##  <br> EXAM PAPERS PRACTICE

## Algebra

## Model Answers

## Question 1

Make $x$ the subject of the formula.

$$
\begin{equation*}
y=\sqrt{x^{2}+1} \tag{3}
\end{equation*}
$$

1. Square both sides of the equation to eliminate the square root:
$y^{2}=x^{2}+1$
2. Subtract 1 from both sides:
$y^{2}-1=x^{2}$
3. Take the square root of both sides:
$x=\sqrt{y^{2}-1}$
So, the expression for $x$ in terms of $y$ is $x=\sqrt{y^{2}-1}$.

## Question 2

$$
\begin{equation*}
y=p^{2}+q r \tag{2}
\end{equation*}
$$

(a) Find $y$ when $p=-5, q=3$ and $r=-7$.

To find the value of $y$ when $p=-5, q=3$, and $r=-7$ in the equation $y=p^{2}+q r$, substitute these values into the equation: $y=(-5)^{2}+(3)(-7)$
Now, calculate each term:
$y=25-21$
Finally, simplify the expression:
$y=4$
Therefore, when $p=-5, q=3$, and $r=-7$, the value of $y$ is 4 .
(b) Write $p$ in terms of $q, r$ and $y$.
$y=p^{2}+q r$

1. Subtract $q r$ from both sides to isolate $p^{2}$ :
$y-q r=p^{2}$
2. Take the square root of both sides:
$p=\sqrt{y-q r}$
So, $p$ in terms of $q, r$, and $y$ is $p=\sqrt{y-q r}$.

## Question 3

Make $b$ the subject of the formula.

$$
c=\sqrt{a^{2}+b^{2}}
$$

1. Square both sides of the equation to eliminate the square root:
$c^{2}=a^{2}+b^{2}$
2. Subtract $a^{2}$ from both sides:
$b^{2}=c^{2}-a^{2}$
3. Take the square root of both sides:
$b=\sqrt{c^{2}-a^{2}}$
So, the expression for $b$ in terms of $a, c$ is $b=\sqrt{c^{2}-a^{2}}$.

## Question 4

Simplify the expression.

$$
\left(a^{\frac{1}{2}}-b^{\frac{1}{2}}\right)\left(a^{\frac{1}{2}}+b^{\frac{1}{2}}\right)
$$



To simplify the given expression $\left(a^{\frac{1}{2}}-b^{\frac{1}{2}}\right)\left(a^{\frac{1}{2}}+b^{\frac{1}{2}}\right)$, you can use the difference of squares formula, which states that $(x-y)(x+y)=x^{2}-y^{2}$. Apply this formula to the given expression: cin $a-b$
So, the simplified expression is $a-b$.

## Question 5

Rearrange the formula $y=\frac{x+2}{x-4}$ to make $x$ the subject.

1. Cross-multiply to eliminate the fraction:
$y(x-4)=x+2$
2. Distribute $y$ on the left side:
$y x-4 y=x+2$
3. Move all terms involving $x$ to one side and constants to the other side:
$y x-x=4 y+2$
4. Factor out $x$ on the left side:
$x(y-1)=4 y+2$
5. Divide by $(y-1)$ to solve for $x$ :
$x=\frac{4 y+2}{y-1}$
So, the formula rearranged to make $x$ the subject is $x=\frac{4 y+2}{y-1}$.

## Question 6

Make $w$ the subject of the formula.

$$
\begin{equation*}
c=\frac{4+w}{w+3} \tag{4}
\end{equation*}
$$

$$
0 \text { O }
$$

1. Multiply both sides by $(w+3)$ to eliminate the fraction:
$c(w+3)=4+w$
2. Distribute $c$ on the left side:
$c w+3 c=4+w$
3. Move all terms involving $w$ to one side and constants to the other side:
$c w-w=4-3 c$
4. Factor out $w$ on the left side:
$w(c-1)=4-3 c$
5 . Divide by $(c-1)$ to solve for $w$ :
$w=\frac{4-3 c}{c-1}$
So, the formula rearranged to make $w$ the subject is $w=\frac{4-3 c}{c-1}$.

## Question 7

$$
w=\frac{1}{\sqrt{L C}}
$$

(a) Find $w$ when $L=8 \times 10^{-3}$ and $C=2 \times 10^{-9}$.

