理

Studying cells 1

Level: AQA A Level 7402
Subject: Biology
Exam Board: Suitable for all boards
Topic: Studying cells 1
Type: Mark Scheme

To be used by all students preparing for AQA A Level Biology 7402 foundation or higher tier but also suitable for students of other boards.

Mark schemes

1

(a) (Plasma / cell) membrane;

Reject: nuclear membrane
(b) Nucleus / nuclear envelope / nuclear membrane / nucleolus;

Accept: membrane-bound organelles only if an example has not been given

Mitochondrion;
(Smooth / rough) ER;
Lysosome;
Microvillus / brush border;
Neutral: villi
Golgi;
Linear / non-circular DNA / chromosome;
Neutral: DNA strands
80S / denser / heavier / larger ribosomes;
Neutral: ribosomes
(c) (i) Higher resolution / higher (maximum) magnification / higher detail (of image);

OR

Allows internal details / structures within (cells) to be seen / cross section to be taken;

Accept: 'better' instead of 'higher'
Neutral: shorter wavelength
Reject: longer wavelength
Reject: can be used on living specimens
Q Do not accept 'clearer' image
(ii) Thin sections do not need to be prepared / shows surface of specimen / can have 3-D images;

Accept: can be used on thick(er) specimens
Reject: can be used on living specimens
Neutral: refs. to staining / preparation / artefacts / colour

Me bur

(d) Two marks for correct answer of $0.42-0.46$;;

One mark for incorrect answers in which candidate clearly divides measured width by magnification;

Correct answer = 2 marks outright

Accept: 0.4 or 0.5 only if working is correct for 2 marks
Do not award a mark for 0.4 or 0.5 if there is no working out Ignore rounding up
(e) As height increases, the number of deaths decrease / inversely proportional / negative correlation;

Correct reference to increase / decrease at 14-30m;
Accept: converse statement
Must give a trend and not simply give individual points
Do not penalise for 'more likely to get cholera'
2 (a) Peptide;
Q Do not accept polypeptide
Neutral: covalent
(b) (F) $\mathrm{HJE}(\mathrm{K})$;

All three boxes correct $=2$ marks
Two boxes correct $=1$ mark
(c) (Site of aerobic) respiration;

Release ATP / energy for active transport / transport against the concentration gradient / protein synthesis / exocytosis;

Q Reject: anaerobic respiration
Q Reject: produces / makes energy
Accept: produces ATP for energy
Reject: produces ATP for respiration
Neutral: protein secretion
(d) (i) Breaks open cells / disrupts cell membrane / releases cell contents / releases organelles / break up cells;

Reject: breaks down cell wall
Neutral: separates the cells
Reject: breaks up cells so they can be separated
Reject: breaks up / separates organelles
(ii) Removes (cell) debris / complete cells / tissue;

Neutral: to isolate organelle G / mitochondria
Neutral: removes unwanted substances / impurities
Reject: removes organelles / cell walls
(iii) Reduces / prevents enzyme activity;

Reject: ref. to denaturation
(iv) Prevents osmosis / no (net) movement of water / water does not enter organelle / water does not leave organelle;

So organelle / named organelle is not damaged / does not burst / does not shrivel;

Neutral: ref. to water potential
Q Ref. to cells rather than organelles negates the second mark only
Reject: ref. to turgid / flaccid for second mark
Reject: organelle 'explodes' for second mark

3 (a) 1. Push hard - spread / squash tissue;
2. Not push sideways - avoid rolling cells together / breaking chromosomes.

Neutral - to see cells clearly
(b) $\quad \mathrm{No}$ (no mark)

Yes (no mark)

1. Chromosomes / chromatids are (in two groups) at poles of spindle / at ends of spindle;

Do not accept 'ends of cell'
2. V-shape shows that (sister) chromatids have been pulled apart at their centromeres / that centromeres of (sister) chromatids have been pulled apart.
(c) $28.8 / 29$.

If incorrect, allow:
$\frac{6}{200} \times 960=1$ mark
(a) (To diagnose AIDS, need to look for / at)

1. (AIDS-related) symptoms;
2. Number of helper T cells.

Neutral: 'only detects HIV antibodies' as given in the question stem
(b) 1. HIV antibody is not present;

Accept HIV antibodies will not bind (to antigen)
2. (So) second antibody / enzyme will not bind / is not present.
(c) 1. Children receive (HIV) antibodies from their mothers / maternal antibodies;
2. (So) solution will always turn blue / will always test positive (before 18 months).

