

Nucleic acids 1

Level: AQA A Level 7402 Subject: Biology Exam Board: Suitable for all boards Topic: Nucleic acids 1 Type: Mark Scheme

To be used by all students preparing for AQA A Level Biology 7402 foundation or higher tier but also suitable for students of other boards.

Mark schemes

(a)

(b)

1

2

Box around single nucleotide.

DNA	Percentage of each base				
strand	Α	С	G	т	
Strand 1	(16)	34	21	29	
Strand 2	29	(21)	(34)	16	

2 rows correct = 2 marks;

1 row correct = 1 mark.

2

4

max 2

1

2

1

1

3

2

[7]

1

- (c) 1. Reference to DNA polymerase;
 - 2. (Which is) specific;
 - 3. Only complementary with / binds to 5' end (of strand);
 - Reject hydrogen bonds / base pairing
 - 4. Shapes of 5' end and 3' end are different / description of how different.
- (a) Presence of resistant and non-resistant varieties / mutation produces resistant variety; Resistant ones survive / non-resistant ones killed by treatment; These will reproduce and produce more resistant parasites / pass on resistance allele;
 3
 - (b) Likelihood of being infected (by strain resistant to both drugs) is less;
 1/500 × 1/500/1/250 000;
 Drug has longer effective life;
 - (c) (i) As comparison / to show that nothing else in the treatment was responsible;
 - (ii) Given injections of saline / injection without SPf66;
 (otherwise) treated the same as experimental group;
 - (d) (i) 100%;
 (ii) 10%;
 (e) (i) Different lengths of DNA have different base sequences / cut at specific sequence; Results in different shape / different shape of active site;

Therefore (specific sequence) will only fit active site of enzyme;

(ii) Recognition sites contain only AT pairs; Which would occur very frequently;

Essay Using DNA in science and technology

DNA and classification

- 2.2 Structure of DNA
- 2.3 Differences in DNA lead to genetic diversity
- 2.9 Comparison of DNA base sequences

Genetic engineering and making useful substances

- 2.5 Plasmids
- 5.8 The use of recombinant DNA to produce transformed organisms that benefit humans

Other uses of DNA

- 2.5 Cell cycle and treatment of cancer
- 5.8 Gene therapy;

Medical diagnosis and the treatment of human disease;

The use of DNA probes to screen patients for clinically important genes.

- (a) 1. Separates / unwinds / unzips strands / helix / breaks H-bonds;
 - 1. Q Neutral: strands / helix split
 - 1. Accept: unzips bases
 - 2. (So) nucleotides can attach / are attracted / strands can act as templates;
 - 2. Q Neutral: bases can attach
 - 2. Neutral: helix can act as a template

(b)

Sample	Type(s) of DNA molecule present in each tube			
	¹⁵ N/ ¹⁵ N	¹⁵ N/ ¹⁴ N	¹⁴ N/ ¹⁴ N	
1	~			
2		\checkmark		
3		~	~	

One mark for each correct row

2

4

(c)	(i)	 Similar shape / structure (to cytosine) / added instead of cytosine / binds to guanine; Accept: idea that <u>only</u> one group is different Reject: same shape 	
		 Prevents (complementary) base pairing / prevents H-bonds forming / prevents formation of new strand / prevents strand elongation / inhibits / binds to (DNA) polymerase; Accept: prevents cytosine binding 	
		Neutral: 'prevents DNA replication' as given in the question stem Neutral: 'competitive inhibitor' unqualified	
		Neutral: inhibits DNA helicase	
	(ii)	(Cancer cells / DNA) divide / replicate fast(er) / uncontrollably;	2
	()	Accept: converse argument for healthy cells	
			1
(a)	1.	Strands separate / H-bonds break; 1. Q Neutral: strands split 1. Accept: strands unzip	
	2.	DNA helicase (involved);	
	3.	Both strands / each strand act(s) as (a) template(s);	
	4.	(Free) nucleotides attach; <i>4. Neutral: bases attach</i> <i>4. Accept: nucleotides attracted</i>	
	5.	Complementary / specific base pairing / AT and GC;	
	6.	DNA polymerase joins nucleotides (on new strand); 6. Reject: if wrong function of DNA polymerase	
	7.	H-bonds reform;	
	8.	Semi-conservative replication / new DNA molecules contain one old strand and one new strand;	
		8. Reject: if wrong context e.g. new DNA molecules contain half of each original strand	6 max
(b)	(i)	18;	
		Do not accept 17.5	1
	(ii)	10;	