Give your answer in standard form.
The formula given is $w=\frac{1}{\sqrt{L C}}$, where $w$ is the angular frequency, $I$ is the current, $L$ is the inductance, and $C$ is the capacitance.
Given values: $L=8 \times 10^{-3}$ and $C=2 \times 10^{-9}$.
Substitute these values into the formula:
$w=\frac{I}{\sqrt{\left(8 \times 10^{-3}\right)\left(2 \times 10^{-9}\right)}}$
First, simplify the expression under the square root:
$w=\frac{I}{\sqrt{1.6 \times 10^{-11}}}$
Now, express the square root in standard form:
$w=\frac{I}{1.2649 \times 10^{-6}}$
To give the answer in standard form, you can express the denominator with the appropriate power of 10:
$w \approx \frac{I}{1.265 \times 10^{-6}}$
So, $w$ in standard form is approximately $w \approx \frac{I}{1.265 \times 10^{-6}}$.

(b) Rearrange the formula to make $C$ the subject.

## 1. Square both sides to eliminate the square root:

$w^{2}=\frac{I^{2}}{L C}$

1. Multiply both sides by $L C$ to isolate $C$ :
$C=\frac{I^{2}}{w^{2}}$
So, the formula rearranged to make $C$ the subject is $C=\frac{I^{2}}{w^{2}}$.
$0 \mathbb{B}$

## Question 8

$$
\begin{equation*}
a p=p x+c \tag{3}
\end{equation*}
$$

Write $p$ in terms of $a, c$ and $x$.
$a p=p x+c$

1. Subtract $p x$ from both sides:
$a p-p x=c$
2. Factor out $p$ on the left side:
$p(a-x)=c$
3. Divide by $(a-x)$ to solve for $p$ :
$p=\frac{c}{a-x}$
So, $p$ in terms of $a, c$, and $x$ is $p=\frac{c}{a-x}$.

## Exam <br> Papers <br> Practice



The length of time, $T$ seconds, that the pendulum in the clock takes to swing is given by the formula

$$
T=\frac{6}{\sqrt{\left(1+g^{2}\right)}} .
$$

Rearrange the formula to make $g$ the subject.

1. Square both sides of the equation to elimindth the square root:
$T^{2}=\frac{36}{1+g^{2}}$
2. Cross-multiply to get rid of the fraction:
$T^{2}\left(1+g^{2}\right)=36$
3. Distribute $T^{2}$ on the left side:
$T^{2}+T^{2} g^{2}=36$
4. Rearrange the terms:
$T^{2} g^{2}=36-T^{2}$
5. Divide by $T^{2}$ to solve for $g^{2}$ :
$g^{2}=\frac{36-T^{2}}{T^{2}}$
6. Take the square root of both sides:

## Question 10

$g=\sqrt{\frac{36-T^{2}}{T^{2}}}$
So, the formula rearranged to make $g$ the subject is $g=\sqrt{\frac{36-T^{2}}{T^{2}}}$.
(a) $3^{x}=\frac{1}{3}$

Write down the value of $x$.
To find the value of $x$ in the equation $3^{x}=\frac{1}{5}$, we can take the logarithm of both sides. In this case, let's use the natural logarithm (In):
$\ln \left(3^{x}\right)=\ln \left(\frac{1}{5}\right)$
Use the logarithm property $\ln \left(a^{b}\right)=b \ln (a)$ :
$x \ln (3)=\ln \left(\frac{1}{5}\right)$
Now, solve for $x$ :
$x=\frac{\ln \left(\frac{1}{5}\right)}{\ln (3)}$
Using a calculator:
$x \approx-1.46447$
So, the value of $x$ is approximately -1.46447 .
(b) $5^{y}=k$. Find $5^{y+1}$, in terms of $k$.

Given the equation $5^{y}=k$, we want to find $5^{y+1}$ in terms of $k$.
First, let's express $5^{y+1}$ in terms of $5^{y}$ :

$$
5^{y+1}=5^{y} \times 5^{1}
$$

Now, substitute $5^{y}=k$ :
$5^{y+1}=k \times 5$
So, in terms of $k, 5^{y+1}$ is $5 k$.

## Question 11

Make $y$ the subject of the formula. $A=\frac{r(y+2)}{5}$

1. Multiply both sides by 5 to get rid of the fraction:
$5 A=r(y+2)$
2. Divide both sides by $r$ to isolate $y+2$ :
$\frac{5 A}{r}=y+2$
3. Subtract 2 from both sides to solve for $y$ :
$y=\frac{5 A}{\tau}-2$
So, the formula with $y$ as the subject is $y=\frac{5 A}{r}-2$.

## Question 12

Simplify $16-4(3 x-2)^{2}$.

