##  <br> EXAM PAPERS PRACTICE

## Algebraic Fractions

Model Answers

## Question 1

Write as a single fraction in its simplest form.

$$
\begin{equation*}
\frac{5}{x-3}+\frac{3}{x+7}+\frac{1}{2} \tag{4}
\end{equation*}
$$

$$
\frac{5}{x-3}+\frac{3}{x+7}+\frac{1}{2}=\frac{5 \cdot 2 \cdot(x+7)+3 \cdot 2 \cdot(x-3)+(x-3) \cdot(x+7)}{2 \cdot(x-3) \cdot(x+7)}
$$

Now, simplify the numerator:

$$
10(x+7)+6(x-3)+\left(x^{2}-3 x+7 x-21\right)
$$

$=10 x+70+6 x-18+x^{2}+4 x-21$
$=x^{2}+20 x+31$
So, the combined fraction is:

$$
\frac{x^{2}+20 x+31}{2 \cdot(x-3) \cdot(x+7)}
$$

This expression is in its simplest form.

## Question 2

Write as a single fraction in its simplest form.
Exam Pa perts Practic

$$
\frac{x+1}{x}-\frac{y-1}{y}=\frac{(x+1) y-(y-1) x}{x y}
$$

Now, simplify the numerator:

$$
\begin{aligned}
& (x+1) y-(y-1) x \\
& =x y+y-y x+x \\
& =x+y
\end{aligned}
$$

So, the combined fraction is:

$$
\frac{x+y}{x y}
$$

This expression is in its simplest form.

## Question 3

Write as a single fraction in its simplest form.

$$
\begin{equation*}
\text { (a) } \frac{x^{2}-3 x}{x^{2}-9} \tag{3}
\end{equation*}
$$

To simplify the given expression $\frac{x^{2}-3 x}{x^{2}-9}$, factor both the numerator and the denominator:
$\frac{x^{2}-3 x}{x^{2}-9}=\frac{x(x-3)}{(x-3)(x+3)}$
Now, cancel out the common factor $(x-3)$ in the numerator and denominator:
$\frac{x(x-3)}{(x-3)(x+3)}=\frac{x}{x+3}$
So, the simplified form of $\frac{x^{2}-3 x}{x^{2}-9}$ is $\frac{x}{x+3}$.

$$
\text { (b) } \frac{3}{x-4}+\frac{2}{2 x+5}
$$

1. Find a common denominator, which is the product of the denominators $(x-4)$ and $(2 x+5):(x-4)(2 x+5)$.
2. Express each fraction with this common denominator:
$\frac{3}{x-4} \cdot \frac{2 x+5}{2 x+5}+\frac{2}{2 x+5} \cdot \frac{x-4}{x-4}$
This simplifies to:
$\frac{3(2 x+5)}{(x-4)(2 x+5)}+\frac{2(x-4)}{(x-4)(2 x+5)}$
3. Combine the numerators over the common denominator:
$\frac{6 x+15+2 x-8}{(x-4)(2 x+5)}$
4. Combine like terms in the numerator:
$\frac{8 x+7}{(x-4)(2 x+5)}$
So, the sum $\frac{3}{x-4}+\frac{2}{2 x+5}$ as a single fraction in its simplest form is $\frac{8 x+7}{(x-4)(2 x+5)}$.

## Question 4

$$
\begin{equation*}
\text { Simplify. } \quad \frac{x^{3} y+2 x y^{3}}{x^{2} y^{2}} \tag{2}
\end{equation*}
$$

$\frac{x^{3} y+2 x y^{3}}{x^{2} y^{2}}=\frac{x y\left(x^{2}+2 y^{2}\right)}{x^{2} y^{2}}$
Now, cancel the common factor $x y$ from the numerator and denominator:

$$
\frac{x y\left(x^{2}+2 y^{2}\right)}{x^{2} y^{2}}=\frac{x^{2}+2 y^{2}}{x y}
$$

So, the simplified form of $\frac{x^{3} y+2 x y^{3}}{x^{2} y^{2}}$ is $\frac{x^{2}+2 y^{2}}{x y}$.

## Question 5

Write as a single fraction.

$$
\begin{equation*}
1-\frac{2}{p}-\frac{3}{t} \tag{2}
\end{equation*}
$$

To write the expression $1-\frac{2}{p}-\frac{3}{t}$ as a single fraction, find a common denominator, which is $p t$. Now, express each term with this common denominator:
$1-\frac{2}{p}-\frac{3}{t}=\frac{p t}{p t}-\frac{2 t}{p t}-\frac{3 p}{p t}$
Combine the numerators over the common denominator:
$\frac{p t-2 t-3 p}{p t}$
So, the expression $1-\frac{2}{p}-\frac{3}{t}$ written as a single fraction is $\frac{p t-2 t-3 p}{p t}$.

