
**GCSE
COMBINED SCIENCE: TRILOGY
8464/C/1H**

Chemistry Paper 1H

Mark scheme

June 2025

Version: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

No student should be disadvantaged on the basis of their gender identity and/or how they refer to the gender identity of others in their exam responses.

A consistent use of 'they/them' as a singular and pronouns beyond 'she/her' or 'he/him' will be credited in exam responses in line with existing mark scheme criteria.

Further copies of this mark scheme are available from [aqa.org.uk](https://www.aqa.org.uk)

Copyright information

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Copyright © 2025 AQA and its licensors. All rights reserved.

Information to Examiners

1. General

The mark scheme for each question shows:

- the marks available for each part of the question
- the total marks available for the question
- the typical answer or answers which are expected
- extra information to help the examiner make their judgement
- the Assessment Objectives and specification content that each question is intended to cover.

The extra information is aligned to the appropriate answer in the left-hand part of the mark scheme and should only be applied to that item in the mark scheme.

At the beginning of a part of a question a reminder may be given, for example: where consequential marking needs to be considered in a calculation; or the answer may be on the diagram or at a different place on the script.

In general the right-hand side of the mark scheme is there to provide those extra details which confuse the main part of the mark scheme yet may be helpful in ensuring that marking is straightforward and consistent (for example, a scientifically correct answer that could not reasonably be expected from a student's knowledge of the specification).

2. Emboldening and underlining

- 2.1 In a list of acceptable answers where more than one mark is available 'any **two** from' is used, with the number of marks emboldened. Each of the following bullet points is a potential mark.
- 2.2 A bold **and** is used to indicate that both parts of the answer are required to award the mark.
- 2.3 Alternative answers acceptable for a mark are indicated by the use of **or**.
Alternative words in the mark scheme are shown by a solidus eg allow smooth / free movement.
- 2.4 Any wording that is underlined is essential for the marking point to be awarded.

3. Marking points

3.1 Marking of lists

This applies to questions requiring a set number of responses, but for which students have provided extra responses. The general principle to be followed in such a situation is that 'right + wrong = wrong'.

Each error / contradiction negates each correct response. So, if the number of errors / contradictions equals or exceeds the number of marks available for the question, no marks can be awarded.

However, responses considered to be neutral (indicated as * in example 1) are not penalised.

Example 1: What is the pH of an acidic solution?

[1 mark]

Student	Response	Marks awarded
1	green, 5	0
2	red*, 5	1
3	red*, 8	0

Example 2: Name **two** magnetic materials.

[2 marks]

Student	Response	Marks awarded
1	iron, steel, tin	1
2	cobalt, nickel, nail*	2

3.2 Use of symbols / formulae

If a student writes a chemical symbol / formula instead of a required chemical name, or uses symbols to denote quantities in a physics equation, full credit can be given if the symbol / formula is correct and if, in the context of the question, such action is appropriate.

3.3 Marking procedure for calculations

Marks should be awarded for each stage of the calculation completed correctly, as students are instructed to show their working. At any point in a calculation students may omit steps from their working. If a subsequent step is given correctly, the relevant marks may be awarded.

Full marks should be awarded for a correct numerical answer, without any working shown. Full marks are **not** awarded for a correct final answer from incorrect working.

3.4 Interpretation of 'it'

Answers using the word 'it' should be given credit only if it is clear that the 'it' refers to the correct subject.

3.5 Errors carried forward

An error can be carried forward from one question part to the next and is shown by the abbreviation 'ecf'.

Within an individual question part, an incorrect value in one step of a calculation does not prevent all of the subsequent marks being awarded.

3.6 Phonetic spelling

Marks should be awarded if spelling is not correct but the intention is clear, **unless** there is a possible confusion with another technical term.

3.7 Brackets

(....) are used to indicate information which is not essential for the mark to be awarded but is included to help the examiner identify the sense of the answer required.

3.8 Allow

In the mark scheme additional information, 'allow' is used to indicate creditworthy alternative answers.

3.9 Ignore

Ignore is used when the information given is irrelevant to the question or not enough to gain the marking point. Any further correct amplification could gain the marking point.

3.10 Do not accept

Do **not** accept means that this is a wrong answer which, even if the correct answer is given as well, will still mean that the mark is not awarded.