1. First, apply the square to the expression inside the parentheses:
$16-4\left(9 x^{2}-12 x+4\right)$
2. Distribute the -4 to each term inside the parentheses:
$16-36 x^{2}+48 x-16$
3. Combine like terms:
$-36 x^{2}+48 x$
So, the simplified expression is $-36 x^{2}+48 x$.

## Question 13

Rearrange the formula to make $y$ the subject.

$$
\begin{equation*}
x+\frac{\sqrt{y}}{9}=1 \tag{3}
\end{equation*}
$$

1. Subtract $x$ from both sides:
$\frac{\sqrt{y}}{9}=1-x$
2. Multiply both sides by 9 to isolate the square root term:
$\sqrt{y}=9(1-x)$
3. Square both sides to eliminate the square root:
$y=(9(1-x))^{2}$
4. Simplify the expression on the right side:
$y=81(1-x)^{2}$
So, the formula rearranged to make $y$ the subject is $y=81(1-x)^{2}$.

## Question 14

(a) Factorise $a x^{2}+b x^{2}$.

$$
\begin{equation*}
a x^{2}+b x^{2}=x^{2}(a+b) \tag{1}
\end{equation*}
$$

So, the factored form of $a x^{2}+b x^{2}$ is $x^{2}(a+b)$.
(b) Make $x$ the subject of the formula

$$
\begin{equation*}
a x^{2}+b x^{2}-d \stackrel{2}{=} p .^{2} \tag{2}
\end{equation*}
$$

$a x^{2}+b x^{2}-d=p$
Combine like terms:
$(a+b) x^{2}-d=p$
Add $d$ to both sides:
$(a+b) x^{2}=p+d$
Divide both sides by $(a+b)$ to isolate $x^{2}$ :
$x^{2}=\frac{p+d}{a+b}$
Now, take the square root of both sides:
$x= \pm \sqrt{\frac{p+d}{a+b}}$
So, $x$ as the subject of the formula is $x= \pm \sqrt{\frac{p+d}{a+b}}$.

## Question 15

Two quantities $c$ and $d$ are connected by the formula $c=2 d+30$.
Find $c$ when $d=-100$.

To find $c$ when $d=-100$ using the formula $c=2 d+30$, substitute the given value of $d$ into the equation:
$c=2(-100)+30$
Now, perform the calculations:
$c=-200+30$
$c=-170$
So, when $d=-100$, the value of $c$ is -170 .

## Question 16



The number of tennis balls $(T)$ in the diagram is given by the formula

$$
T=\frac{1}{2} n(n+1)
$$

where $n$ is the number of rows.
The diagram above has 4 rows.
How many tennis balls will there be in a diagram with 20 rows?

You're given the formula for the number of tennis balls $(T)$ in the diagram based on the number of rows $(n)$ :
$T=\frac{1}{2} n(n+1)$
You're told that the diagram above has 4 rows, so you can substitute $n=4$ into the formula to find the number of tennis balls for this case: $T=\frac{1}{2} \times 4 \times(4+1)=\frac{1}{2} \times 4 \times 5=10$
So, there are 10 tennis balls in a diagram with 4 rows.
Now, if you want to find the number of tennis balls for a diagram with 20 rows, substitute $n=20$ into the formula:
$T=\frac{1}{2} \times 20 \times(20+1)=\frac{1}{2} \times 20 \times 21=210$
Therefore, there will be 210 tennis balls in a diagram with 20 rows.

## Question 17

Make $d$ the subject of the formula

$$
\begin{equation*}
c=\frac{d^{3}}{2}+5 \tag{3}
\end{equation*}
$$

$c=\frac{d^{3}}{2}+5$

1. Subtract 5 from both sides:
$\frac{d^{3}}{2}=c-5$
2. Multiply both sides by 2 to get rid of the fraction:
$d^{3}=2(c-5)$
3. Take the cube root of both sides to solve for $d$ :
$d=\sqrt[3]{2(c-5)}$
So, the formula with $d$ as the subject is $d=\sqrt[3]{2(c-5)}$.

## Question 18

Make $c$ the subject of the formula

$$
\begin{equation*}
\sqrt{3 c-5}=b \tag{3}
\end{equation*}
$$



1. Square both sides to eliminate the square root:
$(\sqrt{3 c-5})^{2}=b^{2}$
$3 c-5=b^{2}$
2. Add 5 to both sides:
$3 c=b^{2}+5$
3. Divide both sides by 3 to solve for $c$ :
$c=\frac{b^{2}+5}{3}$
So, the formula with $c$ as the subject is $c=\frac{b^{2}+5}{3}$.