## Question 6

## Simplify.

$$
\frac{42 n p-7 n}{12 p t-2 t+18 m p-3 m}
$$



To simplify the expression $\frac{42 n p-7 n}{12 p t-2 t+18 m p-3 m}$, factor out the common factor in the numerator and denominator.
Factor out $7 n$ from the numerator:
$7 n(6 p-1)$
Factor out $2 t-3 m$ from the denominator:
$(2 t-3 m)(6 p-1)$
Now, cancel the common factor $(6 p-1)$ from the numerator and denominator:
$\frac{7 n}{2 t-3 m}$
So, the simplified form of $\frac{42 n p-7 n}{12 p t-2 t+18 m p-3 m}$ is $\frac{7 n}{2 t-3 m}$.

## Question 7

Simplify.

$$
\frac{4+10 w}{8-50 w^{2}}
$$

[4]

To simplify the expression $\frac{4+10 \mathrm{w}}{8-50 \mathrm{w}^{2}}$, factor both the numerator and the denominator:
$4+10 w=2(2+5 w)$
$8-50 w^{2}=2\left(4-25 w^{2}\right)$
Now, rewrite the fraction with the factored forms:
$\frac{2(2+5 w)}{2\left(4-25 w^{2}\right)}$
Cancel the common factor of 2 in the numerator and denominator:
$\frac{2+5 w}{4-25 w^{2}}$
So, the simplified form of $\frac{4+10 w}{8-50 w^{2}}$ is $\frac{2+5 w}{4-25 w^{2}}$.

## Question 8



Write as a single fraction in its simplest form.

$$
\begin{aligned}
& \text { 3- } \frac{t+2}{t-1}
\end{aligned}
$$

To write the expression $3-\frac{t+2}{t-1}$ as a single fraction in its simplest form, find a common denominator, which is $(t-1)$. Now, express each term with this common denominator:
$3-\frac{t+2}{t-1}=\frac{3(t-1)}{t-1}-\frac{t+2}{t-1}$
Combine the numerators over the common denominator:
$\frac{3(t-1)-(t+2)}{t-1}$
Now, distribute 3 in the numerator:
$\frac{3 t-3-t-2}{t-1}$
Combine like terms in the numerator:
$\frac{2 t-5}{t-1}$
So, the expression $3-\frac{t+2}{t-1}$ written as a single fraction in its simplest form is $\frac{2 t-5}{t-1}$.

## Question 9

Write as a single fraction, in its simplest form.

$$
\begin{equation*}
\frac{1-x}{x}-\frac{2+x}{1-2 x} \tag{4}
\end{equation*}
$$

$\frac{(1-x)(1-2 x)}{x(1-2 x)}-\frac{(2+x) x}{x(1-2 x)}$
Combine the numerators:
$\frac{(1-x)(1-2 x)-(2+x) x}{x(1-2 x)}$
Now, distribute and simplify the numerator:
$\left(1-2 x-x+2 x^{2}\right)-\left(2 x+x^{2}\right)$
Combine like terms in the numerator:
$1-2 x-x+2 x^{2}-2 x-x^{2}$
Combine like terms:
$2 x^{2}-6 x+1$
So, the combined fraction is:
$\frac{2 x^{2}-6 x+1}{x(1-2 x)}$
This expression is in its simplest form.

## Question 10

(a) Write $\frac{1}{y}-\frac{2}{x}$ as a single fraction in its lowest terms.

To write $\frac{1}{y}-\frac{2}{x}$ as a single fraction in its lowest terms, find a common denominator. In this case, the common denominator is $x y$. Now, express each fraction with this common denominator:
$\frac{x}{x y}-\frac{2 y}{x y}$
Combine the numerators:
$\frac{x-2 y}{x y}$
So, $\frac{1}{y}-\frac{2}{x}$ as a single fraction in its lowest terms is $\frac{x-2 y}{x y}$.
(b) Write $\frac{x^{2}+x}{3 x+3}$ in its lowest terms.

To simplify the fraction $\frac{x^{2}+x}{3 x+3}$, factor out the common factor in the numerator: $\frac{x(x+1)}{3(x+1)}$ Now, cancel out the common factor $x+1$ in the numerator and denominator: $\frac{x}{3}$ So, the simplified form of $\frac{x^{2}+x}{3 x+3}$ is $\frac{x}{3}$.
$0 \mathbb{B}$

## uestion ni m Papers Practice

Write as a single fraction in its simplest form

$$
\begin{equation*}
\frac{x}{3}+\frac{x-1}{2} . \tag{2}
\end{equation*}
$$

To write the expression $\frac{x}{3}+\frac{x-1}{2}$ as a single fraction in its simplest form, find a common denominator, which is the product of 3 and 2 , i.e., 6 . Now, express each fraction with this common denominator:
$\frac{x}{3} \cdot \frac{2}{2}+\frac{x-1}{2} \cdot \frac{3}{3}=\frac{2 x}{6}+\frac{3(x-1)}{6}$
Combine the numerators over the common denominator:
$\frac{2 x+3(x-1)}{6}$
Distribute and simplify the numerator:
$\frac{2 x+3 x-3}{6}=\frac{5 x-3}{6}$
So, the expression $\frac{x}{3}+\frac{x-1}{2}$ as a single fraction in its simplest form is $\frac{5 x-3}{6}$.

