

Carbohydrates 1

Level: AQA AS 7401

Subject: Biology

Exam Board: Suitable for all boards

Topic: Carbohydrates 1

Type: Mark Scheme

To be used by all students preparing for AQA AS Biology 7401 foundation or higher tier but also suitable for students of other boards.

Mark schemes

1	(a)	(i)	31 / 31.2;	1
		(ii)	Ratio would be less / smaller; Cell is thin / has large surface area / (adapted) for diffusion; Accept converse. Must relate to concept of ratio.	
				2
	(b)	(i)	6;	1
		(ii)	11;	1
	(c)		ater potential inside vesicle more negative / lower; ater moves into vesicle by osmosis / diffusion;	
				2
	(d)	Fo	tochondria supply energy / ATP; r active transport / absorption against concentration adient / synthesis / anabolism / exocytosis / pinocytosis; Do not credit references to making,	
			creating or producing energy.	2
	(e)	2	Phospholipids forming bilayer / two layers; Details of arrangement with "heads" on the outside; Two types of protein specified; e.g. passing right through or confined to one layer / extrinsic or intrinsic / channel proteins and carrier proteins / two functional types	
			Reference to other molecule e.g. cholesterol or glycoprotein; Substances move down concentration gradient / from high to low concentration;	
		7	Reject references to across or along a gradient Water / ions through channel proteins / pores; Small / lipid soluble molecules / examples pass between phospholipids / through phospholipid layer; Carrier proteins involved with facilitated diffusion;	
		J	Carrier proteins involved with lacilitated dilitasion,	

max 6

[15]

Ignore references to active transport.

Credit information in diagrams.

2	(a)	Glud	cose (and glucose);	1	
	(b)	(α1,	4) Glycosidic;	1	
	(c)	1.	Headings correct – mol dm ⁻³ and volume of water / cm ³ ;	•	
		2.	Concentration correct. ie 0.2;	2	
	(d)	Line	e of best fit drawn;	2	
		Rea	d off value at 0.45.	2	
				2	[6]
3	(a)	1. 2.	Maltose; Salivary amylase breaks down starch.		
	(b)	Molt		2	
	(b)	Mail	ase.	1	
	(c)	(Mim	nics / reproduces) effect of stomach.	1	
	(d)	1. 2.	Add boiled saliva; Everything same as experiment but salivary amylase denatured.		
				2	
	(e)	1. 2.	Some starch already digested when chewing / in mouth; Faster digestion of chewed starch;		
		3.	Same amount of digestion without chewing at end. Accept use of values from graph		
				3	[9]

- 4
- (a) 1. Allow equal (time for) diffusion of iodine into apple cells;
 - 2. For comparison between apples / between harvest dates;
 - 1. Accept equal time for reaction / colour change to occur
 - 2. For comparison alone is insufficient.

Ignore unqualified references to fair test, controlling a variable, standardising the method.

2

- (b) 1. Starch lost from the centre first / area with no starch gets bigger as it ripens;
 - (Less starch / blue / black as the) starch is converted to sugars / maltose;
 - 3. (Less starch) as it is hydrolysed;
 - 4. By amylase;

Less starch as it is hydrolysed into sugars scores MP2 and MP3.

3. For 'hydrolysed' accept 'as a result of hydrolysis' or 'broken down by hydrolysis'.

3 max

ал

[5]

5 (a) 1.1 (g);

1

(b) 300(%);

1

[2]

(Drink) contains carbohydrates / sugars so High GI / (drink) contains carbohydrates / sugars so raises blood glucose concentration quickly;

Each alternative requires both aspects for credit

The second alternative requires a reference to speed eg 'quickly' or 'immediately'

- 2. Contains salt so glucose more rapidly absorbed;
- 3. Increases glucose to muscles for respiration;
- 4. More / faster respiration so more / faster energy release;