3.11 Numbered answer lines

Numbered lines on the question paper are intended to support the student to give the correct number of responses. The answer should still be marked as a whole.

4. Level of response marking instructions

Extended response questions are marked on level of response mark schemes.

- Level of response mark schemes are broken down into levels, each of which has a descriptor.
- The descriptor for the level shows the average performance for the level.
- There are two marks in each level.

Before you apply the mark scheme to a student's answer, read through the answer and, if necessary, annotate it (as instructed) to show the qualities that are being looked for. You can then apply the mark scheme.

Step 1: Determine a level

Start at the lowest level of the mark scheme and use it as a ladder to see whether the answer meets the descriptor for that level.

The descriptor for the level indicates the different qualities that might be seen in the student's answer for that level. If it meets the lowest level then go to the next one and decide if it meets this level, and so on, until you have a match between the level descriptor and the answer. With practice and familiarity you will find that for better answers you will be able to quickly skip through the lower levels of the mark scheme.

When assigning a level you should look at the overall quality of the answer. Do **not** look to penalise small and specific parts of the answer where the student has not performed quite as well as the rest. If the answer covers different aspects of different levels of the mark scheme you should use a best fit approach for defining the level.

Use the variability of the response to help decide the mark within the level, ie if the response is predominantly level 2 with a small amount of level 3 material it would be placed in level 2 but be awarded a mark near the top of the level because of the level 3 content.

Step 2: Determine a mark

Once you have assigned a level you need to decide on the mark. The descriptors on how to allocate marks can help with this. The exemplar materials used during standardisation will help. There will be an answer in the standardising materials which will correspond with each level of the mark scheme. This answer will have been awarded a mark by the Lead Examiner. You can compare the student's answer with the example to determine if it is the same standard, better or worse than the example. You can then use this to allocate a mark for the answer based on the Lead Examiner's mark on the example.

You may well need to read back through the answer as you apply the mark scheme to clarify points and assure yourself that the level and the mark are appropriate.

Indicative content in the mark scheme is provided as a guide for examiners. It is not intended to be exhaustive and you must credit other valid points. Students do **not** have to cover all of the points mentioned in the indicative content to reach the highest level of the mark scheme.

You should ignore any irrelevant points made. However, full marks can be awarded only if there are no incorrect statements that contradict a correct response.

An answer which contains nothing of relevance to the question must be awarded no marks.

Question 1

Question	Answers	Extra information	Mark	AO / Spec. Ref.
01.1	<p>any one from:</p> <ul style="list-style-type: none"> do experiment in a fume cupboard do experiment in a well-ventilated laboratory / room 	<p>ignore references to safety glasses or gloves</p> <p>allow use an extractor fan</p> <p>allow descriptions of well-ventilated such as open windows</p> <p>allow use a <u>gas</u> mask</p>	1	AO3 5.4.3.4 RPA9

Question	Answers	Extra information	Mark	AO / Spec. Ref.
01.2	<p>all 6 points plotted correctly</p> <p>line of best fit</p>	<p>allow a tolerance of $\pm \frac{1}{2}$ a small square</p> <p>allow 1 mark for 4 or 5 points plotted correctly</p>	2 1	AO2 5.4.3.4 RPA9

Question	Answers	Extra information	Mark	AO / Spec. Ref.
01.3	<p>any one from:</p> <ul style="list-style-type: none"> the increase in mass (for successive 60 second intervals) decreases after 300 seconds the mass remains constant 	<p>allow evidence of two correctly determined changes in mass (for 60 second intervals) from Table 1</p> <p>allow the difference in mass (every 60 seconds) is not the same</p>	1	AO3 5.4.3.1 5.4.3.4 RPA9

Question	Answers	Extra information	Mark	AO / Spec. Ref.
01.4	<p>(volume conversion $25 \text{ cm}^3 =$ $0.025 \text{ (dm}^3\text{)}$)</p> <p>(concentration =) $\frac{5.5}{0.025}$ $= 220 \text{ (g/dm}^3\text{)}$</p> <p>OR</p> <p>(concentration =) $\frac{5.5}{25} \text{ (1)}$ $= 0.22 \text{ (g/cm}^3\text{)} \text{ (1)}$</p> <p>(conversion = 0.22×1000) $= 220 \text{ (g/dm}^3\text{)} \text{ (1)}$</p> <p>OR</p> <p>(ratio of volume $\frac{1000}{25} =$) 40 (1)</p> <p>(so ratio of mass =) $40 \times 5.5 \text{ (1)}$</p> <p>$= 220 \text{ (g/dm}^3\text{)} \text{ (1)}$</p>	<p>allow correct use of an incorrect / no conversion of volume</p>	1 1 1	AO2 5.3.2.5

