
 

Topic 5 Fundamentals of Data Representation 

Number types 

Natural Numbers 

Natural numbers are a set of numbers which are all whole numbers and either 

positive or zero. They are often used to count how many of something there are, for 

example, 2 dogs, 3 cats and 0 rabbits. The symbol for natural numbers is ℕ.  

 

ℕ = {0,5,22,3,1} 
 

Integer Numbers 

Integer numbers are whole numbers which are positive, negative or zero. The symbol for integer numbers 

is ℤ 

 

ℤ = {-1,-20,0,5,41,3,1} 
 

Rational numbers 

Rational numbers can be either a whole number or a number with a decimal point or fraction. They must be 

able to be written exactly as a fraction and can be positive, negative or zero. They are also known as 

quotients and are represented with the symbol ℚ. 

 

ℚ = {½, 55, 0, 6.34234, ¼, 8 ¾} 
 

Irrational numbers 

Irrational numbers cannot be written as a whole fraction and do not have a symbol to represent them. 

 

IrrationalNumbers = { π, √2, e, √3} 
 

Real Numbers 

Real numbers incline all the number types mentioned above and are represented using the symbol  ℝ 

 

Ordinal Numbers 

Ordinal numbers are integers which show the position of numbers or objects in a sequence such as 1st, 3rd 

or 252nd. Ordinal numbers are used to index items in arrays starting with position 0. 

 

Counting and Measuring 

When counting objects, for example cars, books or files, natural numbers should be used as the result can 

only be a whole number. When measuring something, for example the area of a circle, the quantity may not 

come out to a whole number and as such real numbers should be used.  

 

Number Bases 

The same number can be shown or written in several different ways. Most often base 10, also called 

denary or decimal, is used but a number of different options exist. Any given number 

has the same value no matter how it is written, it will just be written differently. 

 

Different number systems use a different number of digits in each character place. The 

more characters the number system uses, the less space taken up to represent a 

given number. As an example, the number 12 can take 2 characters to write in decimal 

(12), 4 in binary (1100) and only 1 in hexadecimal (C) 



 

 

Decimal (base 10) 

This is the number system most commonly used by people. It uses ten digits, 0 to 9 to represent numbers. 

Decimal numbers can be written with a subscript 10 to indicate they are in denary. 

 

6110 

 

Binary (Base 2) 

Binary uses two characters, 0 and 1. These can be easily processed by computer circuits as on (1) or off 

(0). A subscript 2 can be used to indicate that a number is written in binary. 

 

01110112 

 

Hexadecimal (Base 16) 

Hexadecimal used 16 characters, 0-9 followed by A-F in uppercase to represent numbers. A subscript 16 

can be used to indicate that a number is written in hexadecimal. 

A116 

 

Converting Between Number Bases 

Converting Binary to Decimal 

Draw your conversion table. 

1) Write the binary number in the conversion table. 

2) Add together all numbers with a 1 beneath them 

 

128 64 32 16 8 4 2 1 

1 1 0 0 1 1 0 0 

128 + 64 + 8 + 4 = 204 - 11001100 in binary is 204 in denary 

 

Converting Decimal to Binary 

1)   Draw your conversion table. 

2)   Is the number higher than the first column in the table? 

a)   If so, put a 1 in that column and work out the difference. 

b)   If not, put a 0 in that column. 

3)   Repeat the step above with the difference. 

4)   Keep going until the difference is 0, put a 0 in any empty columns. 

Read the number from the bottom row of the table 

 

128 64 32 16 8 4 2 1 

1 1 0 0 1 0 0 0 

200 – 128 = 72 

72 – 64 = 8 

8 < 32 

8 < 16 

8 – 8 = 0 

 
200 in denary is 11001000 in binary 
 
 
 



 

Converting Decimal to Hexadecimal 

1)   Divide the denary number by 16 and write down both the answer and the remainder. 

2)   Divide the answer by 16 again. Write down both the answer and the remainder. 

3)   Keep going until you reach an answer of 0. 

4)   Read the remainders from bottom to top. 

5)   Convert each remainder to hex. 