Reject reference to energy production Accept more ATP produced

(a)	1.	Contents of phloem vessel pushed into insect's mouth by high pressure;		
	2.	(High pressure in phloem vessel) caused by loading of sugars into phloem in leaf;		
	3.	And (resulting) entry of water by osmosis.	3	
(b)	1.	Polysaccharides are insoluble;		
	2.	So do not affect water potential of gut.	2	
(c)	1.	(Only few bacteria passed from parent, so) only a few (copies of) genes passed on (bacteria);	in	
	2.	May not / does not include all alleles (of genes, so diversity reduced) OR		
		Small number of bacteria transmitted means unrepresentative sample.	2	
(d)	1.	Number / mass / density of insects per plant;		
	2.	Stage of development / size of plants / insects;		
		ignore any abiette lactor	2	
(e)	Drav	w around leaf on graph paper and count squares;	1	
				[10]
(a)	pres	ence of nuclei;	1	
(b)	(i)	growth clearly calculated from difference between lengths at beginning and end of lesson		
		2 marks correct answer of 300 μm	2	
		(Allow for slight measurement errors)	-	
	(ii)	divide by time (between measurements);	1	
(c)		• •		
	ioain	ie added to slide / specimen / granules;	2	[6]
	(b) (c) (d) (e) (a) (b)	2. 3. (b) 1. 2. (c) 1. (d) 1. 2. (e) Drav (a) pres (b) (i) (ii)	 (High pressure in phloem vessel) caused by loading of sugars into phloem in leaf; And (resulting) entry of water by osmosis. (b) 1. Polysaccharides are insoluble; 2. So do not affect water potential of gut. (c) 1. (Only few bacteria passed from parent, so) only a few (copies of) genes passed on (bacteria); 2. May not / does not include all alleles (of genes, so diversity reduced) OR Small number of bacteria transmitted means unrepresentative sample. (d) 1. Number / mass / density of insects per plant; 2. Stage of development / size of plants / insects; Ignore any abiotic factor (e) Draw around leaf on graph paper and count squares; (a) presence of nuclei; (b) (i) 1 mark growth clearly calculated from difference between lengths at beginning and end of lesson 2 marks correct answer of 300 µm (Allow for slight measurement errors) (ii) divide by time (between measurements); 	2. (High pressure in phloem vessel) caused by loading of sugars into phloem in leaf; 3. And (resulting) entry of water by osmosis. 3. (b) 1. Polysaccharides are insoluble; 2. So do not affect water potential of gut. 2. (c) 1. (Only few bacteria passed from parent, so) only a few (copies of) genes passed on (in bacteria); 2. May not / does not include all alleles (of genes, so diversity reduced) OR Small number of bacteria transmitted means unrepresentative sample. 2. Stage of development / size of plants / insects; Ignore any abiotic factor 2. Stage of development / size of plants / insects; Ignore any abiotic factor 2. (e) Draw around leaf on graph paper and count squares; 1. (a) presence of nuclei; 1. (b) (i) 1 mark growth clearly calculated from difference between lengths at beginning and end of lesson 2 marks correct answer of 300 µm (Allow for slight measurement errors) (ii) divide by time (between measurements); 1. (c) blue-black / dark blue / purple / black; iodine added to slide / specimen / granules;

both are polymers / polysaccharides / built up from many sugar units / both contain (a) (i) 9 glycosidic bonds / contain (C)arbon, (H)ydrogen and (O)xygen; 1 hemicellulose shorter / smaller than cellulose / fewer carbons; (ii) hemicellulose from pentose / five-carbon sugars and cellulose from hexose / glucose / six-carbon sugars; (only credit answers which compare like with like.) 2 (b) protein / nucleic acid / enzyme / RNA / DNA / starch / amylose / amylopectin polypeptide; 1 (c) (i) to make sure that all the water has been lost; 1 only water given off below 90 °C; (ii) (above 90°C) other substances straw burnt / oxidised / broken down; and lost as gas / produce loss in mass; 2 (d) enzymes are specific; shape of lignin molecules will not fit active site (of enzyme); shape of active site (of enzyme); will not fit molecule; 2 max (e) 1. made from β-glucose; 2. joined by condensation / removing molecule of water / glycosidic bond; 3. 1: 4 link specified or described; 4. "flipping over" of alternate molecules;

