
 

Topic 3 Fundamentals of Algorithms 

Graph Traversal 

This process visits each vertex in a graph. There are two algorithms which can be used to do this; depth-first 

and breadth-first. 

 

Depth-First 

This approach is often used for navigating a maze and uses a stack. 

 

This approach works as far possible down one branch before moving on the next branch, then the next, then 

the next until all branches have been traversed. The various branches can be traversed in any order and a 

stack is used to manage backtracking as shown in the example below. 

 
RESULT: F 

 
Nodes can be explored in any example, but in this 
case we will start from F. 
 
The algorithm adds the first node (F) to the stack 
and checks the nodes connected to it. 

 

 
RESULT: F B 

Nodes are always processed with the lowest first, 
since B lower than G, it is discovered first and added 
to the stack. 

 
RESULT: F B A 

The nodes adjacent to node B are observed, and 
with A being the lowest it is the first to be discovered. 
 
The algorithm moves to node A and adds it to the 
stack. 
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RESULT: F B A 

Node A has no child nodes, and so can be thought 
of as fully discovered, meaning this particular 
branch has been fully explored.  
 
Node A is popped (removed) from the stack, and the 
algorithm moves back to node B 

 
RESULT: F B A D C 

The algorithm moves to node D, adding it to the 
stack and discovering child nodes.  
 
As before, they are processed lowest first and so 
node C is processed and added to the stack. 

 
RESULT: F B A D C E 

There are no child nodes connected to node C so it 
is marked as fully discovered and popped from the 
stack. 
 
The algorithm moves back to node D followed by 
node E. Node E is added to the stack in place of 
Node C 

 
RESULT: F B A D C E 

Since E has no child nodes it is popped from the 
stack and marked fully discovered. 
 
This process is repeated for nodes D then B since 
both have no child nodes which have not been 
discovered already.  
 
This leaves us back at node F 
 
 

 
RESULT: F B A D C E 

Since E has no child nodes it is popped from the 
stack and marked fully discovered. 
 
This process is repeated for nodes D then B since 
both have no child nodes which have not been 
discovered already.  
 
This leaves us back at node F 
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RESULT: F B A D C E G H 

The algorithm now repeats the discovery process 
discovering first G then H 

 
RESULT: F B A D C E G H 

Node H has no child nodes and so is fully explored 
and popped from the stack. 
 
The algorithm moves back to node G, it too has no 
further child nodes and so is popped from the stack. 
 

 
RESULT: F B A D C E G H 

Finally, the algorithm discovers there are no further 
child nodes to node F so it is marked fully discovered 
and is popped from the stack. 
 
The stack is now empty, meaning the tree has been 
fully discovered and the algorithm terminates. 
 
 
 

Breadth-First 

This approach works down the tree one level at a time, exploring all nodes at that level before moving onto 

the next. A queue is used to manage the search. This approach is useful for determining the shortest path. 

 
RESULT: F B G 

 
Nodes can be explored in any example, but in this 
case we will start from F. 
 
F is discovered. 
 
The nodes directly adjacent to F are then discovered 
then added to the queue and result in alphabetical 
order. 

 
RESULT: F B G 

Node F and its directly adjacent child nodes have all 
been discovered, and as such it can be described 
as fully discovered. 
 
The algorithm moves onto the node at the top of the 
queue, in this case B 
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RESULT: F B G A D 

Node B is removed from the queue. 
 
Node B’s child nodes are discovered in alphabetical 
order, they are added to the queue and the result 
 

 
RESULT: F B G A D 

Node B is now fully discovered. 
 
 

 
RESULT: F B G A D H 

The algorithm again looks at the node at the top of 
the tree, in this case G. 
 
The node is removed from the queue, and its child 
node H is discovered and added to the queue and 
result. 
 
Node G is now fully explored since it has no child 
nodes which are not in the queue or result. 

 
RESULT: F B G A D H 

The algorithm again looks at the node at the top of 
the tree, in this case A. 
 
It is removed from the queue but has no child nodes. 
 
As such it is fully discovered. 

 
RESULT: F B G A D H C E 

D is the next item the queue.  
 
It had two child nodes, C and E which are added to 
the queue and result in alphabetical order.   
 
D is now fully discovered and so removed from the 
queue. 
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RESULT: F B G A D H C E 

The remaining items in the queue are explored in 
order.  
 
Each has no child nodes so they are removed from 
the queue. 
 
The tree is now fully discovered. 