## Question 19

Make $d$ the subject of the formula

$$
\begin{equation*}
c=k d^{2}+e . \tag{3}
\end{equation*}
$$

$c=k d^{2}+e$

1. Subtract $e$ from both sides:
$c-e=k d^{2}$
2. Divide both sides by $k$ to solve for $d^{2}$ :

$$
d^{2}=\frac{c-e}{k}
$$

1. Take the square root of both sides to solve for $d$ :
$d=\sqrt{\frac{c-e}{k}}$
So, the formula with $d$ as the subject is $d=\sqrt{\frac{c-e}{k}}$.

## Exam <br> Papers

# EXAM PAPERS PRACTICE 

## Question 20

Calculate the radius of a sphere with volume $1260 \mathrm{~cm}^{3}$.
[The volume, $V$, of a sphere with radius $r$ is $V=\frac{4}{3} \pi r^{3}$.]

$$
\begin{aligned}
& V=\frac{4}{3} \pi r^{3} \\
& \text { You're given that the volume is } 1260 \mathrm{~cm}^{3} \text {, so you can set up the equation: } \\
& 1260=\frac{4}{3} \pi r^{3}
\end{aligned}
$$

To solve for $r$, you can follow these steps:

1. Multiply both sides by $\frac{3}{4}$ to isolate the term with $r^{3}$ :
$\frac{3}{4} \times 1260=\pi r^{3}$
$945=\pi r^{3}$
2. Divide both sides by $\pi$ to isolate $r^{3}$ : $r^{3}=\frac{945}{\pi}$
3. Take the cube root of both sides to solve for $r$ :
$r=\sqrt[3]{\frac{945}{\pi}}$
Now, you can calculate the numerical value:
$r \approx \sqrt[3]{\frac{945}{\pi}} \approx 6 \mathrm{~cm}$
So, the radius of the sphere is approximately 6 cm .

## Question 21

Rearrange the formula $c=\frac{4}{a-b}$ to make $a$ the subject.
$\square \quad c=\frac{4}{a-b}$

1. Cross-multiply to eliminate the fraction:
$c(a-b)=4$
2. Distribute $c$ on the left side:
$c a-c b=4$
3. Add $c b$ to both sides:
$c a=c b+4$
4. Divide both sides by $c$ to solve for $a$ :
$a=\frac{c b+4}{c}$
So, the formula rearranged to make $a$ the subject is:
$a=\frac{c b+4}{c}$

## Question 22

Make $x$ the subject of the formula. $y=\frac{x}{3}+5$

$$
y=\frac{x}{3}+5
$$

1. Subtract 5 from both sides:

$$
y-5=\frac{x}{3}
$$

1. Multiply both sides by 3 to isolate $x$ :
$3(y-5)=x$
2. Distribute 3 on the left side:

$$
3 y-15=x
$$

So, the formula with $x$ as the subject is:


## Question 23

Expand the brackets and simplify.

$$
\begin{equation*}
\frac{1}{2}(6 x-2)-3(x-1) \tag{2}
\end{equation*}
$$

1. Distribute $\frac{1}{2}$ to both terms inside the first set of brackets:
$\frac{1}{2} \times 6 x-\frac{1}{2} \times 2-3(x-1)$
This simplifies to $3 x-1-3(x-1)$.
2. Distribute -3 to both terms inside the second set of brackets:
$3 x-1-3 x+3$
3. Combine like terms:
$3 x-3 x-1+3$
This further simplifies to $-1+3$.
4. Finally, combine the constants:
$-1+3=2$
So, the simplified expression is 2 .

## Question 24

Make $x$ the subject of $y=\frac{(x+3)^{2}}{5}$.

$$
y=\frac{(x+3)^{2}}{5}
$$

1. Multiply both sides by 5 to eliminate the fraction:
$5 y=(x+3)^{2}$
2. Take the square root of both sides:
$\sqrt{5 y}=x+3$
3. Subtract 3 from both sides to isolate $x$ :
$x=\sqrt{5 y}-3$
So, the formula with $x$ as the subject is:
$x=\sqrt{5 y}-3$
$\because \mathbb{D}$

## Question 25

Rearrange the formula $J=m v-m u$ to make $m$ the subject.
$J=m v-m u$

1. Factor out $m$ from the right side:
$J=m(v-u)$
2. Divide both sides by $(v-u)$ to solve for $m$ :

$$
m=\frac{J}{v-u}
$$

So, the formula rearranged to make $m$ the subject is:

$$
m=\frac{J}{v-u}
$$

$$
\begin{equation*}
\frac{g}{2}=\sqrt{\frac{h}{i}} \tag{3}
\end{equation*}
$$

Find $i$ in terms of $g$ and $h$.