- 5. hydrogen bonds linking chains / long straight chains;
- 6. cellulose makes cell walls strong / cellulose fibres are strong;
- 7. can resist turgor pressure / osmotic pressure / pulling forces;
- 8. bond difficult to break;
- resists digestion / action of microorganisms / enzymes;

(allow maximum of 4 marks for structural features)

6 max

[15]

4	Λ
1	U

- (a) 1. Add iodine / potassium iodide solution to the food sample;
 - 1. Allow 'iodine'
 - 2. Must be in the context of the correct reagent
 - 2. Blue / black / purple indicates starch is present;

- (b) 1. Starch digested to maltose / by amylase;Ignore 'hard to digest / easily digested'
 - 2. Maltose digested to glucose / by maltase;
 - 3. Digestion of sucrose is a single step / only one enzyme / sucrase;
 - 3. Accept converse for starch
 - 3. Do not accept digestion of sucrose is faster

3

(c) 1. Smoking increases risk of CHD / introduces another variable;

1

- (d) (i) 1. No effect on risk with diet group 1 and 2 / lowest glycaemic load; Simple statement of correlation is not enough for this mark
 - 2. Above diet group 2 / in higher groups, risk increases as glycaemic load increases;

1 max

- (ii) 1. (Higher GL diets lead to) more (harmful) lipids (in blood), so greater risk of atheroma;
 - Ignore reference to lipids in diet
 - Atheroma leads to blockage of <u>coronary artery</u> / increased risk of blood clot in <u>coronary artery</u>;
 Ignore references to myocardial infarction / heart attack

2

[9]

11	(a)	(i)	14 / 15 – 58 / 59 or 43 – 45 (mg per 100cm³); Wrong calculation does not disqualify	1	
		(ii)	The larger the person the more blood they would have so have a lower concentration of blood glucose;		
			as same amount of glucose absorbed / all / 50g absorbed;	2	
	(b)	1.	Any reference to overlap between all 3 groups;		
		2.	One lactase deficient subject had high blood glucose / similar to control;		
		3.	Some control / Group A subjects had the similar blood glucose to LD / Group B subjects / some IBS subjects had similar results to lactase deficient subjects;	3	[6]
12	(a)	Incre	ease in the first 3 – 4 hours and then decrease;	1	
	(b)	Little	/ no difference (at 8 hours);		
		Betw	veen all groups;	2	
	(c)	Resp	piration (produce CO ₂);		
		Ву с	ells / tissues;	2	
	(d)	Clea	r differences between the lactose deficient and IBS / control group;		
		No o	verlap in SD;		
			Accept between all groups	2	[7]
13	(a)	(i)	Assumed that did not eat due to discomfort in the past;	1	
		(ii)	Positive correlation / as lactose concentration increases the data in column C increases / percentage who do not eat the food or feel discomfort after eating the food increases;	1	
		(iii)	Correlation does not mean that there is a causal relationship;		
			May be due to some other factor / example of factor;		
			Do not accept casual	2	

(b)	1.	People self-diagnosed lactose intolerant condition;		
	2.	Discomfort may be due to other factor / infection / other component of diet / is subjective;		
	3.	Large variation in lactose content of specific food items / e.g. variation in lactose content of different soft cheeses;		
	4.	Amount in a serving may vary;		
	5.	Untruthful responses / demand characteristics; Sample size = neutral.	2 max	[6]
(a)	-	ega-3 concentration) falls more rapidly at first; els out at 140 days / concentration of 0.4%;	2	ĮO,
(b)	(i)	Two marks for correct answer of 0.04 or 0.043;;		
		One mark for incorrect answer which clearly identifies total fall of 1.7;	2	
	(ii)	To take into account variation in fat content of milk / fat content varies from cow to cow; Allows comparison;		
		7 mowo companion,	2	
	(iii)	The graph shows a decrease with time feeding on corn; No control group;		
		Might have fallen anyway / might decrease with time rather than with time spend feeding on corn;		
		Other factors / other named factor might also have changed; Only one investigation so might not be representative;	1 mar	
			4 max	[10]
(a)	High	sucrose / starch diet leads to increase in lactase activity;	1	
(b)	Not v	valid / cannot be certain because overlap in SD between high sucrose and high sh;		
	Stud	y based on rats (not human) so may not apply to human;	2	[3]