 

62 ÷ 16 = 3  R  14 
3  ÷ 16  = 0  R   3 
3  14 
3E 
 
62 in denary is 3E in hexadecimal 
 
Converting Binary to Hexadecimal 

1)   Draw two separate conversion tables. 

2)   Write the binary number across both tables. 

3)   For each table, add up the numbers which have a 1 beneath them. 

4)   Convert each number to hexadecimal. 

 

8 4 2 1  8 4 2 1 

0 1 1 0  1 1 0 1 

4 + 2 = 6 

6 

 8 + 4 +1 = 13 

D 

01101101 in binary is 6D in hexadecimal 

 

Bits and Bytes 

A bit is the smallest unit of information and can be either a 0 or 1. Computers represent this as either high 

or low current.  

 

8 bits together are known as a byte and 4 bits, or half a byte are a nybble. Bits are written with a lowercase 

b whilst a byte used an uppercase B. 

 

The number of bits assigned to a number limits how many values it can represent, more bits allow larger 

numbers to be shown. The formula to calculate this is 2n where n is the number of bits. As an example, two 

bits can represent four numbers (22 = 4) whilst 10 bits can represent 1024 numbers (210 = 1024) 

 

Units 

Binary prefixes and decimal prefixes are used to describe quantities of bytes. Binary prefixes go up in 

powers of two and decimal prefixes increase in powers of 10. 

Decimal prefixes are widely used, for example 1000 ml is one litre, whereas binary prefixes are less widely 

used. 

Binary Decimal 

Prefix Value Prefix Value 

Kibi (Ki) 210 

= 1024 
Kilo (K) 103 

= 1000 

Mebi (Mi) 220 

= 1048576 
Mega (M) 106 

= 1000000 

Gibi (Gi) 230 

= 1073741824 
Giga (G) 109 

= 1000000000 

Tebi (Ti) 240 

≈ 1.0995×1012 

Tera (T) 1012 

= 1×1012 



 

 

Signed and Unsigned Binary Numbers 

Binary numbers can be signed or unsigned, but by looking at the number alone there is no way to know 

which it is. A computer has to be told whether a number is signed or unsigned. Unsigned binary numbers 

can only be positive but signed numbers can be negative or positive. 

 

Unsigned Binary Arithmetic 

Adding unsigned binary integers 

Use the four rules below to add unsigned binary numbers.  

1. 0 + 0 + 0 = 0  

2. 0 + 0 + 1 = 1   

3. 0 + 1 + 1 = 10   

4. 1 + 1 + 1 = 11  

 

Multiplying Unsigned Binary Integers 

Write out one number as a guide. Underneath each 1 in the first number, write out the second number 

lining the least significant bit up with the number 1. Finally, perform binary arithmetic on the columns. The 

example below shows how this works: 

      1 0 1 1 
Write one of the two numbers out in 

columns. 

              
 

      1 0 1 0 
Write the second number under every 1 in 

the 1st number, aligning the least significant 
but with the 1. Fill in any blanks on the right 

with 0     1 0 1 0 0 

1 0 1 0 0 0 0 

1 1 0 1 1 1 0 
Perform binary addition on the columns. 

 

Signed Binary With Two’s Complement 

AQA uses the two’s complement coding scheme for binary which can represent both positive and negative 

numbers. Two’s complement gives the most significant bit a negative value to show a negative number. 

 

Subtracting Using Two’s Complement 

Computers work by adding numbers, so to perform a subtraction, computers will add negative numbers. 

Example: Subtract 12 from 8  

 -16 8 4 2 1 

 0 1 0 0 0 

+ 1 0 1 0 0 

 1 1 1 0 0 

 

Range of Two’s Complement Numbers 

Two’s complement signed binary numbers can include positive and negative numbers in a given range of 

bits. For example, with 4 bits the largest value possible is 7 and the smallest is -8.  



 

 

Fractional Numbers in Binary 

Binary can also represent numbers which have a fractional part to them. There are two ways of doing this, 

one uses fixed point whilst another uses floating point. 

 

Fixed Point Binary 

The fixed point approach places a specific number of bits before a binary point, with the rest behind the 

point. The columns before the point use standard binary values of 1,2,4,8,etc. whilst those after the point 

use the values  1/2, 1/4, 1/8, 1/16, etc. 