1. Square both sides to eliminate the square root:
$\left(\frac{g}{2}\right)^{2}=\frac{h}{i}$
$\frac{g^{2}}{4}=\frac{h}{i}$
2. Multiply both sides by $i$ to isolate $i$ :
$i \cdot \frac{g^{2}}{4}=h$
3. Multiply both sides by $\frac{4}{g^{2}}$ to solve for $i$ :
$i=\frac{4 h}{g^{2}}$
So, $i$ in terms of $g$ and $h$ is $i=\frac{4 h}{g^{2}}$.

## Question 27

Make $d$ the subject of the formula $c=\frac{5 d+4 w}{2 w}$.

$$
c=\frac{5 d+4 w}{2 w}
$$

1. Multiply both sides by $2 w$ to eliminate the fraction:

$$
2 w c=5 d+4 w
$$

1. Subtract $4 w$ from both sides:
$2 w c-4 w=5 d$
2. Factor out $d$ on the right side:
$d=\frac{2 w c-4 w}{5}$
So, the formula with $d$ as the subject is:
$d=\frac{2 w c-4 w}{5}$

## Question 28

Make $x$ the subject of the formula.

$$
\begin{equation*}
P=\frac{x+3}{x} \tag{4}
\end{equation*}
$$

$P=\frac{x+3}{x}$

1. Cross-multiply to eliminate the fraction:
$P x=x+3$
2. Subtract $x$ from both sides:
$P x-x=3$
3. Factor out $x$ on the left side:
$x(P-1)=3$
4. Divide by $(P-1)$ to solve for $x$ :
$x=\frac{3}{P-1}$
So, the formula with $x$ as the subject is:
$x=\frac{3}{P-1}$

## Question 29

Expand and simplify $2(x-3)^{2}-(2 x-3)^{2}$.

1. Expand $(x-3)^{2}$ :
$2(x-3)^{2}=2\left(x^{2}-6 x+9\right)$
$=2 x^{2}-12 x+18$
2. Expand $(2 x-3)^{2}$ :
$(2 x-3)^{2}=(2 x-3)(2 x-3)$
$=4 x^{2}-12 x+9$
3. Substitute these expansions into the original expression:
$2(x-3)^{2}-(2 x-3)^{2}=2 x^{2}-12 x+18-\left(4 x^{2}-12 x+9\right)$
4. Distribute the negative sign and combine like terms:
$=2 x^{2}-12 x+18-4 x^{2}+12 x-9$
$=-2 x^{2}+9$
So, $2(x-3)^{2}-(2 x-3)^{2}=-2 x^{2}+9$.

## Question 30

$$
V=\frac{1}{3} A h
$$

(a) Find $V$ when $A=15$ and $h=7$.

To find $V$ when $A=15$ and $h=7$ using the formula $V=\frac{1}{3} A h$, substitute the given values into the formula:
$V=\frac{1}{3}(15)(7)$
Now, perform the calculations:
$V=\frac{1}{3}(105)$
Multiply the fraction and the number:
$V=\frac{105}{3}$
Simplify the fraction:
$V=35$
So, when $A=15$ and $h=7$, the value of $V$ is 35 .
(b) Make $h$ the subject of the formula.
$V=\frac{1}{3} A h$

1. Multiply both sides by $\frac{3}{A}$ to eliminate the fraction:
$\frac{3 V}{A}=h$
2. So, the formula with $h$ as the subject is:
$h=\frac{3 V}{A}$

## Question 31

Rearrange the formula to make $x$ the subject.

$$
\begin{equation*}
y=x^{2}+4 \tag{2}
\end{equation*}
$$

$y=x^{2}+4$

1. Subtract 4 from both sides:
$y-4=x^{2}$
2. Take the square root of both sides:
$\sqrt{y-4}=x$
However, note that when taking the square root, there will be two possible solutions (positive and negative). Therefore, the formula with $x$ as the subject is: $x= \pm \sqrt{y-4}$
So, $x$ can be expressed as $x=\sqrt{y-4}$ or $x=-\sqrt{y-4}$.

## Question 32

(a) Expand and simplify $(a+b)^{2}$.

$$
(a+b)^{2}=a^{2}+2 a b+b^{2}
$$

So,
$(a+b)^{2}=a^{2}+2 a b+b^{2}$
This is the expanded and simplified form of $(a+b)^{2}$.
(b) Find the value of $a^{2}+b^{2}$ when $a+b=6$ and $a b=7$.
$a^{2}+b^{2}=(a+b)^{2}-2 a b$
Given that $a+b=6$ and $a b=7$, substitute these values into the identity:
$a^{2}+b^{2}=(6)^{2}-2(7)$
$=36-14$
$=22$
So, the value of $a^{2}+b^{2}$ is 22 .