(a) (i) D plasmid / ribosome(s) / cytoplasm / storage granules;(accept any sensible structure)

E (slime / mucous) capsule

OR

slime / mucous layer;

2

(ii) protection / maintain shape / prevent lysis / strength / support;

1

(b) two of the following: nucleus;

OR

nuclear envelope / mitochondria / chloroplasts / sER / rER / golgi apparatus / 80s ribosomes

linear <u>DNA</u> / chromosomes / lysosomes / vacuole / vescicles / <u>cellulose</u> cell wall;

2 max

(c) (i) <u>starch</u> digested / broken down; by amylase / carbohydrase;

2

(ii) any sensible suggestion e.g. no secretion of amylase / functional amylase / piece of fungus might have died;
 (accept carbohydrase / enzyme for amylase)

(accept carbohydrase / enzyme for amylase) (reject "no digestion" without qualification)

[8]

1

17 (a) ATP

1

(b) (i) 2.57:1/2.6:1/18:7;

Correct answer however derived scores two marks 72:28 scores one mark

Correct working from wrong figures scores 1 mark

Accept

0.4/0.39/0.389/0.3889

2 max

(ii) Low intensity;

> At low intensity/below 40% mainly fat used / at high intensity/ above 40% mainly carbohydrate used; Long duration exercise;

Percentage fat used increases with time / percentage carbohydrate used decreases with time;

3

[6]

18

Starch (max 3) (a)

- 1. Helical/spiral shape so compact;
- 2. Large (molecule)/insoluble **so** osmotically inactive;

Accept: does not affect water potential/ψ.

3. Branched **so** glucose is (easily) released for respiration;

Ignore: unbranched.

4. Large (molecule) so cannot leave cell/cross cell-surface membrane:

Cellulose (max 3)

- Long, straight/unbranched chains of β glucose;
- 6. Joined by hydrogen bonding;

Note: references to 'strong hydrogen bonds' disqualifies this mark point.

- 7. To form (micro/macro)fibrils;
- 8. Provides rigidity/strength;

5 max

(b) 1. (At source) sucrose is actively (transported) into the phloem/sieve element/tube;

> Accept: 'sugar/s' for sucrose but reject other named sugars e.g. glucose.

Accept: co-transport (with H+ ions).

- 2. By companion/transfer cells;
- 3. Lowers water potential in phloem/sieve element/tube and water enters by osmosis;
- 4. (Produces) high (hydrostatic) pressure;

Accept: pressure gradient.

5. Mass flow/transport towards sink/roots/storage tissue;

Accept: sieve element/tube.

6. At sink/roots sugars are removed/unloaded;

Accept: at sink/roots sugars are used in respiration/stored.

5 max

[10]

(a) 1. <u>Tertiary</u> structure / <u>3D</u> shape of enzyme (means);

Accept references to active site

Active site complementary to maltose / substrate / maltose fits into active site / active site and substrate fit like a lock and key;

Idea of shapes fitting together

- 3. Description of induced fit;
- 4. Enzyme is a catalyst / lowers activation energy / energy required for reaction;

 Accept "provides alternative pathway for the reaction at a lower energy level"
- 5. By forming enzyme-substrate complex;

Accept idea that binding stresses the bonds so more easily broken **Do not award point 5 simply for any reference to E-S complex**

5

(b) 1. Inhibitors reduce binding of enzyme to substrate / prevent formation of ES complex;

Max 3 if only one type of inhibition dealt with. Accept maltase and maltose as examples of enzyme and substrate (and others)
Only once, for either inhibitor

(Competitive inhibition),

- 2. Inhibitor similar shape (idea) to substrate;
- 3. (Binds) in to active site (of enzyme);

Accept allows max rate of reaction to be reached / max product will eventually be formed

Accept complementary to active site

4. (Inhibition) can be overcome by more substrate;

(Non-competitive inhibition),

- 5. Inhibitor binds to site on enzyme other than active site;
- 6. Prevents formation of active site / changes (shape of) active site;

 Accept does not allow max rate of reaction to be reached / max product will not be formed
- 7. Cannot be overcome by adding more substrate;

5 max

[10]

(a) Amylase;

(Starch) to maltose:

Maltase;

Maltose to glucose;

Hydrolysis;

(Of) glycosidic bond;

Q Do not penalise incorrect site for digestion or incorrect site of enzyme production.

