

Topic 5 Fundamentals of Data Representation

Number types

Natural Numbers

Natural numbers are a set of numbers which are all whole numbers and either

positive or zero. They are often used to count how many of something there are, for

example, 2 dogs, 3 cats and 0 rabbits. The symbol for natural numbers is ℕ.

ℕ = {0,5,22,3,1}

Integer Numbers

Integer numbers are whole numbers which are positive, negative or zero. The symbol for integer numbers

is ℤ

ℤ = {-1,-20,0,5,41,3,1}

Rational numbers

Rational numbers can be either a whole number or a number with a decimal point or fraction. They must be

able to be written exactly as a fraction and can be positive, negative or zero. They are also known as

quotients and are represented with the symbol ℚ.

ℚ = {½, 55, 0, 6.34234, ¼, 8 ¾}

Irrational numbers

Irrational numbers cannot be written as a whole fraction and do not have a symbol to represent them.

IrrationalNumbers = { π, √2, e, √3}

Real Numbers

Real numbers incline all the number types mentioned above and are represented using the symbol ℝ

Ordinal Numbers

Ordinal numbers are integers which show the position of numbers or objects in a sequence such as 1st, 3rd

or 252nd. Ordinal numbers are used to index items in arrays starting with position 0.

Counting and Measuring

When counting objects, for example cars, books or files, natural numbers should be used as the result can

only be a whole number. When measuring something, for example the area of a circle, the quantity may not

come out to a whole number and as such real numbers should be used.

Number Bases

The same number can be shown or written in several different ways. Most often base 10, also called

denary or decimal, is used but a number of different options exist. Any given number

has the same value no matter how it is written, it will just be written differently.

Different number systems use a different number of digits in each character place. The

more characters the number system uses, the less space taken up to represent a

given number. As an example, the number 12 can take 2 characters to write in decimal

(12), 4 in binary (1100) and only 1 in hexadecimal (C)

Decimal (base 10)

This is the number system most commonly used by people. It uses ten digits, 0 to 9 to represent numbers.

Decimal numbers can be written with a subscript 10 to indicate they are in denary.

6110

Binary (Base 2)

Binary uses two characters, 0 and 1. These can be easily processed by computer circuits as on (1) or off

(0). A subscript 2 can be used to indicate that a number is written in binary.

01110112

Hexadecimal (Base 16)

Hexadecimal used 16 characters, 0-9 followed by A-F in uppercase to represent numbers. A subscript 16

can be used to indicate that a number is written in hexadecimal.

A116

Converting Between Number Bases

Converting Binary to Decimal

Draw your conversion table.

1) Write the binary number in the conversion table.

2) Add together all numbers with a 1 beneath them

128 64 32 16 8 4 2 1

1 1 0 0 1 1 0 0

128 + 64 + 8 + 4 = 204 - 11001100 in binary is 204 in denary

Converting Decimal to Binary

1) Draw your conversion table.

2) Is the number higher than the first column in the table?

a) If so, put a 1 in that column and work out the difference.

b) If not, put a 0 in that column.

3) Repeat the step above with the difference.

4) Keep going until the difference is 0, put a 0 in any empty columns.

Read the number from the bottom row of the table

128 64 32 16 8 4 2 1

1 1 0 0 1 0 0 0

200 – 128 = 72

72 – 64 = 8

8 < 32

8 < 16

8 – 8 = 0

200 in denary is 11001000 in binary

Converting Decimal to Hexadecimal

1) Divide the denary number by 16 and write down both the answer and the remainder.

2) Divide the answer by 16 again. Write down both the answer and the remainder.

3) Keep going until you reach an answer of 0.

4) Read the remainders from bottom to top.

5) Convert each remainder to hex.

62 ÷ 16 = 3 R 14
3 ÷ 16 = 0 R 3
3 14
3E

62 in denary is 3E in hexadecimal

Converting Binary to Hexadecimal

1) Draw two separate conversion tables.

2) Write the binary number across both tables.

3) For each table, add up the numbers which have a 1 beneath them.

4) Convert each number to hexadecimal.

8 4 2 1 8 4 2 1

0 1 1 0 1 1 0 1

4 + 2 = 6

6

 8 + 4 +1 = 13

D

01101101 in binary is 6D in hexadecimal

Bits and Bytes

A bit is the smallest unit of information and can be either a 0 or 1. Computers represent this as either high

or low current.

8 bits together are known as a byte and 4 bits, or half a byte are a nybble. Bits are written with a lowercase

b whilst a byte used an uppercase B.