This example uses 8 bits, split into 4 bits before the binary point and 
four bits after. This allows us to write the number 11.3125 in binary 

as 10110101. 

8 4 2 1 . 1/2 1/4 1/8 1/16 

1 0 1 1  0 1 0 1 

8 + 2 + 1 + 1/4 + 1/16 = 11.3125 

 

Floating Point Binary 

Floating point binary is similar to scientific notation in that numbers are made up of a mantissa and an 

exponent. Scientific notation would write the number 3,100000 as 3.1x106. 3.1 is the mantissa and 6 is the 

exponent. This approach allocates a number of bits to the mantissa and the rest to the exponent. 

 

0 1 1 0 1  0 1 1 

Mantissa  Exponent 

 

The steps below show how to convert a floating point binary number to decimal.  

 

0 1 1 0 1  0 1 1  

0 1 1 0 1   3  Convert the exponent to decimal 

0. 1 1 0 1   3 
 

Place a binary point between the 
first and second numbers 

0 1 1 0. 1    

 

 

0 1 1 0. 1    

 

Treat the mantissa as a fixed point 
binary number and convert to 

decimal. 
4 + 2 + 1/2 = 6.5 8 4 2 1. 1/2    

 

 

 

 

 



 

 

These steps show how to convert from decimal to floating point binary. 

 

Convert 14.625 to floating point binary. 

 8 4 2 1 . 1/2 1/4 1/8 
Convert the number to fixed point 
binary  1 1 1 0 . 1 0 1 

16 8 4 2 1 . 1/2 1/4 1/8 If the number does not begin 01 for a 
positive number or 10 for a negative 
number add the required digit at the 
start 0 1 1 1 0 . 1 0 1 

0 . 1 1 1 0 1 0 1 
Move the binary point to between the 
first two digits, making a note of how 
many places it has moved. 

01110101 0100 = 14.625 

The number of places the point was 
moved, in this case 4 or 0100 in 
binary. 

 

Comparing Fixed and Floating Point 

Floating point allows a greater range of numbers to be represented in the same number of bits because it 

can take advantage of an exponent which can be either positive or negative. The number of bits allocated 

to each side of the floating point number affect the range of numbers which can be represented. A large 

exponent allows for a large range of numbers but limits precision whilst a large mantissa allows for good 

precision but a small range.  

 

The placement of the binary point in fixed point also affects the balance between range and precision. 

Placing the point close to the left gives good precision but limits how many numbers can be represented. 

Moving the point to the right allows more numbers to be represented but limits precision. 

 

Normalisation Floating Point Numbers 

Normalising floating point numbers provides the maximum available precision within a range of bits. It 

requires making sure the number starts with 01 if it is positive and 10 if negative. To normalise a floating 

point number: 

1. Split the number into the mantissa and exponent. 

2. Adjust the mantissa so that it begins 01 if positive or 10 if negative by moving the bits as required. 

3. Reduce the exponent by the same number of bits as you moved in step 2. 

 

Underflow and Overflow Errors 

Underflow Errors  

Underflow happens when a small number needs to be represented but there are enough bits available to 

do so. For example, 0.15625 could be written in fixed point binary using seven bits as 0000001, however, if 

only five bits were available it would be 00000. 

 

Overflow 

Overflow happens when a number is too large to be represented using the available 

number of bits and is particularly important when working with signed binary.  

 

 



 

 

Rounding Errors 

It is not possible to represent every single decimal number exactly in binary, in the 

same way that 1/3 cannot be wholly accurately repressed in decimal. This means that 

numbers at some point must be rounded and that fixed point and floating point 

numbers may not be 100% accurate.  

 

Absolute and Relative Errors 

Calculating the absolute and relative errors allow us to see how close a particular representation of a 

number is to the actual value.  

 

Absolute Error Calculation 

The absolute error is the actual amount by which a value is incorrect. It can be calculated by finding the 

difference between the given value and the actual value. 

