identified: XdY;	
		Probability = 0.25 / correct for candidates offsprings genotypes; Accept ½ / 1 in 4 / 1:3 / 25% NOT '3:1' / '1:4'	
			4
(d)	(i)	No gene fragment G ;	1
	(ii)	Only one copy of gene fragment F ;	
		Male has only one X-chromosome / is XY (c.f. female has two / is XX);	
		(c.i. lemale has two / is AA),	2
	(iii)	10 has only one copy of gene fragment G ;	
		10 has only one normal X-chromosome / has one abnormal / has only one normal allele / has one X^d / is $X^D X^d$ / is heterozygous;	
		11 has two normal X-chromosomes / has 2 normal alleles / is $X^D X^D$ / has not got X^d / has 2 copies of (F and) G;	
(e)	(i)	To prevent rejection / prevent antibody production vs. injected cells / injected cells have (foreign) antigen (on surface);	3 1
	(ii)	Shows effect of cells / not just effect of injection / not just effect of salt solution;	_

1

(iii) Only one person tested so far – need more to see if similar results / need more to see if reliable;

Need to assess if new (dystrophin positive) muscle fibres are functional / if muscle becomes functional;

Can't tell how widespread effect is in the muscle / sample taken near injection site;

Need to test for harmful side effects;

Need to test if successful for other mutations of dystrophin gene;

Need to assess permanence / longevity of result/insufficient time allowed in investigation;

(In this patient) only small response / %;

Further sensible suggestion;

4 max

[25]

2	(a)	Differentiation / specialisation	1	
	(b)	(i) (cellulose) <u>Cell</u> wall;	1	
		(ii) Two marks for correct answer 2350–2500;; Accept measured and real lengths in different units for one mark.		
		One mark for a measured length divided by real length;	2	
		(iii) Chloroplasts absorb light; • Q Do not accept chlorophyll as alternative to chloroplasts		
		Or		
		Large vacuole pushes chloroplasts to edge (of cell);		
		Or Thin / permeable (cell) wall to absorb carbon dioxide;	1 max	[5]
3	(a)	Single layer of cells / few layers of cells;		
3		So that light that can pass through / cells absorb light;	2	
	(b)	Method of determining area of field of view / area seen using microscope;		
		Count number of stomata in field of view;		
		Repeats and calculation of mean;	3	
	(c)	Water <u>vapour</u> accumulates / increased humidity / reduced air movement (around stomata);		
		Water potential / diffusion gradient reduced;	2	[7]
4	(a)	(Group of) similar / identical cells / cells with a common origin; • *Q* Ignore references to function*	1	
	(b)	 (i) Add iodine / stain specific for starch to the slide / cells / tissue / add iodine / stain specific for starch and examine under microscope; 	1	
		Blue-black / blue / black / purple;		
		Reject sample	2	

(ii) Need a single layer of cells / only a few cells thick / not too many layers / detail obscured by cells underneath;

Light must be able to pass through;

2

(c) Both are polymers / made of monomers;

Joined by condensation / molecules can be broken down by hydrolysis;

Both have 1-4 links;

Contain C(arbon), H(ydrogen) and O(xygen) / both made up of glucose;

Both insoluble;

Both contain glycosidic bonds;

Accept other valid answers. Ignore ref to unbranched.

2 max

[7]

5 Advantages:

- 1 Small objects can be seen;
- 2 TEM has high resolution as wavelength of electrons shorter;

Accept better

Limitations:

- 3 Cannot look at living cells as cells must be in a vacuum / must cut section / thin specimen;
- 4 Preparation may create artefact
- 5 Does not produce colour image;

[5]

6

(a) To ensure the colour is the same at the start;

1

(b) Yes – curve on graph with bromelain present remains approximately constant / rises very slightly;

Would decrease if killing of cells occurred / would increase if cells still dividing;

2

(c) Use of mouse cells (rather than human);

(Carried out) in vitro / not in living organisms;

Only tested on one type of cancer;

Not possible to predict effect on humans (as no data collected);

