
 

Topic 4 Theory of Computation 

Algorithms 

An algorithm is a series of defined steps which when followed complete a specific task. 

Algorithms do not contain infinite loops and must always terminate. 

 

Pseudocode is a way of writing algorithms or other code which is not linked to a 

programming language. It allows programmers to communicate and share ideas 

without needing to all understand the same programming language.  

 

Assignment is giving a value to a variable or constant. In pseudocode this is written as an arrow pointing to 

the variable or constant. 

 

Count ← 77 
 

Sequence is when several instructions are executed one after the other. In pseudocode instructions are 

written one per line, and  lines are always executed in order. 

 

Selection allows different sections of code to be executed depending on the result of a comparison. 

Pseudocode can use IF, ELSE IF, ELSE and END IF for selection. 

 

Iteration, also known as loops, is the process of repeating a section of code more than once. Pseudocode 

can use FOR and WHILE to execute iteration. Code within the loop should be indented to make it easier to 

read. 

 

Abstraction 

Abstraction involves removing any details from a problem which are unnecessary and not relevant to finding 

a solution. It is the process of simplifying the problem down to its key details, making it easier to find a solution.  

 

Representational abstraction focuses on removing unnecessary detail from the problem to simplify it. 

 

Abstraction by generalisation / categorisation groups parts of the problem by common characteristics to arrive 

at a hierarchical relationship. 

 

Information Hiding 

Information hiding involves hiding any details or other information about an object which 

do not contribute to its essential characteristics. As an example, if writing an algorithm 

to determine how many people can fit on a bus then the people’s names or hometown 

can be disregarded, whilst information about the height or weight of the people should 

be retained. 

 

Procedural Abstraction 

Procedural abstraction breaks down a complicated model into smaller parts, each of which is a reusable 

procedure. Abstraction is used to remove the actual values, allowing the code to be reused and a 

computational model formed. 

 

Functional Abstraction 

Abstracting this further can disregard the details of the procedure altogether, resulting in only a function call 

to provide the necessary data without needing access to or an understanding of how the function works. 

 



 

Data Abstraction 

Data abstraction removes details of how data is actually represented and stored, 

allowing new kinds of data structure to be created. 

 

Problem Abstraction (Reduction) 

Problem abstraction removes details from the problem one at a time until it is shown in 

a way which can be easily solved. When the problem is simplified, it often appears 

similar to another problem which has already been solved.  

 

Decomposition 

Decomposition divides a problem into a series of smaller subproblems, which can then be further divided. 

This takes a large problem and breaks it down into smaller parts which are easier to solve and manage.  

 

Composition 

Composition combines already written procedures to form a larger system when dealing with complex 

problems. The technique is used with abstract data types, which are formed from smaller simpler data types. 

 

Automation 

Automation used models, which are abstractions of real world problems, to solve 

problems. It used algorithms to form part of the code which together with these models 

can be executed against data structures to solve complex problems.  

  

Finite State Machines (FSM) 

A finite state machine is a computational model used to describe a machine which can 

only ever be in one of a number of finite states. The state of the machine can change based on its current 

state and the input data fed to it. If the input data is valid, the machine will process it and terminate in an 

accepting state. Transition rules define how these changes take place and how the machine should change 

state given certain criteria. 

 

State Transition Diagrams 

State transition diagrams are pictures which show how a finite state machine works. They are made of circles 

with arrows joining them together. They must always have a start state which is shown by an arrow leading 

into the diagram and accepting states are shown with a double circle. 

 

The example below shows a media player, which can be in three states, stopped, play and paused. Transition 

functions are shown by the arrows. 

 
 

 

 

 



 

State Transition Tables 

Finite state machines can also be shown using state transition tables, which list the machine’s current state, 

and how that state will change based on an input. 

 

Current State Input Next State 

Stopped Play Button Play 

Play Stop Button Stopped 

Play Pause Button Paused 

Paused Play Button Play 

Paused Stop Button Stopped 

 

Finite State Machines With Outputs (Mealy Machines) 

A Mealy Machine is a special type of finite state machine which can produce an output is called a Mealy 

Machine. The output is based on the input, and inputs can generate different outputs depending on the state 

it is applied to. These might be real systems or models of a logical system. 