The number of bits assigned to a number limits how many values it can represent, more bits allow larger

numbers to be shown. The formula to calculate this is 2n where n is the number of bits. As an example, two

bits can represent four numbers (22 = 4) whilst 10 bits can represent 1024 numbers (210 = 1024)

Units

Binary prefixes and decimal prefixes are used to describe quantities of bytes. Binary prefixes go up in

powers of two and decimal prefixes increase in powers of 10.

Decimal prefixes are widely used, for example 1000 ml is one litre, whereas binary prefixes are less widely

used.

Binary Decimal

Prefix Value Prefix Value

Kibi (Ki) 210

= 1024
Kilo (K) 103

= 1000

Mebi (Mi) 220

= 1048576
Mega (M) 106

= 1000000

Gibi (Gi) 230

= 1073741824
Giga (G) 109

= 1000000000

Tebi (Ti) 240

≈ 1.0995×1012

Tera (T) 1012

= 1×1012

Signed and Unsigned Binary Numbers

Binary numbers can be signed or unsigned, but by looking at the number alone there is no way to know

which it is. A computer has to be told whether a number is signed or unsigned. Unsigned binary numbers

can only be positive but signed numbers can be negative or positive.

Unsigned Binary Arithmetic

Adding unsigned binary integers

Use the four rules below to add unsigned binary numbers.

1. 0 + 0 + 0 = 0

2. 0 + 0 + 1 = 1

3. 0 + 1 + 1 = 10

4. 1 + 1 + 1 = 11

Multiplying Unsigned Binary Integers

Write out one number as a guide. Underneath each 1 in the first number, write out the second number

lining the least significant bit up with the number 1. Finally, perform binary arithmetic on the columns. The

example below shows how this works:

 1 0 1 1
Write one of the two numbers out in

columns.

 1 0 1 0
Write the second number under every 1 in

the 1st number, aligning the least significant
but with the 1. Fill in any blanks on the right

with 0 1 0 1 0 0

1 0 1 0 0 0 0

1 1 0 1 1 1 0
Perform binary addition on the columns.

Signed Binary With Two’s Complement

AQA uses the two’s complement coding scheme for binary which can represent both positive and negative

numbers. Two’s complement gives the most significant bit a negative value to show a negative number.

Subtracting Using Two’s Complement

Computers work by adding numbers, so to perform a subtraction, computers will add negative numbers.

Example: Subtract 12 from 8

 -16 8 4 2 1

 0 1 0 0 0

+ 1 0 1 0 0

 1 1 1 0 0

Range of Two’s Complement Numbers

Two’s complement signed binary numbers can include positive and negative numbers in a given range of

bits. For example, with 4 bits the largest value possible is 7 and the smallest is -8.

Fractional Numbers in Binary

Binary can also represent numbers which have a fractional part to them. There are two ways of doing this,

one uses fixed point whilst another uses floating point.

Fixed Point Binary

The fixed point approach places a specific number of bits before a binary point, with the rest behind the

point. The columns before the point use standard binary values of 1,2,4,8,etc. whilst those after the point

use the values 1/2, 1/4, 1/8, 1/16, etc.

This example uses 8 bits, split into 4 bits before the binary point and
four bits after. This allows us to write the number 11.3125 in binary

as 10110101.

8 4 2 1 . 1/2 1/4 1/8 1/16

1 0 1 1 0 1 0 1

8 + 2 + 1 + 1/4 + 1/16 = 11.3125

Floating Point Binary

Floating point binary is similar to scientific notation in that numbers are made up of a mantissa and an

exponent. Scientific notation would write the number 3,100000 as 3.1x106. 3.1 is the mantissa and 6 is the

exponent. This approach allocates a number of bits to the mantissa and the rest to the exponent.

0 1 1 0 1 0 1 1

Mantissa Exponent

The steps below show how to convert a floating point binary number to decimal.

0 1 1 0 1 0 1 1

0 1 1 0 1 3 Convert the exponent to decimal

0. 1 1 0 1 3

Place a binary point between the
first and second numbers

0 1 1 0. 1

0 1 1 0. 1

Treat the mantissa as a fixed point
binary number and convert to

decimal.
4 + 2 + 1/2 = 6.5 8 4 2 1. 1/2

These steps show how to convert from decimal to floating point binary.

Convert 14.625 to floating point binary.

 8 4 2 1 . 1/2 1/4 1/8
Convert the number to fixed point
binary 1 1 1 0 . 1 0 1

16 8 4 2 1 . 1/2 1/4 1/8 If the number does not begin 01 for a
positive number or 10 for a negative
number add the required digit at the
start 0 1 1 1 0 . 1 0 1

0 . 1 1 1 0 1 0 1
Move the binary point to between the
first two digits, making a note of how
many places it has moved.