 

Relative Error Calculation 

The relative error is a measure of the uncertainty in a given value when compared to the actual value. This 

is calculated using the formula 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑒𝑟𝑟𝑜𝑟 =
𝑎𝑏𝑠𝑙𝑜𝑢𝑡𝑒 𝑒𝑟𝑟𝑜𝑟

𝑎𝑐𝑡𝑢𝑎𝑙 𝑣𝑎𝑙𝑢𝑒
. The result is a decimal and can be multiplied 

by 100 to give a percent.  

 

Errors in Relation to Magnitude 

The impact of an error is greater in larger numbers. As an example, an error of 0.5% when measuring 

20cm would only be a difference of 0.5mm, whereas an error of 0.5% when measuring 5KM would be 25m. 

 

Representing Characters 

Character sets allow characters to be represented by a number, allowing computers to work with 

characters despite only being able to work with binary numbers. Each character is assigned a numeric 

character code which is unique to that character. Character codes can be written in either decimal or 

binary.  

 

ASCII & Unicode 

ASCII was introduced in 1963 and used 7 bits to represent 128 characters including basic symbols, the 

numbers 0-9 and the letters a-z in upper and lower case. Because ASCII is limited to 128 characters, it 

does not have the space to represent characters from languages such as Arabic or 

Hebrew which use a wide array of characters instead of the letters A-Z.  

 

Unicode was introduced in 1991, and depending on the version, uses between 8 and 

48 bits which allows it to include many more characters than ASCII. Unicode includes 

not only symbols, numbers and letters from many different languages such as 

Chinese and Greek, but also small pictorial icons known as emojis.  

 

Error Checking 

When computers share data, there is the possibility that parts of the data can be corrupt or lost, causing 

errors in the final data. To spot this, and prevent incorrect data being processed, a number of error 

checking and correction processes exist. 

 

Parity Bits 

Parity bits are single bits added into a transmission to check for errors. The sender calculates the value 

based on the data itself and attaches it to the data before transmission. The receiver receives the data and 

runs the same calculation, if the bits match, then the data is correct, if they are different then the data 

contains errors, and the receiver will ask for the data to be resent. 

 



 

Even parity chooses a value of the parity bit to create an even number of 1s in the transmission. For 

example, 001001 would have a parity bit of 0 because there are already an even number of 1s. On the 

other hand 111011 would have a parity bit of 1 because there are an odd number of 1s. 

 

Odd parity works in the same way, but instead uses the parity bit to create an odd number of 1s in the 

message. As an example, 001001 would have a parity bit of 1 because there are an even number (2) of 1s, 

and 111011 would have a parity bit of 0 because there are already an odd number (5) of 1s. 

 

Data Even Parity Set Data Received Parity Check 

1011 10111 10111 No Error Detected 

0000 00000 00100 Error Detected 

1000 10001 11001 Error Detected 

1001 10010 11110 No error detected 

 

The example above shows this process in action. The last row shows the main issue 

with using parity bits. In this example an even number of bits have changed during 

transmission (1001 became 1111) but because there is still an even number of 1s, 

the parity check passes.  

 

This shows that parity bits cannot detect errors where an even number of bits are 

changed during transmission. 

 

Majority Voting 

In Majority Voting each bit is transmitted more than once and when the data is received, the most 

commonly occurring value is taken to be correct. This means that majority voting not only detects errors but 

corrects them too. It also has the advantage over parity bits of being able to detect when multiple bits have 

changed. 

 

The main disadvantage of majority voting is that it increases the amount of data which needs to be 

transmitted to share the message, which increases the time needed to send the message. 

 

Checksums 

Checksums work in a similar way to parity bits, by using the data to work out an additional value, which is 

then added to the  message before it is transmitted. An algorithm is used to determine this value, and both 

the sender and receiver must use the same algorithm. 

 

In this example, the modulo function, which returns the remainder after division, is used. The value of the 

checksum is worked out as 22 MOD 8, giving a checksum value of 6. This is then converted to binary and 

added to the end of the message before it is transmitted. 

 

Data to send    22 = 10110 

Calculate the Checksum  22 MOD 8 = 6 = 110 

Data Sent    10110110 

 

The recipient removes the checksum, applies the same algorithm and checks that the checksum matches. 

If it does, the data is valid. Otherwise, the recipient asks for the data to be retransmitted. 