 

State transitions in these types of machines are labelled with both the input and output separated by a vertical 

bar.  

 

The Mealy machine below converts binary numbers to two’s complement representation with the number 

being read from the least significant bit to most significant bit. When the machine finds the first 1 it is left 

unchanged and all subsequent digits are flipped. As an example, the input 010100 would produce an output 

of 101100.   

 

A state transition table can also be used to represent a Mealy Machine as shown below.   

 

 

Current 
State 

Input Output Next 
State 

S0 0 0 S0 

S0 1 1 S1 

S1 0 1 S1 

S1 1 0 S1 

 

 

 

 

 

 

Sets 

A set is an abstract data type containing unique unordered values, a set can also contain one or more other 

sets. It is also possible for a set to contain no elements, these are called empty sets and referred to using the 

symbol {} or Ø. Sets are written using the common set notation as shown below.  

 

A set containing furniture in a dining room 

D: {“Table”, “Chair”, “Sofa”} 

 

A set containing furniture in a bedroom 

L: {“Bed”, “Wardrobe”, “Drawers”} 



 

A set containing furniture in different rooms of a house 

H: {(“Bed”, “Wardrobe”, “Drawers”), (“Table”, “Chair”, “Sofa”}) 

 

Set Comprehension 

Set comprehension allows a set to be created by selecting items from a broader set rather than individually 

specifying all the items one at a time. The example below shows how a set might be constructed using this 

method to include all positive integers which are greater than 0. To put the example in plain English, the 

instruction is to create a set named A which includes numbers which are natural numbers and greater than 

or equal to 1. 

  

 

 

 

 

𝑨 = {𝒙 | 𝒙 ∈  ℕ ⋀  𝒙 ≥ 𝟏} 
 

 

 

 

 

Compact Set Representation 

Compact set representation is a more space efficient way to describe a set by using shorthand methods to 

describe multiple instances of a number. The set below would contain all strings which have an equal number 

of 0s and 1s. 

 

 

 

 

 

{ 𝟎𝒏𝟏𝒏 | 𝒏 ≥ 𝟏} 
 

 

 

 

 

Common Set Types 

There are a number of commonly used set types it is important to be aware of. 

 

Finite Sets 

Finite sets contain a set number of items, in other words we could count how many items were in the set. 

The cardinality of a finite set means the number of elements in a set. For example, a set containing the 

numbers 1 to 10 would be a finite set with a cardinality of 10. A set containing the names of 200 people would 

also be a finite set, but with a cardinality of 200 

 

  

The name 

of the set 

This symbol 

means “is 

drawn from” 

This symbol 

represents 

natural numbers 

This symbol 

means and 

This symbol 

means “such 

that” 

This symbol 

means greater 

than or equal to 

0 appears 

n times in 

a row 

1 appears 

n times in 

a row 

n is greater 

than or equal 

to 1 

This symbol 

means “such 

that” 



 

Infinite Sets 

Infinite sets contain an infinite number of items, and can be thought of as the opposite of finite sets.  

 

A countably infinite set contains elements which could be counted in such a way that we would eventually 

get to the end element, but in a very long time. An example would be the set of all integers, clearly this would 

be an incredibly large set but would have a finishing point.  

 

A non-countable set contains elements which could not be counted. For example, the set of all real numbers 

would not be countable, since it contains every possible decimal point of every number. 

 

Subsets 

A subset is a set within another set and are written using the symbol ⊆. For example, if every element of set 

A belongs to set B we could write A ⊆ B. If both A and B contain exactly the same elements, both are subsets 

of each other, and so we could write A ⊆ B or B ⊆ A. 

 

Propper Subsets 

A proper subset contains only items from another set, but not all of them, and is written as A ⊂ B. This also 

means that A cannot be the same as B. 

 

Set Membership 

The symbol ∈ is used to show that an item is within a set, for example if set R contained the number 4 we 

could write 4 ∈ R. 