01110101 0100 = 14.625

The number of places the point was
moved, in this case 4 or 0100 in
binary.

Comparing Fixed and Floating Point

Floating point allows a greater range of numbers to be represented in the same number of bits because it

can take advantage of an exponent which can be either positive or negative. The number of bits allocated

to each side of the floating point number affect the range of numbers which can be represented. A large

exponent allows for a large range of numbers but limits precision whilst a large mantissa allows for good

precision but a small range.

The placement of the binary point in fixed point also affects the balance between range and precision.

Placing the point close to the left gives good precision but limits how many numbers can be represented.

Moving the point to the right allows more numbers to be represented but limits precision.

Normalisation Floating Point Numbers

Normalising floating point numbers provides the maximum available precision within a range of bits. It

requires making sure the number starts with 01 if it is positive and 10 if negative. To normalise a floating

point number:

1. Split the number into the mantissa and exponent.

2. Adjust the mantissa so that it begins 01 if positive or 10 if negative by moving the bits as required.

3. Reduce the exponent by the same number of bits as you moved in step 2.

Underflow and Overflow Errors

Underflow Errors

Underflow happens when a small number needs to be represented but there are enough bits available to

do so. For example, 0.15625 could be written in fixed point binary using seven bits as 0000001, however, if

only five bits were available it would be 00000.

Overflow

Overflow happens when a number is too large to be represented using the available

number of bits and is particularly important when working with signed binary.

Rounding Errors

It is not possible to represent every single decimal number exactly in binary, in the

same way that 1/3 cannot be wholly accurately repressed in decimal. This means that

numbers at some point must be rounded and that fixed point and floating point

numbers may not be 100% accurate.

Absolute and Relative Errors

Calculating the absolute and relative errors allow us to see how close a particular representation of a

number is to the actual value.

Absolute Error Calculation

The absolute error is the actual amount by which a value is incorrect. It can be calculated by finding the

difference between the given value and the actual value.

Relative Error Calculation

The relative error is a measure of the uncertainty in a given value when compared to the actual value. This

is calculated using the formula 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑒𝑟𝑟𝑜𝑟 =
𝑎𝑏𝑠𝑙𝑜𝑢𝑡𝑒 𝑒𝑟𝑟𝑜𝑟

𝑎𝑐𝑡𝑢𝑎𝑙 𝑣𝑎𝑙𝑢𝑒
. The result is a decimal and can be multiplied

by 100 to give a percent.

Errors in Relation to Magnitude

The impact of an error is greater in larger numbers. As an example, an error of 0.5% when measuring

20cm would only be a difference of 0.5mm, whereas an error of 0.5% when measuring 5KM would be 25m.

Representing Characters

Character sets allow characters to be represented by a number, allowing computers to work with

characters despite only being able to work with binary numbers. Each character is assigned a numeric

character code which is unique to that character. Character codes can be written in either decimal or

binary.

ASCII & Unicode

ASCII was introduced in 1963 and used 7 bits to represent 128 characters including basic symbols, the

numbers 0-9 and the letters a-z in upper and lower case. Because ASCII is limited to 128 characters, it

does not have the space to represent characters from languages such as Arabic or

Hebrew which use a wide array of characters instead of the letters A-Z.

Unicode was introduced in 1991, and depending on the version, uses between 8 and

48 bits which allows it to include many more characters than ASCII. Unicode includes

not only symbols, numbers and letters from many different languages such as

Chinese and Greek, but also small pictorial icons known as emojis.

Error Checking

When computers share data, there is the possibility that parts of the data can be corrupt or lost, causing

errors in the final data. To spot this, and prevent incorrect data being processed, a number of error

checking and correction processes exist.

Parity Bits

Parity bits are single bits added into a transmission to check for errors. The sender calculates the value

based on the data itself and attaches it to the data before transmission. The receiver receives the data and

runs the same calculation, if the bits match, then the data is correct, if they are different then the data

contains errors, and the receiver will ask for the data to be resent.

Even parity chooses a value of the parity bit to create an even number of 1s in the transmission. For

example, 001001 would have a parity bit of 0 because there are already an even number of 1s. On the

other hand 111011 would have a parity bit of 1 because there are an odd number of 1s.

Odd parity works in the same way, but instead uses the parity bit to create an odd number of 1s in the

message. As an example, 001001 would have a parity bit of 1 because there are an even number (2) of 1s,

and 111011 would have a parity bit of 0 because there are already an odd number (5) of 1s.