5 max

(b) Glucose moves in with sodium (into epithelial cell);

Via (carrier / channel) protein / symport;

Sodium removed (from epithelial cell) by active transport / sodium- potassium pump;

Into blood;

Maintaining low concentration of sodium (in epithelial cell) / maintaining sodium concentration gradient (between lumen and epithelial cell);

Glucose moves into blood;

By (facilitated) diffusion;

Q Only allow diffusion mark in context of movement of glucose into the blood.

5 max

[10]

- (a) 1. Sodium ions actively transported from ileum cell to blood;
 - 2. Maintains / forms diffusion gradient for sodium to enter cells from gut (and with it, glucose);
 - 3. Glucose enters by facilitated diffusion with sodium ions;

3

(b)

Biochemical test	Liquid from beaker	Liquid inside Visking tubing
Biuret reagent		✓
I ₂ /KI		✓ or blank
Benedict's	✓	~

1 mark for each correct row

3

(c) 1. Biuret: protein molecules too large to pass through tubing;

Neutral: enzyme molecules

2. Iodine in potassium iodide solution: starch molecules too large to pass through tubing;

If no tick in 04.2, allow no starch hydrolysed

3. Benedict's: starch hydrolysed to maltose, which is able to pass through tubing. Reject: glucose

[9]

3

22

- (a) 1. (before reaction) active site not complementary to/does not fit substrate;
 - 2. Shape of active site changes as substrate binds/as enzyme-substrate complex forms;

Note. Points 1 and 2 may be made in one statement and 'complementary' introduced at any point.

Points 1&2 – active site mentioned once applies for both points

Point 2 – Ignore references to how shape change is caused

3. Stressing/distorting/bending bonds (in substrate leading to reaction);

2 max

(b) 1. Tangent to curve drawn;

Tangent drawn at about 10 minutes

2. Value in range of 8 to 11;

1 mark only for correct answer

2

	(c)	1.	(Rate of) increase in concentration of maltose slows as substrate/starch is used up OR		
			High initial rate as plenty of starch/substrate/more E-S complexes; *Reject ref. to amylase being used up*		
		0	· · · · · · · · · · · · · · · · · · ·		
		2.	No increase after 25 minutes/at end/levels off because no substrate/starch left; **Accept flittle**		
			Ignore references to substrate a limiting factor	2	
	(d)	1.	Make/use maltose solutions of known/different concentrations		
	()		(and carry out quantitative Benedict's test on each);		
		2.	(Use colorimeter to) measure colour/colorimeter value of each solution and plot calibration curve/graph described;		
			Axes must be correct if axes mentioned, concentration on x -axis		
		_	and colorimeter reading on y-axis		
		3.	Find concentration of sample from calibration curve;	•	
				3	[9]
23	(a)	(i)	(Molecule) made up of many identical / similar molecules / monomers / subunits;		
23			Not necessary to refer to similarity with monomers.		
				1	
		(ii)	Cellulose / glycogen / nucleic acid / DNA / RNA;		
				1	
	(b)	(i)	To keep pH constant;		
	` ,	()	A change in pH will slow the rate of the reaction / denature		
			the amylase / optimum for reaction;		
				2	
		(ii)	Purple / lilac / mauve / violet;		
			Do not allow blue or pink.	_	
				1	
		(iii)	Protein present / the enzyme / amylase is a protein;		
			Not used up in the reaction / still present at the end of the reaction;		
			uie ieacuoii,	2	
					[7]