 

The symbol ∉ is used to show that an item is not within a set. For example, if the set P did not contain the 

number 5 we could write 5 ∉ P.  

 

Set Operators 

Sets can be constructed from other sets using three different operations. 

 

Union 

A new set can be constructed by combining the items in two other sets, this process is called union and 

shown using the symbol ∪. If an item appears in both sets, it will appear only once in the new set as shown 

in the example below: 

 

Set A: {1,4,5,7,2} 

Set B: {9,10,11,2,1} 

Set A ∪ Set B = {1,4,5,7,2,9,10,11} 

 

Intersection 

A new set can be constructed by selecting only the items which appear in both sets, this is called intersection 

and uses the symbol ∩. The example below shows this in action. 

 

Set A: {1,4,5,7,2} 

Set B: {9,10,11,2,1} 

Set A ∩ Set B = {1,2} 

  



 

Difference 

A new set can be created using only the items which appear in one set but not another set, this is called 

difference and uses the symbol \ or -. The example below shows this in action 

 

Set A: {1,4,5,7,2} 

Set B: {9,10,11,2,1} 

Set A \ Set B = {4,5,7} 

 

Regular Expressions 

Regular expressions use different metacharacters to describe sets. There are many metacharacters used in 

regular expressions, however, only the five below will be used in the exam: 

 

Metacharacter Description Example 

* 0 or more repetitions Set AB* would be {A, AB, ABB, ABBB, etc.) 

+ 1 or more repetitions Set PQ+ would be {PQ, PQQ, PQQQ, etc. 

? The previous character is optional Set Book?s would be {Books,Boos} 

| Or Set J|K would be {J,K} 

() Groups regular expressions Set (NM)|(OP)Q would be {NMQ, OPQ} 

 

Finite State Machines and Regular Expressions 

Finite state machines can be used to show regular expressions, every regular expression has a 

corresponding finite state machine.  

 

Context Free Languages 

Context free languages are sets of strings and symbols which follow context free grammar rules. Production 

rules, which replace one character with another, describe which strings are and are not possible.  

 

Backus-Naur Form 

Backus-Naur form is a notation method for context free languages which uses statements where the right 

hand side of the statement defines the left hand side. 

 

Non-Terminals 

Text placed within angled brackets is called a non-terminal, although can also be called a meta component 

or syntactic variable. The example below shows how a non-terminal could be used to describe the makeup 

of a name: 

 

<FullName> ::= <Title><Forename><Surname> 

 

Terminals 

Text without brackets is called a terminal and is always taken as the written value without any breaking down 

or interpretation. The example below shows how a child’s age could be defined using the numbers 1-9. The 

straight line character is called a pipe symbol, and means or: 

 

<Age> ::= 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 

 

Recursions 

Backus-Naur form uses recursion to make more complex definitions, defining a non-terminal in terms of itself 

to allow this. This allows the form to represent languages which cannot be represented using regular 

expressions, which do not allow recursion. 

 

Syntax Diagrams  

Syntax diagrams give a visual representation of a regular language, using rectangles to show non-terminals 

and ellipses to show terminals. Arrows join the shapes to show how strings can be formed. 



 

 

The example syntax diagrams below show how this works. The first shows how Fullname can be formed 

from three components. Whilst the second shows first how Digit can be formed of any digit 0 to 9, and Integer 

can be formed by several digits. 

 

 

 
 

Comparing Algorithms 

There are often multiple different approaches to solving a problem, resulting in several different algorithms 

which accomplish the same task. It is important to be able to compare these algorithms to find out which is 

the most efficient and least complex. An algorithm’s complexity can be measured either in terms of space or 

in terms of time. Ideally, an algorithm should run as quickly as possible and take up as little space as possible.  

 

Big-O Notation 

Big O notation is used to describe the complexity of an algorithm. This notation always assumes the worst 

case scenario and uses the letter n to describe the input. For example, an algorithm with a liner time 

complexity could be written as O(n).  

 

There are a number of standard functions in Big O notation it is important to be familiar with, they are listed 

below in order from least to most complex. 