Question	Answers	Extra information	Mark	AO / Spec. Ref.
01.5	hydrogen is less reactive than potassium		1	AO2 5.4.3.4 RPA9

Total Question 1	9
-------------------------	----------

Question 2

Question	Answers	Extra information	Mark	AO / Spec. Ref.
02.1	(a reaction) which transfers energy to the surroundings	allow heat for energy allow (a reaction) which releases energy (to the surroundings)	1	AO1 5.5.1.1

Question	Answers	Extra information	Mark	AO / Spec. Ref.
02.2	(mass of oxygen = $2 \times 16 =$) 32 (percentage =) $\frac{32}{74} \times 100$ = 43.2 (%)	allow correct use of an incorrectly determined mass of oxygen allow 43.2432 (%) correctly rounded to at least 2 significant figures	1 1 1	AO2 5.3.1.2

Question	Answers	Mark	AO / Spec. Ref.
02.3	Level 3: The method would lead to the production of a valid outcome. All key steps are identified and logically sequenced.	5–6	AO1 5.5.1.1 RPA10
	Level 2: The method would not necessarily lead to a valid outcome. Most steps are identified, but the method is not fully logically sequenced.	3–4	
	Level 1: The method would not lead to a valid outcome. Some relevant steps are identified, but links are not made clear.	1–2	
	No relevant content	0	
	<p>Indicative content</p> <ul style="list-style-type: none"> • measure volume of water <ul style="list-style-type: none"> ○ using a measuring cylinder ○ pour into a suitable container eg insulated cup • measure initial temperature of water <ul style="list-style-type: none"> ○ using a thermometer • add known mass of calcium oxide <ul style="list-style-type: none"> ○ measured with a balance ○ stir • measure the highest temperature reached by the mixture <p style="text-align: center;">or</p> measure temperature reached after set time period <ul style="list-style-type: none"> ○ determine the temperature change • repeat with different masses of calcium oxide <p style="text-align: center;">or</p> add successive masses to the same mixture • use the same volume of water <ul style="list-style-type: none"> ○ use the same initial temperature of water <p>for Level 3 all key steps should be described and the control variable the same volume of water must be given</p>		

Question 3

Question	Answers	Extra information	Mark	AO / Spec. Ref.
03.1	atoms have a charged nucleus the mass of an atom is concentrated in the nucleus		1 1	AO1 5.1.1.3

Question	Answers	Extra information	Mark	AO / Spec. Ref.
03.2	(particle X) has more electrons than protons	allow (particle X) has a different number of protons and electrons allow because atoms have the same number of protons and electrons do not accept (particle X) has a different number of neutrons	1	AO3 5.1.1.4

Question	Answers	Extra information	Mark	AO / Spec. Ref.
03.3	$^{79}_{35}\text{Br}^-$		1	AO2 5.1.1.5

Question	Answers	Extra information	Mark	AO / Spec. Ref.
03.4	<p>(going down the group) molecules increase in size</p> <p>(so the) forces between the molecules increase or (so the) intermolecular forces increase</p> <p>(so) more energy is needed to break the intermolecular forces</p>	<p>allow (going down the group) atoms increase in size</p> <p>allow (so) more energy is needed to separate the molecules</p>	1 1 1	AO1 5.1.2.6 5.2.2.4

Question	Answers	Extra information	Mark	AO / Spec. Ref.
03.5	covalent	ignore intermolecular forces	1	AO1 5.1.2.6 5.2.1.1

Question	Answers	Mark	AO / Spec. Ref.
03.6	<p>chlorine + sodium bromide → bromine + sodium chloride</p> <p>allow Br₂ for bromine allow NaCl for sodium chloride</p>	1	AO2 5.1.2.6