Data Even Parity Set Data Received Parity Check

1011 10111 10111 No Error Detected

0000 00000 00100 Error Detected

1000 10001 11001 Error Detected

1001 10010 11110 No error detected

The example above shows this process in action. The last row shows the main issue

with using parity bits. In this example an even number of bits have changed during

transmission (1001 became 1111) but because there is still an even number of 1s,

the parity check passes.

This shows that parity bits cannot detect errors where an even number of bits are

changed during transmission.

Majority Voting

In Majority Voting each bit is transmitted more than once and when the data is received, the most

commonly occurring value is taken to be correct. This means that majority voting not only detects errors but

corrects them too. It also has the advantage over parity bits of being able to detect when multiple bits have

changed.

The main disadvantage of majority voting is that it increases the amount of data which needs to be

transmitted to share the message, which increases the time needed to send the message.

Checksums

Checksums work in a similar way to parity bits, by using the data to work out an additional value, which is

then added to the message before it is transmitted. An algorithm is used to determine this value, and both

the sender and receiver must use the same algorithm.

In this example, the modulo function, which returns the remainder after division, is used. The value of the

checksum is worked out as 22 MOD 8, giving a checksum value of 6. This is then converted to binary and

added to the end of the message before it is transmitted.

Data to send 22 = 10110

Calculate the Checksum 22 MOD 8 = 6 = 110

Data Sent 10110110

The recipient removes the checksum, applies the same algorithm and checks that the checksum matches.

If it does, the data is valid. Otherwise, the recipient asks for the data to be retransmitted.

Check Digits

Check digits use the same process as checksums but add only a single digit. This

means that only a small number of algorithms can be used and so makes it less

efficient than checksums.

Analogue and Digital Data

Analogue data is continuous with no limits on the possible values, whilst digital data

can only be one of a set number of values and can only change at set intervals. When drawing a graph

showing the data signal, analogue data appears as a smooth wave, whilst digital data appears with rough

steps between each value.

Converting Digital to Analogue

A DAC (Digital to Analogue Converter) is used to convert digital signals to analogue. It reads the bit pattern

representing the signal then outputs an alternating, analogue signal. DACs are often used to convert digital

audio into an analogue signal.

Converting Analogue to Digital

Sensors such as light sensors and microphones generate an analogue output, which must be converted to

a digital signal for computers to read it. This process uses an ADC (Analogue to Digital Converter). It reads

the analogue signal at set intervals, and outputs the value at that time.

This process is known as sampling, and the frequency at which samples are taken is measured in Hertz.

One Hertz is one sample per second, 10 Hertz is 10 samples per second, etc. A greater number of samples

gives a higher quality and more accurate representation of the signal.

Bitmap Graphics

Bitmap graphics break down images into pixels (short for picture element) which

each has a binary value assigned to it. The resolution of a bitmap image can be

measured in dots per square inch, where each dot is a pixel, or in the number of

pixels, such as 5x5.

The value assigned to the pixel determines the colour of that pixel in the image. The

higher the number of bits available to the pixel, the more colours can be used in the image. This is called

colour depth. For example, if only two bits were available, each pixel could only be one of two colours. If 2

bits were available, 4 colours (22) could be used.

Clearly, the greater the resolution of the image and the greater the colour depth, the larger the image file

will be. To calculate the storage requirements use this formula:

Width x Height x Colour Depth

So, for example, an image 5 pixels wide by 5 pixels height with 2 bit colour depth would be 5 x 5 x 2 = 50

bits.

In real life, there may also be additional metadata associated with the file which will increase the overall file

size.

Vector Graphics

Vector graphics use basic geometric shapes such as circles, triangles and rectangles

to build images. Each shape has properties such as dimensions, fill style and fill

colour which are stored in a list.

Because vector graphics describe how to draw the image using shapes, they can be

easily enlarged without losing quality. Enlarging a bitmap image makes each pixel

larger, reducing the quality of the image and making it appear pixelated. This

approach also means that vector graphics require less storage space, especially for larger images.

On the other hand, vector graphics are not well suited to store photographs or other detailed images which

can’t be built up from basic shapes.

Storing Sound Digitally

Computers store sound as a sequence of samples, each with a set value. The

number of samples taken each second is measured in Hertz and is called the

sampling rate. A higher sampling rate gives a higher quality sound but requires more

storage space.

The number of bits available for each sample is called the sample resolution. A higher

sample resolution needs more storage space but gives a higher quality sound.