## Question 12

Write as a single fraction in its simplest form

$$
\begin{equation*}
\frac{4}{2 x+3}-\frac{2}{x-3} \tag{3}
\end{equation*}
$$

To write the expression $\frac{4}{2 x+3}-\frac{2}{x-3}$ as a single fraction in its simplest form, find a common denominator, which is $(2 x+3)(x-3)$. Now, express each fraction with this common denominator:
$\frac{4}{2 x+3} \cdot \frac{x-3}{x-3}-\frac{2}{x-3} \cdot \frac{2 x+3}{2 x+3}$
Combine the numerators over the common denominator:
$\frac{4(x-3)-2(2 x+3)}{(2 x+3)(x-3)}$
Distribute and simplify the numerator:
$\frac{4 x-12-4 x-6}{(2 x+3)(x-3)}=\frac{-18}{(2 x+3)(x-3)}$
So, the expression $\frac{4}{2 x+3}-\frac{2}{x-3}$ as a single fraction in its simplest form is $\frac{-18}{(2 x+3)(x-3)}$.

## Question 13

Simplify

$$
\frac{x}{3}+\frac{5 x}{9}-\frac{5 x}{18}
$$

$\frac{x}{3} \cdot \frac{6}{6}+\frac{5 x}{9} \cdot \frac{2}{2}-\frac{5 x}{18} \cdot \frac{1}{1}$

## Combine the numerators over the common denominator:

$\frac{6 x+10 x-5 x}{18}$
Combine like terms in the numerator:
$\frac{11 x}{18}$
So, the simplified form of $\frac{x}{3}+\frac{5 x}{9}-\frac{5 x}{18}$ is $\frac{11 x}{18}$.

## Question 14

Write as a fraction in its simplest form

$$
\begin{equation*}
\frac{x-3}{4}+\frac{4}{x-3} \tag{3}
\end{equation*}
$$

$\frac{(x-3)^{2}}{4(x-3)}+\frac{16}{4(x-3)}$
Combine the numerators over the common denominator:
$\frac{(x-3)^{2}+16}{4(x-3)}$
Now, expand and simplify the numerator:
$\frac{x^{2}-6 x+9+16}{4(x-3)}=\frac{x^{2}-6 x+25}{4(x-3)}$
So, the expression $\frac{x-3}{4}+\frac{4}{x-3}$ as a single fraction in its simplest form is $\frac{x^{2}-6 x+25}{4(x-3)}$.

## Question 15

Write as a single fraction in its simplest form

$$
\begin{equation*}
\frac{5}{x}-\frac{4}{x+1} \tag{2}
\end{equation*}
$$

$$
\frac{1)}{1)}-\frac{4 x}{x(x+1)}
$$

Combine the numerators over the common denominator:
$\frac{5(x+1)-4 x}{x(x+1)}$
Now, distribute and simplify the numerator:
$\frac{5 x+5-4 x}{x(x+1)}$
Combine like terms in the numerator:
$\frac{x+5}{x(x+1)}$
So, the expression $\frac{5}{x}-\frac{4}{x+1}$ as a single fraction in its simplest form is $\frac{x+5}{x(x+1)}$.

## Question 16

$$
\text { Simplify } \frac{x+2}{x}-\frac{x}{x+2} . \quad \text { Write your answer as a fraction in its simplest form. }
$$

To simplify the expression $\frac{x+2}{x}-\frac{x}{x+2}$, find a common denominator. In this case, the common denominator is $x(x+2)$.
Now, express each fraction with this common denominator:
$\frac{(x+2)^{2}}{x(x+2)}-\frac{x^{2}}{x(x+2)}$
Combine the numerators over the common denominator:
$\frac{(x+2)^{2}-x^{2}}{x(x+2)}$
Now, expand and simplify the numerator:
$\frac{x^{2}+4 x+4-x^{2}}{x(x+2)}$
Combine like terms in the numerator:
$\frac{4 x+4}{x(x+2)}$
Factor out the common factor in the numerator:
$\frac{4(x+1)}{x(x+2)}$
So, the simplified form of $\frac{x+2}{x}-\frac{x}{x+2}$ is $\frac{4(x+1)}{x(x+2)}$.

