
**GCSE
PHYSICS
8463/2F**

Paper 2 Foundation Tier

Mark scheme

June 2025

Version: 1.0 Final

2 5 6 G 8 4 6 3 / 2 F / M S

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

No student should be disadvantaged on the basis of their gender identity and/or how they refer to the gender identity of others in their exam responses.

A consistent use of 'they/them' as a singular and pronouns beyond 'she/her' or 'he/him' will be credited in exam responses in line with existing mark scheme criteria.

Further copies of this mark scheme are available from aqa.org.uk

Copyright information

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Copyright © 2025 AQA and its licensors. All rights reserved.

Information to Examiners

1. General

The mark scheme for each question shows:

- the marks available for each part of the question
- the total marks available for the question
- the typical answer or answers which are expected
- extra information to help the examiner make their judgement
- the Assessment Objectives and specification content that each question is intended to cover.

The extra information is aligned to the appropriate answer in the left-hand part of the mark scheme and should only be applied to that item in the mark scheme.

At the beginning of a part of a question a reminder may be given, for example: where consequential marking needs to be considered in a calculation; or the answer may be on the diagram or at a different place on the script.

In general the right-hand side of the mark scheme is there to provide those extra details which confuse the main part of the mark scheme yet may be helpful in ensuring that marking is straightforward and consistent (for example, a scientifically correct answer that could not reasonably be expected from a student's knowledge of the specification).

2. Emboldening and underlining

- 2.1 In a list of acceptable answers where more than one mark is available 'any **two** from' is used, with the number of marks emboldened. Each of the following bullet points is a potential mark.
- 2.2 A bold **and** is used to indicate that both parts of the answer are required to award the mark.
- 2.3 Alternative answers acceptable for a mark are indicated by the use of **or**.
Alternative words in the mark scheme are shown by a solidus eg allow smooth / free movement.
- 2.4 Any wording that is underlined is essential for the marking point to be awarded.

3. Marking points

3.1 Marking of lists

This applies to questions requiring a set number of responses, but for which students have provided extra responses. The general principle to be followed in such a situation is that 'right + wrong = wrong'.

Each error / contradiction negates each correct response. So, if the number of errors / contradictions equals or exceeds the number of marks available for the question, no marks can be awarded.

However, responses considered to be neutral (indicated as * in example 1) are not penalised.

Example 1: What is the pH of an acidic solution?

[1 mark]

Student	Response	Marks awarded
1	green, 5	0
2	red*, 5	1
3	red*, 8	0

Example 2: Name **two** magnetic materials.

[2 marks]

Student	Response	Marks awarded
1	iron, steel, tin	1
2	cobalt, nickel, nail*	2

3.2 Use of symbols / formulae

If a student writes a chemical symbol / formula instead of a required chemical name, or uses symbols to denote quantities in a physics equation, full credit can be given if the symbol / formula is correct and if, in the context of the question, such action is appropriate.

3.3 Marking procedure for calculations

Marks should be awarded for each stage of the calculation completed correctly, as students are instructed to show their working. At any point in a calculation students may omit steps from their working. If a subsequent step is given correctly, the relevant marks may be awarded.

Full marks should be awarded for a correct numerical answer, without any working shown. Full marks are **not** awarded for a correct final answer from incorrect working.

3.4 Interpretation of 'it'

Answers using the word 'it' should be given credit only if it is clear that the 'it' refers to the correct subject.

3.5 Errors carried forward

An error can be carried forward from one question part to the next and is shown by the abbreviation 'ecf'.

Within an individual question part, an incorrect value in one step of a calculation does not prevent all of the subsequent marks being awarded.

3.6 Phonetic spelling

Marks should be awarded if spelling is not correct but the intention is clear, **unless** there is a possible confusion with another technical term.

3.7 Brackets

(....) are used to indicate information which is not essential for the mark to be awarded but is included to help the examiner identify the sense of the answer required.

3.8 Allow

In the mark scheme additional information, 'allow' is used to indicate creditworthy alternative answers.