 

Function Big O How to Spot 

Constant O(C) The time is the same regardless of the input. 

Logarithmic O(log2(n)) The number of items is halved in each iteration. 

Linear O(n) Each item must be processed once in a worst case scenario. 

Linear Logarithmic O(nlog(n))  

Polynomial O(n2) Appears as a loop within a loop. 

Polynomial O(n3) Appears as a loop within a loop within a loop. 



 

Exponential O(2n) Intractable, meaning it cannot be solved within a practical amount of 
time. 

Factorial O(n!) Intractable, meaning it cannot be solved within a practical amount of 
time. 

 

 

 

Graphs for Big-O Notation 

 
The graphs above show different results of the Big-O Notation which we can use to represent algorithm 

complexity. It is important to be able to recognise, different graphs increase at different rates. With the 

exception of the constant function, as the input increases the graph grows.  

 

The factorial notation, written as x!, means all the positive integer values smaller than or equal to the number 

multiplied together, so 3! is 1x2x3, or 6. This is useful for working out permutations, for example, the numbers 

1 to 5 could be ordered in 5!, or 96 ways. 

 

Limits of Computation 

Algorithms can be either traceable or intractable.  

 

Tracible problems can be solved within a useful and practical amount of time and have a time solution which 

is polynomial or less.  

 

Intractable problems are solvable in theory but limits on computational power mean that the algorithm would 

take so long to solve, sometimes millions of years, that it would not be worth waiting for the result. Sometimes 

a heuristic method can be used to produce an approximate solution, this will not provide an exact answer 

however. 

 

It is also important to remember that not every problem can be solved using a problem. One example of this 

is the Halting problem, which states it is impossible to produce an algorithm to determine if a second algorithm 

will finish with a given input. This shows that there are some problems which simply cannot be solved by 

computers.  

 

 

X

Y

Constant (e.g. y = 5)

X

Y

Constant (e.g. y=2x )

X

Y

Logarithmic e.g. 
y=log(x) 

X

Y

Polynomial e.g. y=x2

X

Y

Exponential e.g. y=4x



 

Turing Machines 

A Turing Machine is a computational model made of a finite state machine, a read/write head and a tape of 

infinite length. 

 

The tape is divided into cells which may be blank or contain a symbol. These symbols are written to or 

removed from the tape by the read/write head. The set of available symbols is called the alphabet, and this 

must be finite and defined in advance. 

 

We can look at a Turing Machine as a computer which runs a single program defined by a finite state machine 

with a start state, and several states from which there are no transitions (known as halting states). The 

machine will stop when it reaches a halting state, this can occur at any point in the machine’s execution and 

indicates that all input data has been processed.  

 

As shown below, a Turing Machine can be drawn as a series of cells each containing a single symbol or a 

square to signify the cell is empty. The black triangle indicates the position of the machine’s read/write head.  

 

Turing Machines can provide a more powerful computational model than finite state machines because they 

can utilise a greater range of languages and are infinitely long in one direction. 

 

1 0 0 □ 0 0 1 □ 1 

▲         

 

Transition functions lay out the rules a Turing Machine must follow and are written in this form: 

 

δ (current state, read) = (new state, write, move) 

 

The transition function below means that if the machine is in S0 and reads an empty cell, it should write a 1, 

move to S1, and finally move the read/write head to the right.  

 

δ (S0, □) = (S1, 1, R)  

 

Universal Turing Machines 

A normal Turing Machine follows a single finite state machine meaning it is specific to a single computational 

problem it was designed to solve. A Universal Turing machine on the other hand is capable of representing 

any finite state machine. The universal Turing machine reads a description of the finite state machine which 

it will use from the same type as the input data then proceeds to process the input data as usual. This is an 

example of the stored programme concept. 

 

Because of the way in which universal Turing machines read their instructions in sequence before executing 

operations on their input data, it can be said that they act as interpreters. 

 

The importance of Turing Machines 

In providing a formalised model of computing, Turing machines give a definition of what is and is not 

computable. This is incredibly important since a Turing machine can be used to prove whether a given 

problem can or cannot be solved by computers. 