Allow 1 mark for the suggestion that the child does not produce antibodies yet so test may be negative
(d) (Shows that)

1. Only the enzyme / nothing else is causing a colour change;
2. Washing is effective / all unbound antibody is washed away.
(a) (D)CBEA.
(b)

Step	Reason
(Taking cells from the root tip)	Region where mitosis / cell division occurs;
(Firmly squashing the root tip)	To allow light through / make tissue layer thin;

(d) 1. (DNA would) double / go to 2 (arbitrary units).
(a) 1. Add drop of water to (glass) slide;
2. Obtain thin section (of plant tissue) and place on slide / float on drop of water;
3. Stain with / add iodine in potassium iodide.
3. Allow any appropriate method that avoids trapping air bubbles
4. Lower cover slip using mounted needle.
(b) 1. W - chloroplast, photosynthesis;
2. \mathbf{Z} - nucleus, contains DNA / chromosomes / holds genetic information of cell.
(c) 1. High resolution;
2. Can see internal structure of organelles.
(d) Length of bar in $\mathrm{mm} \times 1000$.
(a) Stomata per mm^{2} or cm^{2}

OR
Number per mm^{2} or cm^{2};
Accept: mm^{-2} or cm^{-2}.
Reject: per μm^{2} or μm^{-2}.
Reject: the use of a solidus / as being equivalent to per.
lgnore: 'amount'.
(b) 1. Single/few layer(s) of cells;

Accept: more/too many/overlapping.
'Single layer' without reference to cells/tissue should not be credited.
2. So light can pass through;
(c) 1. Distribution may not be uniform

OR
So it is a representative sample;
Accept: more/fewer stomata in different areas.
Ignore: anomalies/random/bias.
2. To obtain a (reliable) mean;

Accept: 'average'.
(d) 1. Hairs so 'trap' water vapour and water potential gradient decreased;
2. Stomata in pits/grooves so 'trap' water vapour and water potential gradient decreased;
3. Thick (cuticle/waxy) layer so increases diffusion distance;
4. Waxy layer/cuticle so reduces evaporation/transpiration.
5. Rolled/folded/curled leaves so 'trap' water vapour and water potential gradient decreased;
6. Spines/needles so reduces surface area to volume ratio;

1, 2 and 5. Accept: humid/moist air as 'water vapour' but not water/moisture on its own.
1, 2 and 5. Accept: diffusion gradient as equivalent to water potential gradient.
1, 2 and 5. Accept: less exposed to air as an alternative to water potential gradient.
6. Accept: spines/needles so 'reduce area'.
(e) 1. Water used for support/turgidity;
2. Water used in photosynthesis;
3. Water used in hydrolysis;
4. Water produced during respiration;

8
(a) 1. Thin slice/section;
2. Put on slide in water / solution / stain;
3. Add cover slip;

Accept: 'between two slides'
Max 2
(b) $200(\mu \mathrm{~m}) ;$;

OR

1. Divide image length by key length eg $64 / 16=4$;
2. Multiply by 50 eg 4×50;

Accept for 2 marks answers in the range of 185-217 ($\mu \mathrm{m}$)
Max 1 mark for responses not within the range
Accept: measurements in the ranges $63-65 \mathrm{~mm}$ and $15-17 \mathrm{~mm}$
(c) 1. Select large number of cells / select cells at random;

Accept: > 3 for "large number"
Accept: many fields of view for 'large number of cells'
Accept: all cells in field of view
2. Count number of chloroplasts;
3. Divide number of chloroplasts by number of cells;

Ignore: 'calculate the mean'
(a) 1. Antigen stimulates immune response / activates B / T cells;
2. B / T cells divide OR antibodies produced;
3. Antibodies/T cells attack myelin sheaths;

Ignore references to antigen binding to myelin
(b) 1. Fewer cristae/smaller surface area (of cristae);
2. So less electron transport/oxidative phosphorylation;
3. (So) not enough ATP produced

OR

Not enough energy to keep neurones alive;

1. Accept 'inner membrane' as 'cristae'
2. Accept fewer ATP synthase enzymes
3. Accept lower rate of electron transfer/oxidative phosphorylation
4. Accept less use/stimulation of neurone leads to death of cell
5. Accept no/less ATP produced/no energy to keep neurones alive
6. Ignore references to glycolysis/ Krebs cycle
(c) (i) (Transmission) electron (microscope) - no mark

Need high resolution (to see structure of mitochondria)
Accept 'scanning electron microscope'/TEM/SEM
Accept - optical microscope not high enough resolution
(ii) 1. Took photographs/areas at random;
2. Counted total number (of normal) and number of unusual mitochondria;
3. Divided number of unusual mitochondria by total number and multiplied by 100;

1. Accept (very) large number of areas/photos/samples MP 3 = 2 marks (includes MP2)
(a)

Protein synthesis	$\mathrm{L} ;$
Modifies protein	$\mathbf{H} ;$
Aerobic respiration	$\mathbf{N} ;$

(b) 1800-2200;
1.8, 2.0 or 2.2 in working or answer $=1$ mark.