## Question 33

15 A sphere has a volume of $80 \mathrm{~cm}^{3}$.
Calculate the radius of the sphere.
[The volume, $V$, of a sphere with radius $r$ is $V=\frac{4}{3} \pi r^{3}$.]


D
$V=\frac{4}{3} \pi r^{3}$
You're given that the volume is $80 \mathrm{~cm}^{3}$, so you can set up the equation:
$80=\frac{4}{3} \pi r^{3}$
To solve for $r$, you can follow these steps:

1. Multiply both sides by $\frac{3}{4}$ to isolate the term with $r^{3}$ :
$\frac{3}{4} \times 80=\pi r^{3}$
$60=\pi r^{3}$
2. Divide both sides by $\pi$ to isolate $r^{3}$ :
$r^{3}=\frac{60}{\pi}$
3. Take the cube root of both sides to solve for $r$ :
$r=\sqrt[3]{\frac{60}{\pi}}$
Now, you can calculate the numerical value:
$r \approx \sqrt[3]{\frac{60}{\pi}} \approx 2.87 \mathrm{~cm}$
So, the radius of the sphere is approximately 2.87 cm .

For more help, please visit our website www.exampaperspractice.co.uk

## Question 34

(a)

$$
y=\sqrt{8+\frac{4}{x}}
$$

Find $y$ when $x=2$.
Give your answer correct to 4 decimal places.
To find the value of $y$ when $x=2$ in the equation $y=\sqrt{8+\frac{4}{x}}$, substitute $x=2$ into the equation: $y=\sqrt{8+\frac{4}{2}}$
Now, perform the calculations:
$y=\sqrt{8+2}$
$y=\sqrt{10}$
$y \approx 3.1623$
So, when $x=2$, the value of $y$ is approximately 3.1623 (correct to 4 decimal places).
(b) Rearrange $y=\sqrt{8+\frac{4}{x}}$ to make $x$ the subject.
-a $y=\sqrt{8+\frac{4}{x}}$

1. Square both sides to eliminate the square root:
$y^{2}=8+\frac{4}{x}$
2. Subtract 8 from both sides:
$y^{2}-8=\frac{4}{x}$
3. Take the reciprocal of both sides:
$\frac{1}{y^{2}-8}=\frac{x}{4}$
4. Multiply both sides by $\frac{4}{1}$ to solve for $x$ :
$x=\frac{4}{y^{2}-8}$
So, the formula with $x$ as the subject is:
$x=\frac{4}{y^{2}-8}$

## Question 35

Expand the brackets.

$$
\begin{equation*}
y\left(3-y^{3}\right) \tag{2}
\end{equation*}
$$

$y\left(3-y^{3}\right)=3 y-y^{4}$
So, the expanded form is $3 y-y^{4}$.

## Question 36

Make $y$ the subject of the formula.

$$
\begin{equation*}
A=\pi x^{2}-\pi y^{2} \tag{3}
\end{equation*}
$$

To make $y$ the subject of the formula $A=\pi x^{2}-\pi y^{2}$, you need to isolate $y$ on one side of the equation. Follow these steps:

$$
A=\pi x^{2}-\pi y^{2}
$$

$\pi y^{2}=\pi x^{2}-A \quad\left(\right.$ Isolate the term with $y^{2}$ on one side)
$y^{2}=\frac{\pi x^{2}-A}{\pi} \quad$ (Divide both sides by $\left.\pi\right)$
$y=\sqrt{\frac{\pi x^{2}-A}{\pi}} \quad$ (Take the square root of both sides)
So, the formula for $y$ is:
$y=\sqrt{\frac{\pi x^{2}-A}{\pi}}$

## Question 37

Find $r$ when $\quad(5)^{\frac{r}{3}}=125$.

$$
5^{\frac{T}{3}}=5^{3}
$$

Now, since the bases are the same, you can equate the exponents:

$$
\frac{r}{3}=3
$$

To solve for $r$, multiply both sides of the equation by 3 :

$$
r=3 \times 3=9
$$

So, $r=9$ is the solution to the given equation.