3 max

	(d)	The faster the rate of division the faster the cancer would grow; By measuring rate of cell division you could see how effective the treatment was;	2	
	(c)	Not ethical to replace conventional treatment; As life of patient is at risk (if bromelain not effective);	2	[10]
7	(a)	(i) break open cells / release cell contents;	1	
		(ii) keep pH the same / controls pH; prevent change to / denaturing of proteins / enzymes;	2	
	(b)	(i)	2	
		(ii) site of respiration which releases energy / ATP; required for movement against concentration gradient; ignore first point for thermodynamically incorrect statements such as "making energy".	2	[7]
8	(a)	Several / more than one polypeptide chain in molecule; Evidence must only relate to 4° structure		
		Evidence must only relate to 4 structure	1	
	(b)	Chemical bonds formed between sulphur-containing groups / R-groups / form stronger disulphide bonds; Bind chain(s) to each other;	2	
	(c)	Different <u>number</u> / sequences of amino acids; Bonds in different places which gives different shape;	2	
	(d)	Outer layer of skin cells are dead / do not respire Do not contain mitochondria / do not produce ATP / release energy; Cells do not have required proteins / carriers;		
			3	

(e)

9

Advantages:

` ,		•		
	1	Small objects can be seen;		
	2	TEM has high resolution as wavelength of electrons shorter; Accept better		
	Limit	tations:		
	3	Cannot look at living cells as cells must be in a vacuum;		
	4	must cut section / thin specimen;		
	5	Preparation may create artefact		
	6	Does not produce colour image;		
			6	[14]
(a)	(i)	Chloroplast;	1	
	(ii)	Photosynthesis;		
		Uses light (energy);		
		To produce carbohydrates / starch / glucose / sugars / ATP / reduced NADP; Note that candidates cannot be expected to have a detailed knowledge of photosynthesis.		
		knowledge of photosynthesis.	max 2	
(b)	(i)	A;	1	
	(ii)	C ;	1	
(c)	(i)	Slows enzymes / prevents enzymes being denatured / prevents / stops self-digestion;		
		Ignore references to bacteria. Reject enzymes not working	1	
	(ii)	To remove organelle C / nuclei; Which are larger / more dense;	2	[8]

10	(a)	removes debris / intact cells / sand; which would contaminate sediment A / interfere with the results;		
	(b)	(i) nuclei;	2	
		(ii) ribosomes / endoplasmic reticulum / membrane / Golgi;	1	
	(c)	density / size / mass / weight;	1	
	(d)	an electron microscope has a higher resolution; electrons with shorter wavelength;	1	
			2	[7]
11	(a)	 e.m. gives high resolution due to short wavelength of electrons; antibodies attach specifically to target proteins; gold particles are electron dense; electrons must pass through a vacuum so material must be dead / fixed for e.m.; cross-bridge cycling requires living cells / metabolism / named aspect-e.g. ATP synthesis; 		
	(b)	1. Ca ²⁺ removes blocking molecules / uncovers binding site on actin;	5	
	(b)	 2. correct references to Ca²⁺ binding to troponin / moving tropomyosin; 3. allows myosin heads to attach to actin filaments; 4. allows sliding of the actin and myosin filaments; 5. binding of ATP causes myosin (head) to detach (from actin); 6. (hydrolysis of) ATP releases energy; 7. which changes the configuration / cocking of the myosin head; 	5 max	
			5 max	[10]
12	(a)	(i) Mitochondria site of respiration; Production of ATP / release of energy; For contraction;		
		Do not award credit for making or producing energy.	3	
		(ii) Enzymes are proteins; Proteins synthesised / made on ribosomes;	2	
	(b)	Lysosomes produce / contain enzymes; Which break down / hydrolyse proteins / substances / cells of tail;	2	

	(c)	2. C 3. B 4. Is 5. Fi 6. C	hop up (accept any reference to crude breaking up); old; uffer solution; otonic / same water potential; lter and centrifuge filtrate; entrifuge supernatant; thigher speed;		
			hloroplasts in (second) pellet;	max 6	[13]
13		(a)	(i) Golgi;	1	
		(ii)	Exocytosis;	1	
	(b)	(i)	Joining together of amino acids / synthesis / production of thyroglobulin / makes protein;		
			Do not credit synthesis of amino acids	1	
		(ii)	Electron microscope has high / greater resolution; Because it uses electrons which have smaller wave(length);	2	[5]
14	(a)	(i)	A mitochondrion <u>and</u> B nucleus; (need both for one mark)	1	
		(ii)	increased surface area; for respiration / enzymes;		
	(b)	e.g.	suitable feature plasmid / capsule / 70S ribosomes / smaller somes / complex cell wall / mesosome / no nucleus;	2	
	(c)	first wall supe	of differential centrifugation / or description; / low-spin pellet discarded / spin at low speed to remove cell material / cell debris; ernatant re-spun at higher speed / until pellet with chloroplasts is found;	1	
		meth	nod of identifying chloroplasts e.g. microscopy;	3 max	[7]