Ignore units in answer.
1 mark for an incorrect answer in which student clearly divides measured length by actual length (of scale).

Accept I/ A or I I O for 1 mark but ignore triangle.
Accept approx 60 mm divided by $30 \mu \mathrm{~m}$ for 1 mark
(a) Any five from:

1. Cell homogenisation to break open cells;
2. Accept suitable method of breaking open cells.
3. Filter to remove (large) debris / whole cells;
4. Reject removes cell walls.
5. Use isotonic solution to prevent damage to mitochondria / organelles;
6. Ignore to prevent damage to cells.
7. Keep cold to prevent / reduce damage by enzymes / use buffer to prevent protein / enzyme denaturation;
8. Centrifuge (at lower speed / 1000 g) to separate nuclei / cell fragments / heavy organelles;
9. Ignore incorrect numerical values.
10. Re-spin (supernatant / after nuclei / pellet removed) at higher speed to get mitochondria in pellet / at bottom.
11. Must have location

Reject ref to plant cell organelles only once
(b) Principles:

1. Electrons pass through / enter (thin) specimen;
2. Denser parts absorb more electrons;
3. (So) denser parts appear darker;
4. Electrons have short wavelength so give high resolution;

Principles:
Allow maximum of 3 marks

Limitations:
5. Cannot look at living material / Must be in a vacuum;
6. Specimen must be (very) thin;
7. Artefacts present;
8. Complex staining method / complex / long preparation time;
9. Image not in 3D / only 2D images produced.

Limitations:
Context of limitation must be clear, not simply explaining how TEM works
E.g "allows you to see organelles as a thin section is used" is not a limitation

Allow maximum of 3 marks
Ignore ref to colour

12 (a) 1. DNA replicated;
Reject: DNA replication in the wrong stage
2. (Involving) specific / accurate / complementary base-pairing;

Accept: semi conservative replication
3. (Ref to) two identical / sister chromatids;
4. Each chromatid / moves / is separated to (opposite) poles / ends of cell.

Reject: meiosis / homologous chromosomes / crossing over
Note: sister chromatids move to opposite poles / ends = 2 marks for mp 3 and mp 4
Reject: events in wrong phase / stage
(b) (i) 1. To allow (more) light through;

Accept: transparent
2. A single / few layer(s) of cells to be viewed.

Accept: (thin) for better / easier stain penetration
(ii) 1. More / faster mitosis / division near tip / at 0.2 mm ;

Neutral: references to largest mitotic index
2. (Almost) no mitosis / division at / after 1.6 mm from tip;

Accept: cell division for mitosis
Penalise once for references to meiosis
3. (So) roots grow by mitosis / adding new cells to the tip.

Accept: growth occurs at / near / just behind the tip (of the root)
Accept: converse arguments
(a) 1. Large / dense / heavy cells;
2. Form pellet / move to bottom of tube (when centrifuged);
3. Liquid / supernatant can be removed.

Must refer to whole cells.
(b) Break down cells / cell parts / toxins.

Idea of 'break down / digestion' needed, not just damage
(c) 1. To stop / reduce them being damaged / destroyed / killed;

Reject (to stop) bacteria being denatured.
2. By stomach acid.

Must be in context of stomach.
(d) 1. More cell damage when both present / A;
2. Some cell damage when either there on their own / some cell damage in B and C;

MP1 and MP2 - figures given from the graph are insufficient.
3. Standard deviation does not overlap for A with B and C so difference is real;

MP3 and MP4 both aspects needed to gain mark.
4. Standard deviations do overlap between B and C so no real difference.

MP3 and MP4 accept reference to significance / chance for 'real difference'
(e) 1. Enzyme (a protein) is broken down (so no enzyme activity);

Accept hydrolyse / digested for 'broken down'.
2. No toxin (as a result of protein-digesting enzyme activity);

Must be in the correct context.
3. (So) toxin is protein.

This must be stated, not inferred from use of 'protein-digesting enzyme'.

14 (a) 1. Fields of view randomly chosen;
2. Several fields of view;
3. All same species (of animal / hamster);

Reject general statements related to sample size. All mark points relate directly to information provided in Resource A.
Accept 'all (Mesocricetus) auratus'.
4. Same muscle / organ used / only diaphragm used;
5. Used at least 8 (animals) in each (age) group.
(b) (i) 15

Correct answer = 2 marks.
Allow 1 mark for showing
$69 \div 4.6$
OR
answer of 10 / 10.1 (correct calculation using fast in error.)
(ii) 1. (Calculation) used mean (number of capillaries);
2. Variation in number of capillaries per fibre.