24	(a)		our results from starch-iodine reaction; rease due to breakdown of starch by carbohydrase / enzyme;	2	
	(b)	(i)	curve drawn below curve on graph and starting at same point;	1	
		(ii)	curve drawn above curve on graph and starting at same point but finishing above;		
			(allow curve or horizontal line)		
			(allow alternative curve for pH if explanation in (ii) is consistent)	1	
	(c)	(i)	 increase in temperature increases kinetic energy; increases collisions (between enzyme / active site and substrate) / increases formation of enzyme / substrate complexes; increases rate of breakdown of starch / rate of reaction / carbohydrase activity; 		
		(ii)	 (decrease in pH) increases H+ ions / protons which attach / attracted to amino acids; hydrogen / ionic bonds disrupted / broken which denatures enzyme / changes tertiary structure; changes shape / charge of active site so active site / enzyme unable to combine / fit with starch / enzyme-substrate complex no longer able to form; decreases rate of breakdown of starch / rate of reaction / carbohydrase activity; (allow alternative explanation for pH if consistent with line drawn in (ii)) 		
			urawii iii (ii))	7	[11]
25	(a)	(i)	in case normal coffee differs in some other way / to control concentration of caffeine;	1	
		(ii)	not telling them what the drink contained / purpose of experiment;	1	
	(b)	(i)	able to continue for longer; (not just increases performance) (disqualify if also refers to fatty acids and glycerol)	1	
		(ii)	breakdown of fats; at increased rate / by mobilisation of fat stores;		
				2	

	(c)	(i)	idea that volumes of oxygen and carbon dioxide the same; reference to equal moles, or quotient as 1 divided by 1 / or 6 by 6;	2	
		(ii)	glycogen is a carbohydrate / broken down to glucose, linked to RQ; with no caffeine, RQ nearer 1.0 / less carbon dioxide exhaled and more oxygen inhaled (or vice versa) / with caffeine higher proportion of fats / fatty acids respired; increased time to exhaustion suggests slower use of glycogen:	3	[10]
26	(a)	C ₁₂ ;	H ₂₂ O ₁₁ ;		
20	4. \	<i>(</i> 1)		2	
	(b)	(i)	heat with Benedict's; yellow / brown / orange / red;	2	
		(ii)	(yes)		
			(may appear on second line)		
			more precipitate in sample B ; both sugars are reducing sugars / give a positive test;	2	[6]
27	(a)	Lacta	ase hydrolyses lactose in to glucose (and galactose);	1	
	(b)		actase in the milk		
		OR Enzy	me can be reused.	1	
	(c)	100 (cm ³ minute ⁻¹ is too fast to bind to active site / converse for 50 cm ³ minute ⁻¹ ;	1	
	(d)	14.1((4);	1	
	(e)	1.	Galactose is a competitive inhibitor / attaches to the active site (of lactase);		
		2.	Fewer enzyme substrate complexes formed.	2	[6]
28	(a)	1. 2.	Starch formed from α -glucose but cellulose formed from β -glucose; Position of hydrogen and hydroxyl groups on carbon atom 1 inverted.	2	

(b) 1. Insoluble; 2. Don't affect water potential; OR 3. Helical; Accept form spirals 4. Compact; OR 5. Large molecule; 6. Cannot leave cell. 2 (c) 1. Long and straight chains; 2. Become linked together by many hydrogen bonds to form fibrils; 3. Provide strength (to cell wall). 3 [7] Maltose; (a) (i) 1. 29 2. Water; Accept H₂O 2 (ii) Condensation; 1 [3] 1. (a) Add iodine / potassium iodide solution; 30 Reject if heated 2. Blue-black colour (with starch); Accept black Ignore purple 2 (b) 1. Hydrolysed by enzymes / hydrolysed by amylase / maltase; If named enzyme given, it must relate to the correct substrate 2. Produces glucose (in the gut); 3. Small enough to cross the gut wall (into the blood) / monomers / monosaccharides (can) cross the gut wall (into the blood); Accept cell membranes / epithelium / cells for 'gut wall' 3 (c) 1. Time how long it takes to go brick red; 2. Weigh precipitate; 3. Dilute glucose samples / use smaller volume of glucose samples / use greater volume of Benedict's reagent; Ignore references to colorimeter 1 max

[6]