## Question 17

14 (a) Write $\frac{3}{x}-\frac{2}{x+1}$ as a single fraction in its simplest form.
To write the expression $\frac{3}{x}-\frac{2}{x+1}$ as a single fraction in its simplest form, find a common denominator. In this case, the common denominator is $x(x+1)$. Now, express each fraction with this common denominator:

$$
\frac{3(x+1)}{x(x+1)}-\frac{2 x}{x(x+1)}
$$

Combine the numerators over the common denominator:
$\frac{3(x+1)-2 x}{x(x+1)}$
Now, distribute and simplify the numerator:

## $\frac{3 x+3-2 x}{x(x+1)}$

Combine like terms in the numerator: $\frac{x+3}{x(x+1)}$
So, the expression $\frac{3}{x}-\frac{2}{x+1}$ as a single fraction in its simplest form is $\frac{x+3}{x(x+1)}$.
(b) Solve theequation $\frac{3}{x}-\frac{2}{x+1}=0$.

To solve the equation $\frac{3}{x}-\frac{2}{x+1}=0$, follow these steps:

1. Find a common denominator, which is $x(x+1)$.
2. Express each fraction with this common denominator:
$\frac{3(x+1)}{x(x+1)}-\frac{2 x}{x(x+1)}=\frac{3(x+1)-2 x}{x(x+1)}$
3. Combine the numerators:
$\frac{3 x+3-2 x}{x(x+1)}=\frac{x+3}{x(x+1)}$
4. Set the numerator equal to zero:
$x+3=0$
5. Solve for $x$ :
$x=-3$
So, the solution to the equation $\frac{3}{x}-\frac{2}{x+1}=0$ is $x=-3$.

## Question 18

Work out as a single fraction

$$
\frac{2}{x-3}-\frac{1}{x+4}
$$

To work out the expression $\frac{2}{x-3}-\frac{1}{x+4}$ as a single fraction, find a common denominator. In this case, the common denominator is $(x-3)(x+4)$. Now, express each fraction with this common denominator:
$\frac{2(x+4)}{(x-3)(x+4)}-\frac{1(x-3)}{(x-3)(x+4)}$
Combine the numerators over the common denominator:
$\frac{2(x+4)-(x-3)}{(x-3)(x+4)}$
Now, distribute and simplify the numerator:
$\frac{2 x+8-x+3}{(x-3)(x+4)}$
Combine like terms in the numerator:
$\frac{x+11}{(x-3)(x+4)}$
So, the expression $\frac{2}{x-3}-\frac{1}{x+4}$ as a single fraction is $\frac{x+11}{(x-3)(x+4)}$.

## Question 19

$$
\text { Write } \quad 2 x-\frac{10 x}{5-x} \quad \text { as a single fraction. }
$$

To write the expression $2 x-\frac{10 x}{5-x}$ as a single fraction, find a common denominator, which is $(5-x)$.
Now, express each term with this common denominator:
$2 x \cdot \frac{5-x}{5-x}-\frac{10 x}{5-x} \cdot \frac{5}{5}$
Combine the numerators over the common denominator:
$\frac{2 x(5-x)-10 x .5}{5-x}$
Distribute and simplify the numerator:
$\frac{10 x-2 x^{2}-50 x}{5-x}$
Combine like terms in the numerator:
$\frac{-2 x^{2}-40 x}{5-x}$
Factor out a common factor of $-2 x$ :
$\frac{-2 x(x+20)}{5-x}$
So, the expression $2 x-\frac{10 x}{5-x}$ as a single fraction is $\frac{-2 x(x+20)}{5-x}$.

## Question 20

Write as a single fraction in its simplest form.

$$
\begin{equation*}
\frac{x+3}{x-3}-\frac{x-1}{x+1} \tag{4}
\end{equation*}
$$

To write the expression $\frac{x+3}{x-3}-\frac{x-1}{x+1}$ as a single fraction in its simplest form, find a common denominator, which is $(x-3)(x+1)$. Now, express each fraction with this common denominator:

$$
\frac{(x+3)(x+1)}{(x-3)(x+1)}-\frac{(x-1)(x-3)}{(x-3)(x+1)}
$$

Combine the numerators over the common denominator:

$$
\frac{(x+3)(x+1)-(x-1)(x-3)}{(x-3)(x+1)}
$$

Now, distribute and simplify the numerator:
$\frac{x^{2}+4 x+3-\left(x^{2}-4 x+3\right)}{(x-3)(x+1)}$
Combine like terms in the numerator:
$\frac{x^{2}+4 x+3-x^{2}+4 x-3}{(x-3)(x+1)}$

Combine like terms:
$\frac{8 x}{(x-3)(x+1)}$
So, the expression $\frac{x+3}{x-3}-\frac{x-1}{x+1}$ as a single fraction in its simplest form is $\frac{8 x}{(x-3)(x+1)}$.