Question	Answers	Extra information	Mark	AO / Spec. Ref.
03.7	<p>(going down the group the) the outer shell / electrons become further from the nucleus</p> <p>(so) there is less (electrostatic) attraction between the nucleus and the outer electron(s)</p> <p>(so) gaining an electron is more difficult</p>	<p>allow energy level for shell</p> <p>allow the atoms become larger</p> <p>allow the atoms have more shells</p> <p>allow (so) there is more shielding between the outer electron(s) and the nucleus</p>	1 1 1	AO1 5.1.2.6

Total Question 3

12

Question 4

Question	Answers	Extra information	Mark	AO / Spec. Ref.
04.1	iron is less reactive than carbon		1	AO1 5.4.1.3

Question	Answers	Extra information	Mark	AO / Spec. Ref.
04.2	the mixture has a lower melting point (than aluminium oxide) (so) less energy is used (to melt the electrolyte)		1 1	AO1 5.4.3.3

Question	Answers	Extra information	Mark	AO / Spec. Ref.
04.3	$2 \text{O}^{2-} \rightarrow \text{O}_2 + 4 \text{e}^-$	allow multiples allow 1 mark for $\text{O}^{2-} \rightarrow \text{O}_2 + \text{e}^-$ with no / incorrect balancing numbers	2	AO2 5.4.3.3 5.4.3.5

Question	Answers	Extra information	Mark	AO / Spec. Ref.
04.4	Cr_2O_3 or chromium oxide	allow Cr^{3+} ions	1	AO2 5.4.1.3

Question	Answers	Extra information	Mark	AO / Spec. Ref.
04.5	extracting aluminium uses more energy (so costs more)		1	AO3 5.4.1.3 5.4.3.3

Question	Answers	Extra information	Mark	AO / Spec. Ref.
04.6	(extracting chromium costs more because) aluminium is used in the extraction of chromium		1	AO3 5.4.1.3 5.4.3.3

Question	Answers	Extra information	Mark	AO / Spec. Ref.
04.7	alloys contain different sized atoms (so the) layers are distorted (so the) layers (of atoms) slide less easily	allow alloys contain different sized (positive) ions allow (so the) atoms cannot slide over each other	1 1 1	AO1 5.2.2.7

Total Question 4	11
-------------------------	-----------

Question 5

Question	Answers	Extra information	Mark	AO / Spec. Ref.
05.1	(hydrogen chloride) g / (g) and (water) l / (l) and (hydrochloric acid) aq / (aq)		1	AO2 5.2.2.2

Question	Answers	Extra information	Mark	AO / Spec. Ref.
05.2	3.16×10^{-4} (mol/dm ³)		1	AO2 5.4.2.5

Question	Answers	Extra information	Mark	AO / Spec. Ref.
05.3	<p>1 pair of electrons in both overlaps</p> <p>4 non-bonding electrons on oxygen atom and 6 non-bonding electrons on chlorine atom</p>	<p>allow any combination of x, O, e⁽⁻⁾, ● for electrons</p> <p>do not accept non-bonding electrons on hydrogen</p> <p>an answer of</p> <p>scores 2 marks</p>	1 1	AO2 5.2.1.1 5.2.1.4

Question	Answers	Extra information	Mark	AO / Spec. Ref.
05.4	a weak acid partially ionises in an aqueous solution (so) produces a lower concentration of hydrogen ions		1 1	AO1 5.4.2.4 5.4.2.5

Question	Answers	Extra information	Mark	AO / Spec. Ref.
05.5	(bonds broken = $(4 \times 413) + 243$ =) 1895 (bonds made = $(3 \times 413) + 346 + 432 =$) 2017 (energy change = 1895 – 2017 =) (–) 122 (kJ/mol) alternative approach (bonds broken = $413 + 243 =$ 656 (1) (bonds made = $346 + 432 =$ 778 (1) (energy change = $656 - 778 =$ (–) 122 (kJ/mol) (1)	allow correct use of an incorrectly determined value for bonds broken and / or bonds made allow correct use of an incorrectly determined value for bonds broken and / or bonds made	1 1 1	AO2 5.5.1.3

Total Question 5

9

Question 6

Question	Answers	Extra information	Mark	AO / Spec. Ref.
06.1	a Bunsen burner reaches a higher temperature	allow a water bath will not reach a high enough temperature	1	AO3 5.3.1.3