Note: maximum of 1 mark for this question.
Ignore reference to an anomaly or calculation errors.
1 max
(c) (i) (Removing diaphragm means) animals / hamsters are killed.
(ii) 1. (Suggests) significant (difference) between young and adult; MP1, MP2, MP4 and MP5 can include use of figures but check figures are used correctly.
2. (Suggests) not significant (difference) between adult and old; Statements related to 'results being significant / not significant' do not meet the marking points. It is the difference that is significant or not. However, only penalise this error once.
3. For slow and fast fibres;

This MP can be given in the context of either MP1 or MP2 but only allow once. As well as this context there must be a reference to 'both' types of fibre.
4. (Suggests) significant (difference) between young and old for fast (fibres) OR
(Suggests) not significant (difference) between young and old for slow (fibres);
All aspects of either approach required to gain credit.
5. (Suggests) significant (difference) where means \pm SD do not overlap OR
(Suggests) not significant (difference) where means \pm SD overlap;
All aspects of either approach required to gain credit.
6. Stats test is required (to establish whether significant or not).

15 (a)

Statement	Starch	Cellulose	Glycogen
Found in plant cells	\checkmark	\checkmark	
Contains glycosidic bonds	\checkmark	\checkmark	\checkmark
Contains β-glucose		\checkmark	

One mark for each correct row
(b) Hydrolysis;

Accept: if phonetically correct
Do not accept: 'hydration'
(c) 1. Coiled / helical / spiral;

Feature = one mark
Explanation = one mark
Note: these are independent marking points
These must be related for both marks but can be in reverse order
2. (So) compact / tightly packed / can fit (lots) into a small space;
3. Insoluble;
4. (So) no osmotic effect / does not leave cell / does not affect water potential; Accept: prevents osmosis
5. Large molecule / long chain;
6. (So) does not leave cell / contains large number of glucose units;
4. and 6. Accept: can't cross membranes
7. Branched chains;
8. (So) easy to remove glucose;
(d) Two marks for correct answer of 479-521;

Accept: measured and actual lengths in different but correct units for 1 mark

One mark for incorrect answers in which candidate clearly divides measured length by actual length;

The actual range is 23-25mm, If they just divide this by 48 they gain 1 mark
Just writing the formula is insufficient, numbers must be used
(a) (i) Golgi (apparatus / body);
(ii) 1. Nucleus;

Accept: nucleolus / nuclear envelope / nuclear membranes
2. Mitochondrion;

Accept cristae / mitochondrial membranes
3. Endoplasmic reticulum / ER;

Ignore reference to rough / smooth
4. Lysosome;

Reject lysozyme
(b) (Aerobic) respiration / ATP production / provide energy;

Accept Krebs cycle / electron transport.
Ignore 'produces energy'
Reject anaerobic respiration
Ignore what energy is used for
(c) 1. High / better resolution;
2. Shorter wavelength;
3. To see internal structures / organelles / named organelles;

Accept ultrastructure

17 (a) B Golgi (body / apparatus);
C Mitochondria / mitochondrion;
(b) 1. Chloroplasts / plastids
2. Cell wall
3. Cell vacuole
4. Starch grains / amyloplasts;

Any 2 for $\mathbf{1}$ mark
(c) 1. Ice-cold - Slows / stops enzyme activity to prevent digestion of organelles / mitochondria;
2. Buffered - Maintains pH so that enzymes / proteins are not denatured;

Reject reference to cells
3. Same water potential - Prevents osmosis so no lysis / shrinkage of organelles /
mitochondria / C;
lgnore damage
For each mark must link reason to relevant property
(d) 1. Break open cells / homogenise / produce homogenate;
2. Remove unbroken cells / larger debris;
(e) Nucleus / nuclei;
(f) Mitochondria / organelle C less dense than nucleus / organelle in first pellet;

Accept 'lighter' for less dense

18 (a) 1. How to break open cells and remove debris;
2. Solution is cold / isotonic / buffered;
3. Second pellet is chloroplast.
(b) 1. A stroma;
2. B granum.

Accept thylakoid
(c) $\quad\left(\frac{\text { length of chloroplast }}{\text { length of bar }}\right) \mu \mathrm{m}$
(d) Two of the following for one mark:

Mitochondrion / ribosome / endoplasmic reticulum / lysosome / cell-surface membrane.