## Question 21



Write the following as a single fraction in its simplest form.

$$
\square \square \square \square \square \square
$$

To combine the given expression $\frac{x+2}{3}-\frac{2 x-1}{4}+1$ into a single fraction, find a common denominator. In this case, the common denominator is 12 (the least common multiple of 3 and 4 ). Now, express each term with this common denominator:
$\frac{(x+2) \cdot 4}{3 \cdot 4}-\frac{(2 x-1) \cdot 3}{4 \cdot 3}+1$
Combine the numerators over the common denominator:
$\frac{4(x+2)-3(2 x-1)}{12}+1$
Distribute and simplify the numerator:
$\frac{4 x+8-6 x-3}{12}+1$
Combine like terms in the numerator:
$\frac{-2 x+11}{12}+1$
To add the fraction and the whole number, express 1 as a fraction with the common denominator 12 :
$\frac{-2 x+11}{12}+\frac{12}{12}$
Combine the fractions:
$\frac{-2 x+11+12}{12}$
Combine like terms in the numerator:
$\frac{-2 x+23}{12}$
So, the expression $\frac{x+2}{3}-\frac{2 x-1}{4}+1$ as a single fraction in its simplest form is $\frac{2 x+23}{12}$.

## Question 22

Simplify the following.

$$
\begin{equation*}
\frac{h^{2}-h-20}{h^{2}-25} \tag{4}
\end{equation*}
$$

To simplify the expression $\frac{h^{2}-h-20}{h^{2}-25}$, factor both the numerator and the denominator: $\frac{(h-5)(h+4)}{(h-5)(h+5)}$
Now, cancel out the common factor $(h-5)$ in the numerator and denominator: $\frac{h+4}{h+5}$
So, the simplified form of $\frac{h^{2}-h-20}{h^{2}-25}$ is $\frac{h+4}{h+5}$.

## Question 23

Simplify fully.

$$
\square \frac{x^{2}-x-20}{x^{3}-10 x^{2}+25 x}
$$

To simplify the expression $\frac{x^{2}-x-20}{x^{3}-10 x^{2}+25 x}$, factor both the numerator and the denominator: $\frac{(x-5)(x+4)}{x(x-5)(x-5)}$
Now, cancel out the common factor $(x-5)$ in the numerator and denominator:
$\frac{x+4}{x(x-5)}$
So, the simplified form of $\frac{x^{2}-x-20}{x^{3}-10 x^{2}+25 x}$ is $\frac{x+4}{x(x-5)}$.

## Question 24

Write as a single fraction in its simplest form.

$$
\begin{equation*}
\frac{3}{x+10}-\frac{1}{x+4} \tag{3}
\end{equation*}
$$

To write the expression $\frac{3}{x+10}-\frac{1}{x+4}$ as a single fraction in its simplest form, find a common denominator, which is $(x+10)(x+4)$. Now, express each fraction with this common denominator:
$\frac{3(x+4)}{(x+10)(x+4)}-\frac{1(x+10)}{(x+10)(x+4)}$
Combine the numerators over the common denominator:
$\frac{3(x+4)-(x+10)}{(x+10)(x+4)}$
Distribute and simplify the numerator:
$\frac{3 x+12-x-10}{(x+10)(x+4)}$
Combine like terms in the numerator:
$\frac{2 x+2}{(x+10)(x+4)}$
Factor out the common factor in the numerator:
$\frac{2(x+1)}{(x+10)(x+4)}$
So, the expression $\frac{3}{x+10}-\frac{1}{x+4}$ as a single fraction in its simplest form is $\frac{2(x+1)}{(x+10)(x+4)}$.

## Question 25

15 Write the following as a single fraction in its simplest form.

$$
\begin{equation*}
\frac{x+1}{x+5}-\frac{x}{x+1} \tag{4}
\end{equation*}
$$



To write the expression $\frac{x \dashv 1}{x+5}-\frac{x}{x+1}$ as a single fraction in its simplest form, find a common denominator, which is $(x+5)(x+1)$. Now, express each fraction with this common denominator:
$\frac{(x+1)^{2}}{(x+5)(x+1)}-\frac{x(x+5)}{(x+5)(x+1)}$
Combine the numerators over the common denominator:
$\frac{(x+1)^{2}-x(x+5)}{(x+5)(x+1)}$
Now, distribute and simplify the numerator:
$\frac{x^{2}+2 x+1-x^{2}-5 x}{(x+5)(x+1)}$
Combine like terms in the numerator:
$\frac{-3 x+1}{(x+5)(x+1)}$
So, the expression $\frac{x+1}{x+5}-\frac{x}{x+1}$ as a single fraction in its simplest form is $\frac{-3 x+1}{(x+5)(x+1)}$.