Question	Answers	Extra information	Mark	AO / Spec. Ref.
06.2	<p>(magnesium) (contents of crucible) increase in mass (from 0.24 to 0.38 g)</p> <p>(because magnesium) gains oxygen</p> <p>(magnesium carbonate) (contents of crucible) decrease in mass (from 0.84 to 0.44 g)</p> <p>(because) carbon dioxide is released</p>	<p>allow a value in the range 0.38 to 0.39 for 0.38</p> <p>1</p> <p>allow a value in the range 0.44 to 0.45 for 0.44</p> <p>1</p> <p>allow (because) carbon dioxide gas is produced</p> <p>1</p>	1	AO2 AO3 AO2 AO3 5.3.1.3

Question	Answers	Extra information	Mark	AO / Spec. Ref.
06.3	both reactions produce 0.01 mol of magnesium oxide		1	AO3 5.3.1.3

Question	Answers	Extra information	Mark	AO / Spec. Ref.
06.4	(if solid escaped) the final mass would be lower for the actual results than for the predicted results	<p>allow (solid cannot have escaped because) same mass of solid product formed</p> <p>allow (solid cannot have escaped because) both form 0.4 g of solid</p> <p>allow (solid cannot have escaped because) the final mass of the contents (of the crucible) are the same</p>	1	AO3 5.3.1.3

Question	Answers	Extra information	Mark	AO / Spec. Ref.
06.5	(ratio Fe : H ₂ O) 3:4 (formula) Fe ₃ O ₄ 3 Fe + 4 H ₂ O → Fe ₃ O ₄ + 4 H ₂	 allow formula correctly determined from incorrect ratio allow multiples allow correct use of an incorrectly determined formula for iron oxide allow 1 mark for Fe, H ₂ O, Fe ₃ O ₄ and H ₂ or allow 1 mark for Fe, H ₂ O, H ₂ and an incorrectly determined formula for iron oxide	1 1 2	AO2 5.1.1.1 5.3.1.1 5.3.2.1 5.3.2.2 5.3.2.3 5.4.1.2

Total Question 6

11

Question 7

Question	Answers	Extra information	Mark	AO / Spec. Ref.
07.1	(model A) does not show the 3D arrangement (of the ions / particles)	allow (model A) only shows the 2D arrangement (of the ions / particles) allow (model A) does not show lattice arrangement (of the ions / particles) allow (model A) only shows two ions / particles	1 1	AO3 5.2.1.3

Question	Answers	Extra information	Mark	AO / Spec. Ref.
07.2	$\text{Al}_2(\text{SO}_4)_3$		1	AO2 5.1.1.1 5.2.1.2 5.4.2.2

Question	Answers	Extra information	Mark	AO / Spec. Ref.
07.3	aluminium has more delocalised electrons per atom than sodium	allow aluminium has more outer shell electrons per atom than sodium	1	AO2 5.1.1.7 5.2.1.5 5.2.2.8

Question	Answers	Mark	AO / Spec. Ref.
07.4	<p>Level 2: Scientifically relevant features are identified; the way(s) in which they are similar / different is made clear and (where appropriate) the magnitude of the similarity / difference is noted.</p>	3–4	AO1 5.2.1.4 5.2.2.5 5.2.2.6
	Level 1: Relevant features are identified and differences noted.	1–2	
	No relevant content	0	
	<p>Indicative content</p> <p>Similarities</p> <ul style="list-style-type: none"> • both have covalent bonding <ul style="list-style-type: none"> ◦ both form bonds by sharing electrons • both have atoms that form 4 bonds <ul style="list-style-type: none"> ◦ in silicon dioxide each silicon atom forms 4 bonds, in poly(ethene) each carbon atom forms 4 bonds • both substances have strong (covalent) bonds <p>Differences</p> <ul style="list-style-type: none"> • silicon dioxide has atoms that form 2 bonds <ul style="list-style-type: none"> ◦ in silicon dioxide each oxygen atom forms 2 bonds • poly(ethene) has atoms that form 1 bond <ul style="list-style-type: none"> ◦ in poly(ethene) each hydrogen atom forms 1 bond • silicon dioxide only has covalent bonds • poly(ethene) has intermolecular forces between polymer molecules • silicon dioxide is a giant structure • poly(ethene) has very large molecules <p>For Level 2 a comparison and reference to magnitude, structure and bonding is required</p>		

Total Question 7

8