5

[8]

	「百	1
	┎╷╝	
EXAM P	APERS P	RACTICE

	(iii)	1.	Horizontal until 18 minutes; Allow + / - one small box		
		2.	(Then) decreases as straight line to 0 μm at 28 minutes; 2. Allow lines that start from the wrong place, ending at 0 at 28 minutes	2	
(c)	(i)	Two	marks for correct answer of 19.68 or 19.7;; Accept 19hrs 41mins		
		One	mark for incorrect answers in which candidate clearly multiplies by 0.82; Allow one mark for incorrect answers that clearly show 82% of 24 (hours)		
			(nours)	2	
	(ii)	1.	No visible chromosomes / chromatids / visible nucleus;	1	
	(iii)	D (no	o mark)		
		1.	Low <u>er</u> % (of cells) in interphase / high <u>er</u> % (of cells) in mitosis / named stage of mitosis;		
			1. Accept: 'less' or 'more' instead of '%'		
			1. Do not accept: higher % (of cells) in each / all stage(s)		
		2.	(So) more cells dividing / cells are dividing quicker;		
			2. Accept: uncontrolled cell division		
			2. Do not award if Tissue C is chosen	2	
					[15]
(a)	nucle	eotide	• ,	1	
(b)	(i)	21.4,	, 21.4; 28.6;		
				2	
	(ii)		unts of A and T / C and G / complementary bases different;		
		there	efore no base-pairing;	2 max	[5]
(a)	(i)	subs	tances / molecules have more (kinetic) energy / moving faster;		
(a)	(1)	3003	(reject vibrate)		
		incre	eased collisions / enzyme substrate complexes formed;	2	
	<i>/</i>			4	
	(ii)		es denaturation / tertiary structure / shape change / H ⁺ / ionic bonds break; pe) of <u>active site</u> changed;		
			trate no longer binds / not complementary to (active site);	-	
				3	

all substrate changed into product / reaction is complete; (b) same amount of product formed as same initial substrate concentration;

[7]

2

(a) 1. Sugar-phosphate (backbone) / double stranded / helix so provides strength / stability / protects bases / protects hydrogen bonds; Must be a direct link / obvious to get the mark

Neutral: reference to histones

- 2. Long / large molecule **so** can store lots of information;
- 3. Helix / coiled so compact; Accept: can store in a small amount of space for 'compact'
- 4. Base sequence allows information to be stored / base sequence codes for amino acids / protein;

Accept: base sequence allows transcription

- 5. Double stranded **so** replication can occur semi-conservatively / strands can act as templates / complementary base pairing / A-T and G-C so accurate replication / identical copies can be made;
- 6. (Weak) hydrogen bonds for replication / unzipping / strand separation / many hydrogen bonds so stable / strong; Accept: 'H-bonds' for 'hydrogen bonds'
- (b) 1. (Mutation) in E produces highest risk / 1.78;
 - 2. (Mutation) in **D** produces next highest risk / 1.45;
 - 3. (Mutation) in C produces least risk / 1.30;

Must be stated directly and not implied

E > **D** > **C** = 3 marks Accept: values of 0.78, 0.45 and 0.30 for MP1, MP2 and MP3 respectively If no mark is awarded, a principle mark can be given for the idea that all mutant alleles increase the risk

180; (c)

8

3

(d) (Similarities):

- 1. Same / similar pattern / both decrease, stay the same then increase;
- 2. Number of cells stays the same for same length of time; Ignore: wrong days stated

(Differences):

(Per unit volume of blood)

3. Greater / faster decrease in number of healthy cells / more healthy cells killed / healthy cells killed faster;

Accept: converse for cancer cells Accept: greater <u>percentage</u> decrease in number of cancer cells / greater <u>proportion</u> of cancer cells killed

4. Greater / faster increase in number of healthy cells / more healthy cells replaced / divide / healthy cells replaced / divide faster;

Accept: converse for cancer cells For **differences**, statements made must be comparative

- (e) 1. More / too many healthy cells killed;
 - 2. (So) will take time to replace / increase in number; Neutral: will take time to 'repair'
 - 3. Person may die / have side effects;

2 max

3 max

- 9
- (a) 1 two strands therefore semi-conservative replication (possible);
 - 2 base pairing / hydrogen bonds holds strands together
 - 3 hydrogen bonds weak / easily broken, allow strands to separate;
 - 4 bases (sequence) (exposed so) act as template / can be copied;
 - 5 A with T, C with G / complementary copy;
 - 6 DNA one parent and one new strand;