## Question 38

Make $w$ the subject of the formula.

$$
t=2-\frac{3 w}{a}
$$


[3]

$$
t=2-\frac{3 w}{a}
$$

First, subtract 2 from both sides:
$\square \quad t-2=-\frac{3 w}{a}$
Next, multiply both sides by $-\frac{a}{3}$ to solve for $w$ :
$w=\frac{a}{3}(2-t)$
So, the formula for $w$ in terms of $t$ and $a$ is:
$w=\frac{a}{3}(2-t)$

## Question 39

$$
\begin{equation*}
T=2 \pi \sqrt{\frac{l}{g}} \tag{2}
\end{equation*}
$$

(a) Find $T$ when $g=9.8$ and $\ell=2$.
$T=2 \pi \sqrt{\frac{l}{g}}$
Here, $l$ is the length of the pendulum, and $g$ is the acceleration due to gravity.
Given that $g=9.8$ and $\ell=2$, you can substitute these values into the formula and solve for $T$ :
$T=2 \pi \sqrt{\frac{2}{9.8}}$
Now, calculate the expression inside the square root:
$\frac{2}{9.8} \approx 0.204$
Substitute this back into the original equation:
$T=2 \pi \sqrt{0.204}$
Now, calculate the square root:
$T \approx 2 \pi \sqrt{0.204} \approx 2 \pi \times 0.451$
Finally, calculate the product:

$T \approx 2 \pi \times 0.451 \approx 2.83$ seconds
So, when $g=9.8$ and $\ell=2$, the period $(T)$ of the pendulum is approximately 2.83 seconds.
(b) Make $g$ the subject of the formula.

- (b) Ma

$$
T=2 \pi \sqrt{\frac{l}{g}}
$$

First, divide both sides of the equation by $2 \pi$ to isolate the square root term:
$\frac{T}{2 \pi}=\sqrt{\frac{l}{g}}$
Next, square both sides of the equation to eliminate the square root:
$\left(\frac{T}{2 \pi}\right)^{2}=\frac{l}{g}$
Now, solve for $g$ by taking the reciprocal of both sides:
$g=\frac{l}{\left(\frac{T}{2 \pi}\right)^{2}}$
Simplify the expression:
$g=\frac{4 \pi^{2} l}{T^{2}}$
So, the formula for $g$ in terms of $T$ and $l$ is:
$g=\frac{4 \pi^{2} l}{T^{2}}$

## Question 40

Find the value of $5 a-3 b$ when $a=7$ and $b=-2$.
$5 a-3 b=5(7)-3(-2)$
Now, perform the multiplication and subtraction:
$5(7)-3(-2)=35+6=41$
So, when $a=7$ and $b=-2$, the value of $5 a-3 b$ is 41 .

## Question 41

Make $q$ the subject of the formula $p=2 q^{2}$.
$p=2 q^{2}$
First, divide both sides of the equation by 2 :
$\frac{p}{2}=q^{2}$
Now, take the square root of both sides. Note that there are two possible solutions (positive and negative) for the square root:
$\pm \sqrt{\frac{p}{2}}=q$
So, $q$ can be expressed as:
$q= \pm \sqrt{\frac{p}{2}}$
Therefore, $q$ is the square root of half of $p$, and it can be either positive or negative.

## Question 42

Make $a$ the subject of the formula. $\quad x=y+\sqrt{a}$
$x=y+\sqrt{a}$
Subtract $y$ from both sides of the equation:
$x-y=\sqrt{a}$
Square both sides to eliminate the square root:
$(x-y)^{2}=a$
So, the formula for $a$ in terms of $x$ and $y$ is:
$a=(x-y)^{2}$
Therefore, $a$ is equal to the square of the difference between $x$ and $y$.

Question 43

$$
\begin{equation*}
s=u t+16 t^{2} \tag{2}
\end{equation*}
$$

Find the value of $s$ when $u=2$ and $t=3$.
$s=(2)(3)+16(3)^{2}$
Now, perform the calculations:
$s=6+16(9)$
$s=6+144$
$s=150$
So, when $u=2$ and $t=3$, the value of $s$ is 150 .

## Question 44

$$
y=\frac{q x}{p}
$$

Write $x$ in terms of $p, q$ and $y$.


$$
y=\frac{q x}{p}
$$

Multiply both sides by $p$ to get rid of the fraction:
$p y=q x$
Now, divide both sides by $q$ to isolate $x$ :
$x=\frac{p y}{q}$
So, $x$ in terms of $p, q$, and $y$ is:

$$
x=\frac{p y}{q}
$$

## Question 45

Make $p$ the subject of the formula.

$$
\begin{equation*}
r p+5=3 p+8 r \tag{3}
\end{equation*}
$$

$r p+5=3 p+8 r$
First, move all terms involving $p$ to one side of the equation and the constants to the other side:
$r p-3 p=8 r-5$
Factor out $p$ from the left side:
$p(r-3)=8 r-5$
Now, divide both sides by $(r-3)$ to solve for $p$ :
$p=\frac{8 r-5}{r-3}$
So, $p$ is the subject of the formula and can be expressed as:
$p=\frac{8 r-5}{r-3}$

## Question 46

Solve the equation.