15

(a) two environmental or developmental variables <u>and</u> explanation;

examples,

all plants of the same age, so same time for cell divisions / differentiation; all plants given the same watering, so same amount of water for cell expansion;

(reject reference to photosynthesis)

all plants given same light, so same rate of photosynthetic; same temperature, so enzymes / named metabolic process at optimum temperature;

same named ion / minerals in soil(e.g. nitrate), so same available for a named function, (e.g. amino acid / protein synthesis);

2 max

(b) count cells using microscope;
 count number of cells in cell division / where chromosomes visible;
 and then the total number of cells in field of view;

2 max

(c) only cells at tip have ability to divide / cells further back don't divide; cells further back differentiating / named example of (accept reference to loss of totipotent cells) differentiated tissue / too old / reduction in plant hormone; cell wall too thick / vacuole too large to allow division;

2 max

(d) new cells added at tip;
 cells increase in volume / larger;
 increase in length (of cells);
 as vacuole s get larger;
 due to uptake of water (by osmosis);

3 max

.<u>..</u> [9]

16

(i) cold - no / reduced enzyme action / e.g. stops autolysis;(reject "cell activity reduced")

isotonic - stops osmotic effects / description of effect on cells or organelles; buffer - prevents damage to enzymes / proteins;

(ii) break open the cells / release the cell contents;

1

3

(iii) supernatant / liquid above the pellet; spun at a high(er) speed;

(mark as independent points)

2

[6]

(a) (i) homogeniser / blender / pestle and mortar / description e.g. grind with sand;

1

(ii) centrifuge / description e.g. spin at high speeds;

1

1

(b) (i) chloroplast;

[2]

(a) (i) microvilli; (reject brush border)

[3]

(ii) increased surface area (for diffusion);

1

1

(b) (i) $\frac{16 \times (1000)}{0.1}$ / principle of $\frac{\text{measuring scale bar}}{\text{dividing by 0.1}}$;

160000;

(correct answer award 2 marks)

2

(ii) electron microscope has a greater resolving power / objects closer together can be distinguished; electron (beams) have a shorter wavelength;

2

1

(c) short diffusion pathway / short pathway to the centre / large SA:V ratio for faster, more diffusion;

[7]

- 19
- (a) X = mitochondria;

Y = (rough) endoplasmic reticulum;

Accept ribosomes/ER/RER for Y

Reject smooth endoplasmic reticulum for Y

2

20

(b)	(i)	(Sections cut at) different angles/in different planes;				
		Ignore name given to organelle				
			1			
	(ii)	Z modifies/packages/transports/secretes mucus/ Z adds sugars to proteins; X provides ATP/energy (for this);				
		Accept makes in relation to Z but not X				
		Ignore names of organelles if function correct				
			2			
(0)	/i\	Mitaghandrian			[5]	
(a)	(i)	Mitochondrion; Neutral: cristae				
		Neutral. Cristae		1		
	/::\	(Cite of countries) reconstruction / ATD and duction / an array releases				
	(ii)	(Site of aerobic) respiration / ATP production / energy release;				
		Q Reject: anaerobic respiration				
		Q Reject: energy produced				
		Active transport / transport against the concentration gradient;				
		Accept: energy produced in the form of ATP				
				2		
(b)	89 – 91 gains 2 marks;					
		Correct answer gains 2 marks outright				
	Princ	ciple of:				
	corr	rect measured length gains 1 mark;				
		magnification				
		89-91 (mm) / 1000 <u>or</u> 8.9-9.1 (cm) / 1000 gains 1 mark		2		
	.			_		
(c)	Suita	able explanation given e.g.				
		Accept: converse arguments				
	Red	uced surface area; (So) less absorption;				
		Neutral: structure Z incorrectly named				
	(Mer	mbrane-bound) enzymes less effective;				
	•	proteins / polypeptides not digested;				
		Reduced surface area for absorption gains 2 marks				
	الو	membranes damaged;				
		Fewer / less effective carrier / channel proteins;				
	. ,	Accept: references to diffusion and active transport for 'absorption'				
	Carr	ior / channel proteins damaged:				
		ier / channel proteins damaged; less absorption;				
	()	Reject: active transport if linked to channel proteins				

2