(a) 31 Q Transport through a channel protein 1 Transport of small, non-polar molecules 1 Transport of glucose with sodium ions 1 (b) 1. (Y is) an enzyme/has active site/forms ES complex; Accept catalyst 2. That makes cellulose/attaches substrate to cellulose/joins β glucose; OR Makes cellulose/forms glycosidic bonds; 3. 4. From β glucose; Mark in pairs (1&2 or 3&4) 2 Cell wall forms outside cell-surface membrane/has cellulose on it (c) (on the outside); 1 (d) (Tick in box next to) Hydrogen; 1 [7] Glucose: 1. (a) 32 2. Fructose; Accept answers in either order Ignore α and β glucose 2 1. Line graph with rate on y axis and days/time in days on x axis and (b) linear scales: Correct answers \times 10⁻³ 1.17, 1.50, 1.83, 2.50, 3.33, 4.00, 4.00 (accept to 1DP) 2. Correct units of $\mu g min^{-1}/per minute/minute^{-1} \times 10^{-3}$; Reject m⁻¹ Reject if put 10⁻³ on axis for each point "means separating units from what goes before i.e. accept sucrose hydrolysis per min / $\mu g x 10^{-3}$ 3. Rates correctly calculated and plotted, with line connecting points/line of best fit and no extrapolation;

3

Do not accept a ruled straight line of best fit

Accept y axis starting at 1

(c) 1. Sucrose hydrolysis linked to some aspect of growth;

Accept 'breakdown

2. Greater the rate of/faster hydrolysis/more SPS activity as plant grows/cells divide (up to 8/10 days);

Accept 'breakdown

Accept converse of greater rate of growth, greater rate of hydrolysis

Reject 'sucrose broken down'

3. Growth/division remains the same/slows after 8/10 days (because SPS activity is levelling off);

Accept after 8 days/at 10 days growth rate maximum/growth stops

3

[8]

33

- (a) Accept **three** suitable suggestions:
 - 1. (Lactase / beads) can be reused / not washed away;
 - 1. Accept lactase / beads not wasted
 - 1. Less lactase used is insufficient
 - 2. No need to remove from milk;
 - 2. Accept lactase not present in milk.
 - 3. Allows continuous process;
 - 4. The enzyme is more stable;
 - 5. Avoid end-product inhibition.

Ignore ref to SA

3 max

- (b) 1. (Lactose hydrolysed to) galactose and glucose;
 - 2. (So) more sugar molecules;
 - 2. Idea of more sugars essential
 - 3. (So) more / different receptors stimulated / sugars produced are sweeter (than lactose).

2 max

[5]

34

(a) (i) (Both)

- Are polymers / polysaccharides / are made of monomers / of monosaccharides;
- 2. Contain glucose / carbon, hydrogen and oxygen;
- 3. Contain glycosidic bonds;
- 4. Have 1-4 links;

Neutral: references to 'unbranched', insoluble, formed by condensation, flexible and rigid

Are made of the monomer glucose = MP 1 and 2 = 2 marks

5. Hydrogen bonding (within structure).

Ignore reference to H bonds between cellulose molecules

2 max

(ii) (Starch

1. Contains <u>α / alpha</u> glucose;

Assume 'it' refers to starch

Accept: converse arguments only if linked directly to cellulose

Accept: forms a glycosidic bonds

- 2. Helical / coiled / compact / branched / not straight;
- 3. 1,6 bonds / 1,6 branching;
- 4. Glucoses / monomers same way up;
- 5. No H-bonds between molecules;
- 6. No (micro / macro) fibres / fibrils.

2 max

2

(b) (i) 1. No / few organelles / very little cytoplasm / cytoplasm at edge / more room / hollow / large vacuole / large space / thick walls;

Accept strong walls for thick walls

- (So) easier / more flow / (thick / strong walls) resist pressure.
 Easier flow may be expressed in other ways e.g. lower resistance to flow
- (ii) 1. Mitochondria release energy / ATP / site of respiration;
 Q Reject: 'produce energy'
 but accept produce energy in form of ATP
 - 2. For <u>active</u> transport / uptake against concentration gradient.

 Note: no mark is awarded for simply naming an organelle

OR:

- Ribosomes / rough endoplasmic reticulum produce(s) proteins;
 - Concept of making proteins needed
- 4. (Proteins) linked to transport e.g. carrier proteins / enzymes.

2

[8]