 

 

 



 

Check Digits 

Check digits use the same process as checksums but add only a single digit. This 

means that only a small number of algorithms can be used and so makes it less 

efficient than checksums. 

 

Analogue and Digital Data 

Analogue data is continuous with no limits on the possible values, whilst digital data 

can only be one of a set number of values and can only change at set intervals. When drawing a graph 

showing the data signal, analogue data appears as a smooth wave, whilst digital data appears with rough 

steps between each value.  

 

Converting Digital to Analogue 

A DAC (Digital to Analogue Converter) is used to convert digital signals to analogue. It reads the bit pattern 

representing the signal then outputs an alternating, analogue signal. DACs are often used to convert digital 

audio into an analogue signal. 

 

Converting Analogue to Digital 

Sensors such as light sensors and microphones generate an analogue output, which must be converted to 

a digital signal for computers to read it. This process uses an ADC (Analogue to Digital Converter). It reads 

the analogue signal at set intervals, and outputs the value at that time.  

 

This process is known as sampling, and the frequency at which samples are taken is measured in Hertz. 

One Hertz is one sample per second, 10 Hertz is 10 samples per second, etc. A greater number of samples 

gives a higher quality and more accurate representation of the signal.  

 

Bitmap Graphics 

Bitmap graphics break down images into pixels (short for picture element) which 

each has a binary value assigned to it. The resolution of a bitmap image can be 

measured in dots per square inch, where each dot is a pixel, or in the number of 

pixels, such as 5x5. 

 

The value assigned to the pixel determines the colour of that pixel in the image. The 

higher the number of bits available to the pixel, the more colours can be used in the image. This is called 

colour depth. For example, if only two bits were available, each pixel could only be one of two colours. If 2 

bits were available, 4 colours (22) could be used. 

 

Clearly, the greater the resolution of the image and the greater the colour depth, the larger the image file 

will be. To calculate the storage requirements use this formula: 

 

Width x Height x Colour Depth 
 

So, for example, an image 5 pixels wide by 5 pixels height with 2 bit colour depth would be 5 x 5 x 2 = 50 

bits. 

 

In real life, there may also be additional metadata associated with the file which will increase the overall file 

size. 

 

 

 

 

 

 



 

Vector Graphics 

Vector graphics use basic geometric shapes such as circles, triangles and rectangles 

to build images. Each shape has properties such as dimensions, fill style and fill 

colour which are stored in a list. 

 

Because vector graphics describe how to draw the image using shapes, they can be 

easily enlarged without losing quality. Enlarging a bitmap image makes each pixel 

larger, reducing the quality of the image and making it appear pixelated. This 

approach also means that vector graphics require less storage space, especially for larger images. 

 

On the other hand, vector graphics are not well suited to store photographs or other detailed images which 

can’t be built up from basic shapes. 

 

Storing Sound Digitally 

Computers store sound as a sequence of samples, each with a set value. The 

number of samples taken each second is measured in Hertz and is called the 

sampling rate. A higher sampling rate gives a higher quality sound but requires more 

storage space. 

 

The number of bits available for each sample is called the sample resolution. A higher 

sample resolution needs more storage space but gives a higher quality sound. 

 

The size of a sound file is calculated by this formula: 

 

Duration(seconds) X SamplingRate(Hertz) x Sample Resolution 
 

For example, a 30 second file with a 20 Hertz sample rate and 24 bit sample resolution would require 30 x 

20 x 24 = 14,400 bits. We can divide this by 8 to give a value of 1800 bytes. 

 

There may also be metadata such as a title or artist stored along with the file, which increases the overall 

file size. 

 

The Nyquist Theorem 

This states that the sampling rate of a digital audio file must be at least twice the frequency of the sound 

and that anything below this does not give an accurate representation of the sound. 

 

MIDI (Musical Instrument Digital Interface) 

MIDI allows electronic musical instruments to send data digitally to computers. Instead of analogue sound, 

MIDI stores sound as a series of event messages, which together form a series of instructions on how to 

recreate the music. 

 

Each message relates to a single note played on a single instrument and contains the type of instrument 

along with the volume and duration of the note and if it should be sustained.  