## Question 26

Write $\frac{2}{x-2}+\frac{3}{x+2}$ as a single fraction.
Give your answer in its simplest form.
To combine the fractions $\frac{2}{x-2}+\frac{3}{x+2}$ into a single fraction, find a common denominator, which is $(x-2)(x+2)$. Now, express each fraction with this common denominator:
$\frac{2(x+2)}{(x-2)(x+2)}+\frac{3(x-2)}{(x-2)(x+2)}$
Combine the numerators over the common denominator:
$\frac{2(x+2)+3(x-2)}{(x-2)(x+2)}$
Distribute and simplify the numerator:
$\frac{2 x+4+3 x-6}{(x-2)(x+2)}$
Combine like terms in the numerator:
$\frac{5 x-2}{(x-2)(x+2)}$
So, the expression $\frac{2}{x-2}+\frac{3}{x+2}$ as a single fraction in its simplest form is $\frac{5 x-2}{(x-2)(x+2)}$.

## Question 27

Write as a single fraction in its simplest form.
$\frac{2}{x}+\frac{1}{2 x}+\frac{1}{2}=\frac{2 \cdot 2}{2 \cdot x}+\frac{1}{2 \cdot x}+\frac{x}{2 \cdot x}$
Now, combine the numerators over the common denominator:
$\frac{4+1+x}{2 x}=\frac{x+5}{2 x}$
So, $\frac{2}{x}+\frac{1}{2 x}+\frac{1}{2}$ can be written as a single fraction in its simplest form as $\frac{x+5}{2 x}$. 우

## Question 28

Simplify this fraction.

$$
\begin{equation*}
\frac{x^{2}-5 x+6}{x^{2}-4} \tag{4}
\end{equation*}
$$

To simplify the given fraction $\frac{x^{2}-5 x+6}{x^{2}-4}$, you can factor both the numerator and the denominator, and then cancel out common factors. First, factor the numerator and denominator:
Numerator: $x^{2}-5 x+6$ factors as $(x-2)(x-3)$.
Denominator: $x^{2}-4$ factors as $(x-2)(x+2)$.
Now, rewrite the fraction with the factored forms:
$\frac{(x-2)(x-3)}{(x-2)(x+2)}$
Cancel out the common factor $(x-2)$ from the numerator and denominator:
$\frac{(x-2)(x-3)}{(x-2)(x+2)}$
The simplified fraction is:
$\frac{x-3}{x+2}$
So, $\frac{x^{2}-5 x+6}{x^{2}-4}$ simplifies to $\frac{x-3}{x+2}$.


## Question 29

Write as a single fraction, in its simplest form.

$$
\begin{array}{r}
\frac{3}{\mathrm{X}+2}-\frac{2}{\mathrm{X}-1}  \tag{3}\\
\frac{3}{x+2}-\frac{2}{x-1}=\frac{3 \cdot(x-1)}{(x+2)(x-1)}-\frac{2 \cdot(x+2)}{(x+2)(x-1)}
\end{array}
$$

Now, combine the numerators over the common denominator:
$\frac{3(x-1)-2(x+2)}{(x+2)(x-1)}$
Distribute and simplify the numerator:
$\frac{3 x-3-2 x-4}{(x+2)(x-1)}=\frac{x-7}{(x+2)(x-1)}$
So, $\frac{3}{x+2}-\frac{2}{x-1}$ can be written as a single fraction in its simplest form as $\frac{x-7}{(x+2)(x-1)}$.

## Question 30

Write as a single fraction in its simplest form.

$$
\begin{equation*}
\frac{2 x-1}{3}-\frac{2}{x+1} \tag{3}
\end{equation*}
$$

$$
\frac{2 x-1}{3}-\frac{2}{x+1}=\frac{(2 x-1) \cdot(x+1)}{3 \cdot(x+1)}-\frac{2 \cdot 3}{3 \cdot(x+1)}
$$

Now, combine the numerators over the common denominator:

$$
\frac{(2 x-1)(x+1)-2 \cdot 3}{3 \cdot(x+1)}
$$

Expand and simplify the numerator:
$\frac{2 x^{2}+2 x-x-1-6}{3 \cdot(x+1)}=\frac{2 x^{2}+x-7}{3 \cdot(x+1)}$
So, $\frac{2 x-1}{3}-\frac{2}{x+1}$ can be written as a single fraction in its simplest form as $\frac{2 x^{2}+x-7}{3 \cdot(x+1)}$.

## Question 31

Simplify.

$$
\frac{x^{2}-16}{x^{2}-3 x-4}
$$



To simplify the given fraction $\frac{x^{-}-16}{x^{2}-3 x-4}$, you can factor the numerator and denominator, and then cancel out common factors. First, factor the numerator and denominator:
Numerator: $x^{2}-16$ factors as $(x+4)(x-4)$.
Denominator: $x^{2}-3 x-4$ factors as $(x-4)(x+1)$.
Now, rewrite the fraction with the factored forms:
$\frac{(x+4)(x-4)}{(x-4)(x+1)}$
Cancel out the common factor $(x-4)$ from the numerator and denominator:
$\frac{(x+4)(x-4)}{(x-4)(x+1)}$
The simplified fraction is:
$\frac{x-4}{x+1}$
So, $\frac{x^{2}-16}{x^{2}-3 x-4}$ simplifies to $\frac{x-4}{x+1}$.