3.9 Ignore

Ignore is used when the information given is irrelevant to the question or not enough to gain the marking point. Any further correct amplification could gain the marking point.

3.10 Do not accept

Do **not** accept means that this is a wrong answer which, even if the correct answer is given as well, will still mean that the mark is not awarded.

3.11 Numbered answer lines

Numbered lines on the question paper are intended to support the student to give the correct number of responses. The answer should still be marked as a whole.

4. Level of response marking instructions

Extended response questions are marked on level of response mark schemes.

- Level of response mark schemes are broken down into levels, each of which has a descriptor.
- The descriptor for the level shows the average performance for the level.
- There are two marks in each level.

Before you apply the mark scheme to a student's answer, read through the answer and, if necessary, annotate it (as instructed) to show the qualities that are being looked for. You can then apply the mark scheme.

Step 1: Determine a level

Start at the lowest level of the mark scheme and use it as a ladder to see whether the answer meets the descriptor for that level.

The descriptor for the level indicates the different qualities that might be seen in the student's answer for that level. If it meets the lowest level then go to the next one and decide if it meets this level, and so on, until you have a match between the level descriptor and the answer. With practice and familiarity you will find that for better answers you will be able to quickly skip through the lower levels of the mark scheme.

When assigning a level you should look at the overall quality of the answer. Do **not** look to penalise small and specific parts of the answer where the student has not performed quite as well as the rest. If the answer covers different aspects of different levels of the mark scheme you should use a best fit approach for defining the level.

Use the variability of the response to help decide the mark within the level, ie if the response is predominantly level 2 with a small amount of level 3 material it would be placed in level 2 but be awarded a mark near the top of the level because of the level 3 content.

Step 2: Determine a mark

Once you have assigned a level you need to decide on the mark. The descriptors on how to allocate marks can help with this. The exemplar materials used during standardisation will help. There will be an answer in the standardising materials which will correspond with each level of the mark scheme. This answer will have been awarded a mark by the Lead Examiner. You can compare the student's answer with the example to determine if it is the same standard, better or worse than the example. You can then use this to allocate a mark for the answer based on the Lead Examiner's mark on the example.

You may well need to read back through the answer as you apply the mark scheme to clarify points and assure yourself that the level and the mark are appropriate.

Indicative content in the mark scheme is provided as a guide for examiners. It is not intended to be exhaustive and you must credit other valid points. Students do **not** have to cover all of the points mentioned in the indicative content to reach the highest level of the mark scheme.

You should ignore any irrelevant points made. However, full marks can be awarded only if there are no incorrect statements that contradict a correct response.

An answer which contains nothing of relevance to the question must be awarded no marks.

Question 1

Question	Answers	Extra information	Mark	AO / Spec. Ref.
01.1	protractor		1	AO1 4.6.1.3 RPA9

Question	Answers	Extra information	Mark	AO / Spec. Ref.
01.2	angle B in degrees / ° on y-axis all points correctly plotted straight line of best fit drawn	allow a tolerance of $\pm \frac{1}{2}$ small square allow 1 mark for 3 plotted correctly allow a line of best fit from their plotted points	1 2 1	AO2 4.6.1.3 RPA9

Question	Answers	Extra information	Mark	AO / Spec. Ref.
01.3	angle A is directly proportional to angle B		1	AO3 4.6.1.3 RPA9

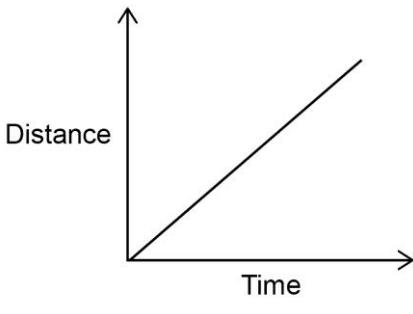
Question	Answers	Extra information	Mark	AO / Spec. Ref.
01.4	A		1	AO1 4.6.1.2