 

Tree Traversal 

A Tree traversal algorithm works through a tree to discover and output all nodes within the tree. Tree traversal 

algorithms must start at the top of the tree and travel down the tree always keeping to the left hand side of 

the tree. There are three types of tree traversals: 

• Pre Order 

• In Order 

• Post Order 

Pre order and post order traversal can be performed on any tree, but an in order traversal can only be 

performed on a binary tree. 

 

This example shows the route a tree traversal would take: 

 

 
 

Pre Order Traversal 

Pre order traversal can be performed on any tree, it is used to create a copy of the tree. The process follows 

these steps: 

1) Mark the left hand side of every node in the tree. 

2) Start at the root node and keep to the left hand side of the tree. 

3) Whenever a mark (created in step 1) is passed, output the information contained in the node. 

4) For each node, work as far down the tree as possible keeping to the left hand side of the tree. 

5) Repeat the process moving to the next node to the right. 

6) Once all child nodes have been explored, move up one level and repeat the process. 

 

 

 

F 

B 

A D 

C E 

G 

H 

A 

B 

C 

E 

D G 

F 

I 

H 

H 

C 

E 



 

In Order Traversal 

In order traversal can only be used on binary trees and will output the contents of the binary tree in ascending 

order. The process follows these steps: 

1) The bottom of each node is marked. 

2) The process starts from the left and works around the tree.  

3) When a mark is reached, the details of the node are outputted. 

4) For each node, work as far down the tree as possible keeping to the left hand side of the tree. 

5) Repeat the process moving to the next node to the right. 

6) Once all child nodes have been explored, move up one level and repeat the process. 

 

Post Order Traversal 

Post order traversal is used to make an infix to RPN (Reverse Polish Notation) conversion or to make a 

postfix expression from an expression tree. 

 

Infix Notation 

People will most commonly use infix notation, where the operand is either side of the opcode, but this can 

cause confusion as to the order of operations when working with longer equations. 

 

For example, in the equation 9 + 1 9 and 1 are the operand whilst + is the opcode. For a simple equation like 

this, the order of operations is clear and the answer is 10. 

 

In a more complex equation, for example 4 + 6 / 2 4, 6 and 2 are the operand whilst + and / are the opcode. 

Following the mathematical BODMAS order of operations, we would process the division first then the 

addition, giving an answer of 6. 

 

However, we could instead add brackets to make the equation (4 + 6) / 2 which would instead give the answer 

of 5. 

 

Reverse Polish Notation (RPN) 

Reverse polish notation uses postfix notation to write expressions. In reverse Polish notation operators are 

placed after the operands on which they operate. This removes the need for brackets and any confusion over 

the order of operations.  

 

A postfix expression writes the opcode after the operand. When the opcode has both pieces of operand 

immediately proceeding it the operation proceeds. 

 

RPN can be executed on a stack, making it ideal for interpreters such as Bytecode or Postscript which are 

based on stacks. 

 

Infix Notation: 9 + 1  

Postfix Notation: 9 1 + 

Both the equations above give the answer 10. 

 

Infix Notation: 4 + 6 / 2 

Postfix Notation: 4 6 2 / + 

Both the equations above give the answer 6. 

 

Converting Infix to Postfix Notation 

The Dijkstra’s Shunting Yard algorithm uses a queue and a stack to convert expressions from Infix to Postfix 

notation. The example below shows how this works for the expression 2 + 4 x 8: 

1) Use the rules of BIDMAS to add brackets to the expression: (2 + (4 x 8) 

2) Move each infix operator to the very end of its set of brackets: (2 (4 8 x)+) 



 

3) Remove the brackets: 2 4 8 x + 

The key point is that the order of the operands must not change. 

 

Converting from Postfix to Infix Notation 

This process follows the reverse approach as shown in the below example based on the expression 2 4 8 x 

+ 

1) Work from left to right to find the first operator, move it one place to the left and place brackets around 

the resulting expression: 2 (4 x 8) + 

2) Working left to right, move all the remaining expressions one by one following the same steps: (2 + 

(4 x 8) 

  

Searching Algorithms 

Algorithms are sets of instructions to complete a given task within a finite time. Searching algorithms are 

designed to check whether a list contains a given item, and at what position in the list the item is.  

 

Linear Search 

Linear search is the most straightforward algorithm but has relatively high time complexity and so is rarely 

used. It has one loop, giving a time complexity of O(N). The algorithm can be used against any unordered 

list. 

 

The algorithm works by checking the first each item in the list one at a time against the target until either the 

target has been found or all items have been checked. 

 

When coding a linear search, it is best practice to use a Do Until loop rather than a For Next loop to improve 

efficiency. If the target was at the beginning of the array, a Do Until loop would quickly locate the target then 

exit, whilst a For Next loop would continue to search despite the target having been found. 