## Question 32

Write as a single fraction in its simplest form.

$$
\begin{equation*}
\frac{3}{x+2}-\frac{4}{2 x-5} \tag{3}
\end{equation*}
$$

$\frac{3}{x+2}-\frac{4}{2 x-5}=\frac{3(2 x-5)}{(x+2)(2 x-5)}-\frac{4(x+2)}{(x+2)(2 x-5)}$
Now, combine the numerators over the common denominator:
$\frac{3(2 x-5)-4(x+2)}{(x+2)(2 x-5)}$
Distribute and simplify the numerator:
$\frac{6 x-15-4 x-8}{(x+2)(2 x-5)}=\frac{2 x-23}{(x+2)(2 x-5)}$
So, $\frac{3}{x+2}-\frac{4}{2 x-5}$ can be written as a single fraction in its simplest form as $\frac{2 x-23}{(x+2)(2 x-5)}$.

## Exam Papers Practice

## Question 33

(a) Write as a single fraction in its simplest form.

$$
\begin{equation*}
\frac{3}{2 x-1}-\frac{1}{x+2} \tag{3}
\end{equation*}
$$

$\frac{3}{2 x-1}-\frac{1}{x+2}=\frac{3(x+2)}{(2 x-1)(x+2)}-\frac{(2 x-1)}{(2 x-1)(x+2)}$
Now, combine the numerators over the common denominator:
$\frac{3(x+2)-(2 x-1)}{(2 x-1)(x+2)}$
Distribute and simplify the numerator:
$\frac{3 x+6-2 x+1}{(2 x-1)(x+2)}=\frac{x+7}{(2 x-1)(x+2)}$
So, $\frac{3}{2 x-1}-\frac{1}{x+2}$ can be written as a single fraction in its simplest form as $\frac{x+7}{(2 x-1)(x+2)}$.
(b) Simplify.

$$
\begin{equation*}
\frac{4 x^{2}-16 x}{2 x^{2}+6 x-56} \tag{4}
\end{equation*}
$$

To simplify the given fraction $\frac{4 x^{2}-16 x}{2 x^{2}+6 x-56}$, you can first factor the numerator and denominator and then cancel out common factors.
Factor the numerator and denominator:
Numerator: $4 x^{2}-16 x$ factors as $4 x(x-4)$.
Denominator: $2 x^{2}+6 x-56$ factors as $2(x-4)(x+7)$.
Now, rewrite the fraction with the factored forms:
$\frac{4 x(x-4)}{2(x-4)(x+7)}$
Cancel out the common factor $(x-4)$ from the numerator and denominator:
$\frac{4 x(x-4)}{2 \cdot(x-4)(x+7)}$
Simplify further:
$\frac{4 x}{2(x+7)}$
Now, simplify the fraction by dividing both the numerator and denominator by 2 :
$\frac{2 x}{x+7}$
So, $\frac{4 x^{2}-16 x}{2 x^{2}+6 x-56}$ simplifies to $\frac{2 x}{x+7}$.

## Question 34

Write as a single fraction, in its simplest form.

$$
\frac{3}{2 x}+\frac{2 x}{3}+3+2 x
$$

$\frac{3}{2 x}+\frac{2 x}{3}+3+2 x=\frac{3 \cdot 3}{2 \cdot 3 x}+\frac{2 x \cdot 2 x}{3 \cdot 2 x}+\frac{3 \cdot 2 x}{3 \cdot 2 x}+\frac{2 x \cdot 6 x}{1 \cdot 6 x}$
Now, combine the numerators over the common denominator:
$\frac{9+4 x^{2}+6 x+12 x^{2}}{6 x}$
Combine like terms in the numerator:
$\frac{16 x^{2}+6 x+9}{6 x}$
Factor the numerator if possible:
$\frac{(4 x+3)(4 x+3)}{6 x}$
Now, simplify the fraction by canceling common factors in the numerator and denominator:
$\frac{(4 x+3)}{2}$
So, $\frac{3}{2 x}+\frac{2 x}{3}+3+2 x$ can be written as a single fraction in its simplest form as $\frac{4 x+3}{2}$.

## Question 35

Write as a single fraction in its simplest form.

$$
\begin{equation*}
\frac{2}{x}-\frac{2}{x+1} \tag{3}
\end{equation*}
$$

$\frac{2}{x}-\frac{2}{x+1}=\frac{2 \cdot(x+1)}{x \cdot(x+1)}-\frac{2 \cdot x}{x \cdot(x+1)}$
Combine the numerators over the common denominator:
$\frac{2(x+1)-2 x}{x \cdot(x+1)}$
Distribute and simplify the numerator:
$\frac{2 x+2-2 x}{x \cdot(x+1)}$
Combine like terms in the numerator:
$\frac{2}{x \cdot(x+1)}$
So, $\frac{2}{x}-\frac{2}{x+1}$ can be written as a single fraction in its simplest form as $\frac{2}{x \cdot(x+1)}$.