$6(y+1)=9$
First, distribute the 6 to both terms inside the parentheses:
$6 y+6=9$
Next, subtract 6 from both sides of the equation to isolate the term with $y$ :
$6 y=3$
Finally, divide both sides by 6 to solve for $y$ :
$y=\frac{3}{6}=\frac{1}{2}$
So, the solution to the equation is $y=\frac{1}{2}$.

Make $x$ the subject of the formula.

$$
\begin{equation*}
y=a x^{2}+b \tag{3}
\end{equation*}
$$

$y=a x^{2}+b$
Subtract $b$ from both sides:
$y-b=a x^{2}$
Divide both sides by $a$ to isolate $x^{2}$ :
$\frac{y-b}{a}=x^{2}$
Now, take the square root of both sides. Note that there are two possible solutions (positive and negative) for the square root:
$x= \pm \sqrt{\frac{y-b}{a}}$
So, $x$ can be expressed as:
$x=\sqrt{\frac{y-b}{a}} \quad$ or $\quad x=-\sqrt{\frac{y-b}{a}}$
Therefore, $x$ is the square root of the quantity $\frac{y-b}{a}$, and it can be either positive or negative.

## Question 48

Simplify.
$1-2 u+u+4$
$1-2 u+u+4$
Exa
Combine the $u$ terms:
$1-u+4$
Combine the constants:
$5-u$
So, the simplified expression is $5-u$.

## Question 49

Make $r$ the subject of this formula.

$$
\begin{equation*}
v=\sqrt[3]{p+r} \tag{2}
\end{equation*}
$$

$v=\sqrt[3]{p+r}$
Cube both sides to eliminate the cube root:
$v^{3}=p+r$
Subtract $p$ from both sides to isolate $r$ :
$r=v^{3}-p$
So, $r$ is the subject of the formula and can be expressed as:
$r=v^{3}-p$

## Question 50



$$
\begin{equation*}
y=2+\sqrt{x-8} \tag{3}
\end{equation*}
$$

$$
y=2+\sqrt{x-8}
$$

Subtract 2 from both sides:
$y-2=\sqrt{x-8}$
Now, square both sides to eliminate the square root:
$(y-2)^{2}=x-8$
Expand the left side:
$y^{2}-4 y+4=x-8$
Add 8 to both sides:
$y^{2}-4 y+12=x$
So, $x$ is the subject of the formula and can be expressed as:
$x=y^{2}-4 y+12$

$$
y=\frac{2}{x^{2}}+\frac{x^{2}}{2}
$$

Find the value of $y$ when $x=6$.
Give your answer as a mixed number in its simplest form.
To find the value of $y$ when $x=6$ in the equation $y=\frac{2}{x^{2}}+\frac{x^{2}}{2}$, substitute $x=6$ :
$y=\frac{2}{6^{2}}+\frac{6^{2}}{2}$
Now, simplify each term:
$y=\frac{2}{36}+\frac{36}{2}$
Reduce the fraction:
$y=\frac{1}{18}+18$
To combine the fractions, find a common denominator:
$y=\frac{1}{18}+\frac{18 \times 18}{18}$
Now, add the fractions:
$y=\frac{1+18^{2}}{18}$
Calculate the numerator:
$y=\frac{1+324}{18}$
$y=\frac{325}{18}$
Express this as a mixed number in its simplest form:
$y=18 \frac{1}{18}$
So, when $x=6$, the value of $y$ is $18 \frac{1}{18}$.


## Question 52

7 Make $x$ the subject of the formula.

$$
y=(x-4)^{2}+6
$$

$y=(x-4)^{2}+6$
First, subtract 6 from both sides of the equation:
$y-6=(x-4)^{2}$
Now, take the square root of both sides. Note that there are two possible solutions (positive and negative) for the square root:
$\pm \sqrt{y-6}=x-4$
Add 4 to both sides to isolate $x$ :
$x=4 \pm \sqrt{y-6}$
So, $x$ can be expressed as:
$x=4+\sqrt{y-6} \quad$ or $\quad x=4-\sqrt{y-6}$
Therefore, $x$ has two possible expressions in terms of $y$.