 

Binary Search 

The binary search algorithm can only be used on sorted lists. Unsorted lists must first be sorted using a 

sorting algorithm before using the binary search. 

 

The algorithm is more complex than a linear search, but has an improved time complexity of O(logN). It works 

by starting at the mid point of the list and following the steps below: 

1) The algorithm compares the target to the item in the middle of the list. 

a. If the target item is the midpoint, the item has been located and the algorithm terminates. 

b. If the target item is higher than the midpoint, the algorithm discards the first half of the list. 

c. If the target item is lower than the midpoint, the algorithm discards the second half of the list. 

2) The algorithm repeats the steps above, splitting the list in half each time until the target is found or no 

items remain. 

 

Binary Tree Search 

A binary tree search follows the same principals as the binary search but uses a binary tree. Once the list 

has been put into a tree, the tree is split following the same steps as above until the target is found. 

 

Sorting Algorithms 

Sorting algorithms are used to put the elements of an array in a specific order. This not only makes the list 

easier to read and work with, but also certain functions such as binary sort can only be completed against an 

ordered list.  

 

Bubble Sort  

The bubble sort algorithm works by swapping the position of adjacent items to place them in order. It is very 

inefficient with a time complexity of O(n2).  



 

 

A basic algorithm works through the steps below to sort data: 

1) Compare items 1 and 2.  

a. If the items are in the correct order no swaps are made. 

b. If the items are in the incorrect order they are swapped. 

2) Compare items 2 and 3. 

a. If the items are in the correct order no swaps are made. 

b. If the items are in the incorrect order they are swapped. 

3) The algorithm completes the steps above until the last item is reached. This is known as one pass 

having been made. 

4) The algorithm repeats the steps above to complete a second pass of the list. 

5) This process is repeated until a full pass has been completed without any swaps being made. 

 

As we can see from the steps above, the bubble sort algorithm is quite inefficient. In a well coded algorithm 

there will be an additional step to improve efficiency. At the end of the first pass, the last item in the list is 

guaranteed to be in the correct position and so it is locked and not checked on subsequent passes. At the 

end of the second pass, the second from last item is guaranteed to be in the correct place so it too is locked 

and not checked on subsequent passes. This reduces the number of items which need to be checked by 1 

each pass. 

 

Merge Sort 

A merge sort uses a ‘divide and conquer’ approach, splitting lists down into smaller lists to improve efficiency. 

It is therefore much quicker than the bubble sort with a time complexity if O(nlogn). 

 

The algorithm follows the steps below: 

1) The list is split into two halves as many times as is needed to result in each item being in its own list. 

For example, a list with 8 members would be split in 3 stages: 

a. First, split into 2 lists each with 4 members. 

b. Second, split into 4 lists each with 2 members. 

c. Lastly, split into 8 lists each with 1 member 

2) The algorithm compares lists 1 and 2, joining them in to a new list in the correct order. 

a. This is repeated for lists 3 and 4, 5 and 6, and 7 and 8. At this point, there are now 4 ordered 

lists, each having two members. 

3) The algorithm repeats the steps above, comparing the new lists until a single, ordered list is formed. 

 

The example below shows how the merge sort algorithm might work.  



 

 
Dijkstra’s Algorithm 

Dijkstra’s Algorithm is an optimisation algorithm. Optimisation algorithms are designed to find the best 

possible solution to a problem posed.  

 

Dijkstra’s Algorithm is used to find the shortest path between two nodes in a graph. It is similar to the breadth 

first search algorithm, however, it records the nodes it has visited with a priority queue rather than a standard 

queue. It is heavily used in applications such as satellite navigation systems or network routing where there 

is a need to find the shortest route.  

 

The cost of a path through the graph between two nodes is calculated by adding together the weights of all 

edges along that path. The shortest path is the path between two nodes with the minimum cost to travel 

between the start and end nodes. 

 

The algorithm produces a list which holds the label of each node, the cost of the shortest path from each 

node to the start node and the label of the previous node in the path. This list allows you to backtrack to the 

start and determine the shortest path through the graph.  

 

The algorithm uses the following steps to determine the shortest path once the start and end nodes are 

identified: 

1) Record the distance of each node directly connected to the start node. Any nodes not connected to 

the start node are given a distance of infinity. 

2) Mark the start note as fully explored. 

3) Choose the note with the shortest distance to the start node and update the table with the distance 

from the start to each node. Mark this node as fully explored. 

4) Repeat the step above for each node until all have been explored 

 

 

 

 