The size of a sound file is calculated by this formula:

Duration(seconds) X SamplingRate(Hertz) x Sample Resolution

For example, a 30 second file with a 20 Hertz sample rate and 24 bit sample resolution would require 30 x

20 x 24 = 14,400 bits. We can divide this by 8 to give a value of 1800 bytes.

There may also be metadata such as a title or artist stored along with the file, which increases the overall

file size.

The Nyquist Theorem

This states that the sampling rate of a digital audio file must be at least twice the frequency of the sound

and that anything below this does not give an accurate representation of the sound.

MIDI (Musical Instrument Digital Interface)

MIDI allows electronic musical instruments to send data digitally to computers. Instead of analogue sound,

MIDI stores sound as a series of event messages, which together form a series of instructions on how to

recreate the music.

Each message relates to a single note played on a single instrument and contains the type of instrument

along with the volume and duration of the note and if it should be sustained.

MIDI allows music to be easily manipulated, such as changing the instrument or

editing certain notes, without loss of quality. MIDI files are usually much smaller than

sampled audio files and are lossless meaning that no information is lost.

MIDI cannot be used for storing speech, and can often sound less realistic for certain

instruments

Data Compression

Compressing files reduces their size, reducing the amount of storage space needed and

allowing them to be more quickly sent over a network.

Lossy Compression

Lossy compression results in some information being lost in the compression process,

meaning that the original file cannot be recreated. This technique is often used to

compress images and sound, where certain data can be removed without a noticeable impact on quality.

Lossless Compression

Lossless compression reduces the file size without losing any data, meaning the original file can be

recreated if needed. Run Length Encoding (RLE) and Dictionary Based are two common methods of

lossless compression.

RLE

This reduces the size of a file by removing repeated information, replacing it with a single occurrence and

the number of times the data is to be repeated.

This image shows how a bitmap image could be compressed with RLE. Where repeating pixels occur in a

line, they have been replaced with a single value followed by a count, reducing the amount of space

needed to store the file. Notice that line four has no repeating pixels and therefore can’t be compressed,

and so this method works best on files with a large amount of repeated data.

Dictionary Based

This approach uses a dictionary with repeated data which is appended to the file.

This example shows how the same picture could be written as 1234251 along with the dictionary shown

above, reducing the size of the file.

Encryption

Encrypting data can be thought of as scrambling it, meaning it can’t be read or understood. This helps to

keep the data secure whilst it is being stored or transmitted. Unencrypted information is called plain text,

and encrypted data is called ciphertext. The sender uses an encryption method and encryption key to

encrypt the data, and the recipient must know the key and the method used in order to decrypt the data.

Caesar Ciphers

These encrypt data by replacing characters within the data, with each character always being replaced with

the same character.

Caesar ciphers can be cracked. How often different characters occur within the ciphertext can give a clue

as to which character it has been replaced with. Since E is the most often used character in English, it is

fair to assume that whichever character is used most in the ciphertext has been replaced with E.

Shift Ciphers

These ciphers shift all letters by a certain amount, and this amount forms the key.

This example shows a shift cipher with a key of 2, so A becomes Y, B becomes Z and so on. Using this

example, the word ENCRYPT would become CLAPWNR.

Substitution Ciphers

Substitution ciphers randomly replace letters and do not use a pattern.

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

B J R G Z E W O V N T C L S A K H U Y F M P X I Q D

This example uses a substitution cipher. Encrypting the word ENCRYPT with this cypher would give

ZSGUQKF.

Vernam Ciphers

Vernam ciphers use a random key which must be as long as or longer than the plaintext which is being

encrypted. Each key should only ever be used once and should not be reused. Ciphers which work like this

are called one time pad ciphers.

Vernam Ciphers perform a number of steps to encrypt data:

1) Align the characters of the plaintext and key.

2) Convert each character to binary.

3) Apply an XOR operation to the two bit patterns

4) Convert the result back to a character.

When decrypting, the process is run in reverse order.

Because the chosen key is completely random, this cipher has been proven mathematically to be secure

and uncrackable.

Plaintect E N C R Y P T

Plaintext

Binary
01000101 01001110 01000011 01010010 01011001 01010000 01010100

Key P R B Y T A G

Key Binary 01110000 01110010 01100010 01111001 01110100 01100001 01100111

Plaintext

Binary

XOR Key

Binary

11010100 11110000 10000100 10101100 10110100 11000100 110011

Ciphertext Ô ð ¬ ´ Ä 3

Computational Security

With the exception of the Vernam Cipher, all ciphers can in theory be cracked. However, current computer

processing limits means that it would take so long (hundreds of years in some cases) to crack that it is not

practical to do so. This is known as relying on computational security.