4 max

- (b) 1 chromosomes shorten / thicken / supercoiling;
 - 2 chromosomes (each) two <u>identical</u> chromatids / strands / copies (due to replication);
 - 3 chromosomes / chromatids move to equator / middle of the spindle / cell;
 - 4 attach to individual spindle fibres;
 - 5 spindle fibres contract / centromeres divide / repel;
 - 6 (sister) chromatids / chromosomes (separate) move to opposite poles / ends of the spindle;
 - 7 each pole / end receives all genetic information / identical copies of each chromosome;
 - 8 nuclear envelope forms around each group of chromosomes / chromatids / at each pole;

(c) cancer cells killed, normal body cells survive;
 cancer cells low oxygen (as blood supply cannot satisfy demand);

[13]

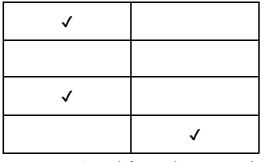
[7]

10	(a)	(i)	base / named bases; reject nucleotide or uracil	1
		(ii)	it has been produced by semi-conservative replication / one old strand and one new; One strand has ¹⁵ N bases and the other ¹⁴ N; <i>Accept light / heavy N (therefore) it is less dense / lighter;</i>	
			Accept light / heavy w (therefore) it is less dense / lighter,	2
		(iii)	one band is in same position as generation 1; one band higher;	
			accept a line. N.B. need a visible gap	2
	(b)	(i)	A = 31 and JT = 31; C = 19;	2
		(ii)	viral DNA single-stranded / not double-stranded; evidence from table e.g. not equal amount of A and T / C and G / all different;	
			ignore no base-pairing In this Question assume It' means viral DNA	2 [9]
11	(a)	(i)	(Molecule) made up of many identical / similar molecules / monomers / subunits; Not necessary to refer to similarity with monomers.	
		(ii)	Cellulose / glycogen / nucleic acid / DNA / RNA;	1
				1
	(b)	(i)	To keep pH constant; A change in pH will slow the rate of the reaction / denature the amylase / optimum for reaction;	2
		(ii)	Purple / lilac / mauve / violet; <i>Do not allow blue or pink</i> .	2
				1
		(iii)	Protein present / the enzyme / amylase is a protein; Not used up in the reaction / still present at the end of the reaction;	
				2

	┍╷╝	
EXAM P	APERS PI	RACTICE

- (a) 1. Degenerate: more than one (base) triplet for each amino acid;
 - 2. Non-overlapping: each base is part of only one triplet. Accept codon (as would be applicable to mRNA code)
 - (b) A = adenine
 - C = cytosine
 - G = guanine
 - U = uracil

All four correct = 2 One error = 1 Two or more errors = 0


(c) <u>AGT</u>;

× 20 000		
	Accept range from 18 000 to 22 000	

(b)

(a)

13

1 mark for each correct column

- (c) 1. DNA contains thymine **and** RNA contains uracil;
 - 2. DNA contains deoxyribose and RNA contains ribose.

14

(a) Deoxyribose.

- (b) 1. Thymine 18 (%);2. Guanine 32 (%).
- (c) DNA polymerase.

[5]

2 max

1

1

2

2

1

2

1

[5]

1. (Figure 1 shows) DNA has antiparallel strands / described;

(d)

		 (Figure 1 shows) shape of the nucleotides is different / nucleotides aligned differently; 		
		3. Enzymes have active sites with specific shape;		
		4. Only substrates with complementary shape / only the 3' end can bind with active site of enzyme / active site of DNA polymerase.		
			4	
				[8]
15	(a)	1. Outside of virus has antigens / proteins;		
15		 With complementary shape to receptor / protein in membrane of cells; (Receptor / protein) found only on membrane of nerve cells. 		
		Accept converse argument		
			3	
	(b)	1. No more (nerve) cells infected / no more cold sores form;		
	()	 (Because) virus is not replicating. 		
			2	
	(c)	Prevents replication of virus.		
	(c)	rievents replication of virus.	1	
	(d)	MicroRNA binds to cell's mRNA (no mark)		
		1. (Binds) by specific base pairing;		
		2. (So) prevents mRNA being read by ribosomes;		
		 (So) prevents translation / production of proteins; (Destaine) that as use a self sheath 		
		4. (Proteins) that cause cell death.	4	
			4	[10]