

EXAM PAPERS PRACTICE

Angles in Polygons

Model Answer

NOT TO
SCALE

Use the information in the diagram to find the value of a.
$a=55^{\circ}+50^{\circ}=105^{\circ}$
[2]

Question 2

In the diagram, $A B$ is a straight line.
Find the value of x and the value of y.
x are 60° and $y=40^{\circ}$

The three angles in a triangle are $5 x^{\circ}, 6 x^{\circ}$ and $7 x^{\circ}$.

(a) Find the value of x.

$$
\begin{aligned}
& \text { Sum of angle of triangle }=5 x+6 x+7 x \\
& \text { Sum of angle of triangle }=18 x
\end{aligned}
$$

$$
\begin{aligned}
& 180^{\circ}=18 x \\
& \Longrightarrow x=\frac{180^{\circ}}{18} \\
& \Longrightarrow x=10^{\circ}
\end{aligned}
$$

(b) Work out the size of the largest angle in the triangle.

Largest angle $=7 x$
Largest angle $=7\left(10^{\circ}\right)$
Largest angle $=70^{\circ}$

Question 4

Five angles of a hexagon are each 115°.
Calculate the size of the sixth angle.
Five angle of hexagon is 115° each sum of all angles of hexagon $=720$
\therefore let sixth angle of hexagon be x
$x+115+115+115+115+115=720$
$x+575=720$
$x=720-575$
$x=145^{\circ}$

A regular polygon has an interior angle of 172°.

Find the number of sides of this polygon.

The regular polygon has 45 sides.

Question 6

A solid consists of a metal cube with a hemisphere cut out of it.

The length of a side of the cube is 7 cm .
The diameter of the hemisphere is 5 cm .
Calculate the volume of this solid.
[The volume, V, of a sphere with radius r is $V=\frac{4}{3} \pi r^{3}$.]

The volume of the solid is $343-\frac{5^{3}}{12} \approx 325.73$ cubic centimeters.

Find the sum of the interior angles of a 25 -sided polygon.
Sum of interior angles of a polygon $=180^{\circ}(n-2)$ where, $\mathrm{n}=$ number of sides When $\mathrm{n}=25$
Sum of interior angles of a polygon $=180^{\circ}(n-2)=180^{\circ}(25-2)=4140^{\circ}$

Question 8

(a)

The diagram shows an isosceles triangle.
Find the value of x.
$180^{\circ}-44^{\circ}=136^{\circ}$.
$136^{\circ} / 2=68^{\circ}$.

(b) The exterior angle of a regular polygon is 24°.

Find the number of sides of this regular polygon.

Sum of all exterior angles is 360°

Let the sides of polygon be n
$24 \times n=360$
So $n=\frac{360}{24}=15$

Question 9

Find the interior angle of a regular polygon with 18 sides.
Steps to solve:

1. Substitute the number of sides into the formula:
$i_{18}=\frac{180(18-2)}{18}$
2. Simplify the expression:
$i_{18}=\frac{180(16)}{18}$
3. Divide the numerator and denominator by 2 :
$i_{18}=\frac{2880}{18}$
4. Simplify the fraction:
$i_{18}=160$
Answer:
The interior angle of a regular polygon with 18 sides is 160 degrees.

Question 10

The diagram shows a quadrilateral.
Find the value of x.

The angles of a quadrilateral add up to 360 degrees, so we have:
$83+72+104+x=360$
Solving for x , we get:
$x=360-83-72-104$
$x=101$
Therefore, the value of x is 101 .

The diagram shows a quadrilateral $A B C D$. $C D E$ is a straight line.

Calculate the value of $x .95$

Question 12

The pentagon has three angles which are each 140°.
The other two interior angles are equal.
Calculate the size of one of these angles.
The size of 1 of the 2 equal angles $=60^{\circ}$

NOT TO
SCALE
$A B C D E$ is a regular pentagon.
$D E F$ is a straight line.
Calculate

The diagram shows a regular pentagon. $A B$ is a line of symmetry.

Work out the value of d.

NOT TO SCALE

According to the diagram, each angle will be $d+d=2 d$
Sum of all angles of the pentagon $=540$
$2 d \times 5=540$
$10 d=540$
$d=540 / 10$
$d=54$

Exam
Papers
Practice

The diagram shows part of a regular polygon.
The exterior angle is x°.
The interior angle is $29 x^{\circ}$.
Work out the number of sides of this polygon.

$$
\begin{aligned}
& 29 x+x=180^{\circ} \\
& 30 x=180 \\
& x=6^{\circ} \\
& x \text { is external angle } \\
& \text { we know: } \\
& \text { external angle }=\frac{360}{n} \\
& \text { where } n \text { is no. of sider of the polygon } \\
& \Rightarrow 6=\frac{360}{n} \\
& n=60
\end{aligned}
$$

Exam

No of sides of polygon $=60$

The diagram shows a regular octagon joined to an equilateral triangle.

NOT TO
SCALE

Work out the value of x.

The measure of the interior angle in an equilateral triangle is equal to 60 degrees
The measure of the interior angle in a regular octagon is equal to
$\frac{(n-2) 180}{n}$
where
n is the number of sides
In this problem we have
$n=8$ sides
substitute
$\frac{(8-2) 180}{8}$
$\frac{(6) 180}{8}=135^{\circ}$
we have that, based in the diagram
The sum of the interior angle of the equilateral triangle plus the interior angle of a regular octagon x must be equal to 360 degrees (complete circle)
So
$x+60^{\circ}+135^{\circ}=360^{\circ}$
solve for x
$x+195^{\circ}=360^{\circ}$
$x=360^{\circ}-195^{\circ}$
$x=165^{\circ}$

NOT TO
SCALE

The diagram is made from 5 congruent kites.
Work out the value of
(a) x,

$$
x: \frac{360}{5}=72^{\circ}
$$

(b) y.

$$
\begin{gathered}
y: \quad 42+72=114^{\circ} \\
360-114=246^{\circ} \\
\frac{246}{2}=123^{\circ}
\end{gathered}
$$

Question 18

The exterior angle of a regular polygon is 36°.
What is the name of this polygon?
Answer:
the polygon name is decagon
Step-by-step explanation: sum exterior angles is 36010 sides
$360 \div 10=36$

The diagram shows two of the exterior angles of a regular polygon with n sides. Calculate n.
$n=360^{\circ} /$ exterior angle
In the diagram, the two exterior angles are labeled 6°, so the number of sides is:
$\mathrm{n}=360^{\circ} / 6^{\circ}=60$
Therefore, the regular polygon in the diagram has 60 sides.

Question 20

The front of a house is in the shape of a hexagon with two right angles.
The other four angles are all the same size.
Calculate the size of one of these angles.

Answer: 135°
Step-by-step explanation:
The sum of the interiors angles of the hexagone is $(6-2)^{*} 180^{\circ}=720^{\circ}$
Two angles are right: $2^{*} 90^{\circ}=180^{\circ}$
The sum of the four angles is $720^{\circ}-180^{\circ}=540^{\circ}$
Each angle is $540^{\circ} / 4=135^{\circ}$