 

MIDI allows music to be easily manipulated, such as changing the instrument or 

editing certain notes, without loss of quality. MIDI files are usually much smaller than 

sampled audio files and are lossless meaning that no information is lost. 

 

MIDI cannot be used for storing speech, and can often sound less realistic for certain 

instruments 

 

 



 

Data Compression 

Compressing files reduces their size, reducing the amount of storage space needed and 

allowing them to be more quickly sent over a network.  

 

Lossy Compression 

Lossy compression results in some information being lost in the compression process, 

meaning that the original file cannot be recreated. This technique is often used to 

compress images and sound, where certain data can be removed without a noticeable impact on quality. 

 

Lossless Compression 

Lossless compression reduces the file size without losing any data, meaning the original file can be 

recreated if needed. Run Length Encoding (RLE) and Dictionary Based are two common methods of 

lossless compression. 

 

RLE 

This reduces the size of a file by removing repeated information, replacing it with a single occurrence and 

the number of times the data is to be repeated. 

 

 
 

This image shows how a bitmap image could be compressed with RLE. Where repeating pixels occur in a 

line, they have been replaced with a single value followed by a count, reducing the amount of space 



 

needed to store the file. Notice that line four has no repeating pixels and therefore can’t be compressed, 

and so this method works best on files with a large amount of repeated data. 

 

Dictionary Based 

This approach uses a dictionary with repeated data which is appended to the file. 

 

 
 

This example shows how the same picture could be written as 1234251 along with the dictionary shown 

above, reducing the size of the file. 

 

Encryption 

Encrypting data can be thought of as scrambling it, meaning it can’t be read or understood. This helps to 

keep the data secure whilst it is being stored or transmitted. Unencrypted information is called plain text, 

and encrypted data is called ciphertext. The sender uses an encryption method and encryption key to 

encrypt the data, and the recipient must know the key and the method used in order to decrypt the data. 

 

Caesar Ciphers 

These encrypt data by replacing characters within the data, with each character always being replaced with 

the same character.  

 

Caesar ciphers can be cracked. How often different characters occur within the ciphertext can give a clue 

as to which character it has been replaced with. Since E is the most often used character in English, it is 

fair to assume that whichever character is used most in the ciphertext has been replaced with E.  

 

Shift Ciphers 

These ciphers shift all letters by a certain amount, and this amount forms the key. 

 

 
 

This example shows a shift cipher with a key of 2, so A becomes Y, B becomes Z and so on. Using this 

example, the word ENCRYPT would become CLAPWNR.  

 

 

 



 

Substitution Ciphers 

Substitution ciphers randomly replace letters and do not use a pattern.  

 

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 

                          

B J R G Z E W O V N T C L S A K H U Y F M P X I Q D 

 

This example uses a substitution cipher. Encrypting the word ENCRYPT with this cypher would give 

ZSGUQKF. 

 

Vernam Ciphers 

Vernam ciphers use a random key which must be as long as or longer than the plaintext which is being 

encrypted. Each key should only ever be used once and should not be reused. Ciphers which work like this 

are called one time pad ciphers.  

 

Vernam Ciphers perform a number of steps to encrypt data: 

1) Align the characters of the plaintext and key. 

2) Convert each character to binary. 

3) Apply an XOR operation to the two bit patterns 

4) Convert the result back to a character. 

 

When decrypting, the process is run in reverse order. 

 

Because the chosen key is completely random, this cipher has been proven mathematically to be secure 

and uncrackable. 

 

Plaintect E N C R Y P T 

Plaintext 

Binary 
01000101 01001110 01000011 01010010 01011001 01010000 01010100 

Key P R B Y T A G 

Key Binary 01110000 01110010 01100010 01111001 01110100 01100001 01100111 

Plaintext 

Binary 

XOR Key 

Binary 

11010100 11110000 10000100 10101100 10110100 11000100 110011 

Ciphertext Ô ð  ¬ ´ Ä 3 

 

Computational Security 

With the exception of the Vernam Cipher, all ciphers can in theory be cracked. However, current computer 

processing limits means that it would take so long (hundreds of years in some cases) to crack that it is not 

practical to do so. This is known as relying on computational security. 

 