## Question 36

Solve the equation.

$$
\begin{gather*}
\frac{3}{2 x}+\frac{1}{x+1}=0  \tag{3}\\
\frac{3}{2 x}+\frac{1}{x+1}=\frac{3 \cdot(x+1)}{2 x \cdot(x+1)}+\frac{1 \cdot 2 x}{(x+1) \cdot 2 x}
\end{gather*}
$$

Combine the numerators over the common denominator:
$\frac{3(x+1)+2 x}{2 x \cdot(x+1)}$
Distribute and simplify the numerator:
$\frac{3 x+3+2 x}{2 x \cdot(x+1)}$
Combine like terms in the numerator:

$$
\frac{5 x+3}{2 x \cdot(x+1)}
$$

Now, set the numerator equal to zero and solve for $x$ :
$5 x+3=0$
Subtract 3 from both sides:
$5 x=-3$
Divide by 5 :
$x=-\frac{3}{5}$
So, the solution to the equation $\frac{3}{2 x}+\frac{1}{x+1}=0$ is $x=-\frac{3}{5}$.

## Question 37



$$
\begin{equation*}
\frac{x^{2}+6 x-7}{3 x+21} \tag{4}
\end{equation*}
$$

To simplify the given fraction $\frac{x^{2} 6 x-7}{3 x+21}$, you can factor the numerator and look for common factors in the numerator and denominator: Factor the numerator:
$x^{2}+6 x-7=(x+7)(x-1)$
Now, rewrite the fraction with the factored numerator:

$$
\frac{(x+7)(x-1)}{3 x+21}
$$

Now, check for common factors. Both the numerator and denominator have a common factor of 7:
$\frac{7(x+7)(x-1)}{7 \cdot(3 x+3)}$
Cancel out the common factor:
$\frac{(x+7)(x-1)}{3 x+3}$
Now, simplify further by factoring out a common factor of 3 in the denominator:
$\frac{(x+7)(x-1)}{3(x+1)}$
So, $\frac{x^{2}+6 x-7}{3 x+21}$ simplifies to $\frac{(x+7)(x-1)}{3(x+1)}$.

## Question 38

(a) Factorise $x^{2}+x-30$.

To factorize the quadratic expression $x^{2}+x-30$, we are looking for two numbers whose product is the product of the coefficient of $x^{2}$ term (1) and the constant term ( -30 ) and whose sum is the coefficient of the $x$ term (1).
The numbers that satisfy these conditions are 6 and -5 because $6 \times(-5)=-30$ and $6+(-5)=1$.
Now, split the $x$ term using these numbers:
$x^{2}+x-30=x^{2}+6 x-5 x-30$
Now, group the terms:
$x^{2}+6 x-5 x-30=\left(x^{2}+6 x\right)+(-5 x-30)$
Factor out the common factor from each group:
$x(x+6)-5(x+6)$
Now, factor out the common factor of $(x+6)$ :
$(x+6)(x-5)$
So, the factorization of $x^{2}+x-30$ is $(x+6)(x-5)$.

# (b) Simplify $\frac{(x-5)(x+4)}{x^{2}+x-30}$ <br>  

To simplify the expression $\frac{(x-5)(x+4)}{x^{2}+x-30}$, you can use the factorization of the quadratic denominator $x^{2}+x-30$ obtained in the previous response, which is $(x+6)(x-5)$.
Now, substitute this factorization into the expression:
$\frac{(x-5)(x+4)}{x^{2}+x-30}=\frac{(x-5)(x+4)}{(x+6)(x-5)}$
Now, cancel out the common factor $(x-5)$ in the numerator and denominator:

## $\frac{(x-5)(x+4)}{(x+6)(x-5)}$

The simplified expression is:
$\frac{x+4}{x+6}$
So, $\frac{(x-5)(x+4)}{x^{2}+x-30}$ simplifies to $\frac{x+4}{x+6}$.

## Question 39

22 Write as a single fraction in its simplest form.

$$
\begin{aligned}
& \frac{2}{x+3}+\frac{3}{x+2} \\
& \frac{2}{x+3}+\frac{3}{x+2}=\frac{2 \cdot(x+2)}{(x+3)(x+2)}+\frac{3 \cdot(x+3)}{(x+3)(x+2)}
\end{aligned}
$$

Combine the numerators over the common denominator:
$\frac{2(x+2)+3(x+3)}{(x+3)(x+2)}$

## Distribute and simplify the numerator:

$\frac{2 x+4+3 x+9}{(x+3)(x+2)}$
Combine like terms in the numerator:
$\frac{5 x+13}{(x+3)(x+2)}$
So, $\frac{2}{x+3}+\frac{3}{x+2}$ can be written as a single fraction in its simplest form as $\frac{5 x+13}{(x+3)(x+2)}$.

