

Topic 1 Fundamentals of Programming

Procedural Programming

Programs which use procedural programming are formed using sequences of instructions which are

executed in sequential order, one after another. Subroutines within the program can be called from

anywhere within the program. Data is stored in constants and variables, with global data structures being

accessible from all parts of the program, and local data structures being accessible from only the area

where they were declared.

A Structured Approach to Programming

Using the structured programming approach makes code easy to design and manage. Programs written in

this way are designed from the top down, with the most important parts of the program being broken down

into smaller tasks which can be solved using a small block of code such as a procedure. These small parts

are then joined together to form the whole solution.

Four basic structures make up the structured approach, assignment, sequence, selection and iteration.

Splitting the program into smaller parts allows individual parts to be tested, making it easier to find and

rectify any issues. It also makes ongoing maintenance easier and the code easier to understand.

Hierarchy Charts

A hierarchy chart is a picture which shows how the components of a program

written using the structured approach fit together. Each part is shown as a

rectangle, connected to the other parts used within it. Each rectangle represents a

part of the program, and the lines between them show relationships. In complex

programs, each rectangle may be linked to more than one other rectangle.

Data Types

Data types are defined by the values they can store and the operations which can be performed on them.

Different data types are best suited to different tasks.

• Integer - A whole number, positive or negative, including zero.

• Real / Float - A positive or negative number which can have a fractional part.

• Boolean - A value which is either true or false.

• Character - A single number, letter or symbol.

• String - A collection of characters.

• Data / Time - A way of storing a point in time, many different formats are used.

• Pointer / Reference - A way of storing memory addresses.

• Records - A collection of fields.

• Arrays - An indexed set of elements each of which has the same data type.

User Defined Types

User defined types allow a custom data structure to be created, based around an existing data type.

Different programming languages use different methods to create a user defined type.

Programming Concepts

• Variable declaration - Creating a variable for the first time, giving it a name and

sometimes a data type.

• Constant declaration - The same as variable declaration, but when creating a

constant.

• Assignment - Giving a constant or variable a value.

• Iteration - Repeating an instruction.

• Selection - Comparing values and choosing an action based on those values.

• Subroutine - A named block of code containing a set of instructions designed to perform a

frequently used operation.

Definite vs Indefinite Iteration

Iteration is repeating a section of code several times.

In definitive iteration, the code is run a set number of times, defined before the loop

starts. As an example, this code will output the numbers 0 to 45.

FOR Count ← 0 to 45

 OUTPUT Count

 Count = Count + 1

ENDFOR

In indefinite iteration, uses one or more conditions to determine how many times the code should be run,

the number of iterations is not known before the loop starts. As an example, the code below will get the

lighting level whilst the current level is less than 50.

WHILE Lighting <50

 Lighting = GetLighting()

ENDWHILE

Nested Structures

Selection and iteration statements can be nested, meaning one is placed within another. This might be a

loop inside a loop, a loop within a selection, or any other combination. Different levels of indentation should

be used to identify the different statements. As an example, the code below shows a while statement within

an if statement.

IF Waterlevel > 50 THEN

 WHILE Waterlevel > 50

 Waterlevel = GetWaterLevel()

 ENDWHILE

ELSE

 SoundAlarm()

ENDIF

Identifier Names

When naming variables, subroutines and other programming constructs it is important

to use sensible and meaningful identifier names. This makes it easy for anyone

reviewing the code to understand the purpose of the object within the code. Another

person with programming experience should be able to work out the purpose of

constructs from the name.

Arithmetic Operations

Arithmetic operations are used to work with numbers.

• Addition - Adding together two numbers.

• Subtraction - Taking one number away from another.

• Multiplication - Timesing two numbers together.

• Real / Float Division - Dividing one number by another.

• Integer Division - The same as real / float division, but just the whole number result is given.

• Modulo - Returns the remainder of an integer division.

• Exponentiation - Raising one value to the power of another.

• Rounding - Limiting the degree of accuracy of a number

• Truncation - Removing the decimal part of a number.

Relational Operators

These are used to compare two values

• Equal to 1 =15

• Not equal to 22 <> 76 10 != 20

• Less than 1 < 200

• Greater than 19 > 9

• Less than or equal to 1 <= 27 2 <= 2

• Greater than or equal to 100 >= 24 90 >= 90

Boolean Operators

Boolean values can only be true or false (written as 1 or 0). These operators are used to work with boolean

data.

NOT The opposite of a Boolean value NOT 1 = 0

AND Two Boolean values multiplied together 1 AND 1 = 1 0 AND 1 = 0

OR Two Boolean values added together 1 OR 0 = 1 1 OR 1 = 1

XOR True if exactly one of two values is true 1 XOR 1 = 0 1 XOR 0 = 1

Constants and Variables

Both constants and variables allow computer programs to store data. The data stored in a variable can

change while the program is running, but the data in a constant cannot change once it has been assigned.

Constants are used to store data which should not be changed, such as the number of hours in a minute,

or the value of pi. This allows these values to be given meaningful identifier names, making the code easier

for programmers to understand. It also makes it easier to change the value in the future, as this only needs

to be done in one place.

Variables are used to store data which does need to change as the program runs.

This allows the code to store a value for later use, and a meaningful name to be

assigned to the value. Variables are often used with iteration, to record how many

times code within a loop has been executed.

String Handling Operations

Strings store one or more characters, often containing an entire word or sentence. The operations below

allow computer programs to get information about process the data held in strings.

Length Returns the number of characters in a string.

Position Returns the position of a certain character within a string.

Substring Returns one or more characters from within the string when

given a starting position and length.

Concatenation Joins two or more strings together into a single longer string.

Character to character

code

Returns the character code for the given character,

Character code to Returns the character represented by the given character

character code.

String to integer Converting a string to an integer.

String to float Converting a string to a float.

Integer to string Converting an integer to a string.

Float to string Converting a float to a string.

Date / time to string Converting a date / time data type to a string.

String to date / time Converting a string to a date / time data type.

Random Number Generation

Most Programming languages can generate random numbers. A function performs a

number of mathematical operators on a provided seed value in order to generate a

random number. The exact commands and process for generating random numbers

varies between programming languages, so you should know how do so in the

language you are working with.

Handling Exceptions

The phrase “throwing an exception” means an error has occurred within the computer code. The computer

must handle the exception to make sure it does not crash. To do this, it pauses the execution of the code

and saves its state before running a special section of code called a catch block. This process stops the

code, or the entire computer, from crashing and allows the programmer to provide additional information to

the user or carry out certain actions to deal with the error. After the exception has been handles, the

program state is restored and execution resumes.

Subroutines

Subroutines are small named blocks of code which perform a specific task. This avoids having to repeat the

same code multiple times making the code easier to read and quicker to write. There are two main types of

subroutines, functions and procedures. Functions must return a value, whereas procedures do not have to.

To access a subroutine, you must “call” it by writing its name in the program code.

Parameters allow data to be passed to the and from a subroutine. They are specified within brackets when

calling the subroutine, and contain data needed by the subroutine, for example CalculatePay(Rate,Hours).

Subroutines can return values back to the main program, often the data is stored in a variable. For

example, the code WeeklyPay ← CalculatePay(Rate,Hours) calls the CalculatePay subroutine, providing

the Rate and Hours variables as parameters, and stores the result in the WeeklyPay variable.

Local and Global Variables

Variables can be either local or global in scope. Global variables can be accessed

from any part of the program and exist in memory for the duration of the program’s

execution.

Local variables can be accessed only from the subroutine where they are declared,

and only take up memory whilst that subroutine is running. This makes them a more

memory efficient way of storing data.