Question	Answers	Extra information	Mark	AO / Spec. Ref.
01.5	D		1	AO1 4.6.1.2

Question	Answers	Extra information	Mark	AO / Spec. Ref.
01.6	$\lambda = \frac{0.125}{2.5}$ 0.050 m	allow 5.0 cm	1 1 1	AO2 AO2 AO1 4.6.1.2

Question	Answers	Extra information	Mark	AO / Spec. Ref.
01.7	$T = \frac{1}{2.5}$ 0.40 (s)	allow 0.4 (s)	1 1	AO2 4.6.1.2

Total Question 1	13
-------------------------	-----------


Question 2

Question	Answers	Extra information	Mark	AO / Spec. Ref.
02.1	$W = 75\ 000 \times 9.8$ 735 000 (N)		1 1	AO2 4.5.1.3

Question	Answers	Extra information	Mark	AO / Spec. Ref.
02.2	$W = 850\ 000 \times 80$ 68 000 000 (J)		1 1	AO2 4.5.2

Question	Answers	Extra information	Mark	AO / Spec. Ref.
02.3	$4 \times 850\ 000$ 3 400 000 (N)		1 1	AO1 4.5.1.4

Question	Answers	Extra information	Mark	AO / Spec. Ref.
02.4	frictional force		1	AO1 4.5.1.2

Question	Answers	Extra information	Mark	AO / Spec. Ref.
02.5			1	AO1 4.5.6.1.4

Question	Answers	Extra information	Mark	AO / Spec. Ref.
02.6	$25 - 16 = 9 \text{ (m/s)}$ $a = \frac{9}{150}$ $0.06 \text{ (m/s}^2)$	subsequent marks may be awarded if an incorrectly calculated change in velocity is used	1 1 1	AO2 4.5.6.1.5

Total Question 2	11
-------------------------	-----------

Question 3

Question	Answers	Extra information	Mark	AO / Spec. Ref.
03.1	moon star	this order only	1 1	AO1 4.8.1.1

Question	Answers	Extra information	Mark	AO / Spec. Ref.
03.2	Milky Way		1	AO1 4.8.1.1

Question	Answers	Extra information	Mark	AO / Spec. Ref.
03.3	it will become a black dwarf		1	AO1 4.8.1.2

Question	Answers	Extra information	Mark	AO / Spec. Ref.
03.4	a very distant galaxy moves faster		1	AO1 4.8.2

Question	Answers	Extra information	Mark	AO / Spec. Ref.
03.5	red-shift		1	AO1 4.8.2

Question	Answers	Extra information	Mark	AO / Spec. Ref.
03.6	hot		1	AO1 4.8.2

Question	Answers	Extra information	Mark	AO / Spec. Ref.
03.7	the universe is getting bigger		1	AO1 4.8.2

Total Question 3	8
-------------------------	----------

Question 4

Question	Answers	Extra information	Mark	AO / Spec. Ref.
04.1	car X has a smaller maximum acceleration		1	AO3 4.5.6.2.2

Question	Answers	Extra information	Mark	AO / Spec. Ref.
04.2	$F = 900 \times 2.5$ 2250 (N)	allow 2300 (N)	1 1	AO2 4.5.6.2.2

Question	Answers	Mark	AO / Spec. Ref.
04.3	Level 2: Relevant points (reasons/causes) are identified, given in detail and logically linked to form a clear account.	3–4	AO2 AO3 4.5.1.4 4.5.6.1.5 4.5.6.2.1 4.5.6.2.2
	Level 1: Points are identified and stated simply, but their relevance is not clear and there is no attempt at logical linking.	1–2	
	No relevant content	0	
	<p>Indicative content</p> <ul style="list-style-type: none"> driving force increases driving force has a maximum value driving force is greater than air resistance there is a resultant forward force air resistance increases (as speed increases) resultant force decreases air resistance becomes equal to the driving force (at maximum speed) resultant force is zero <p>For Level 2 answers must include how both driving force and air resistance change.</p>		

Question	Answers	Extra information	Mark	AO / Spec. Ref.
04.4	time		1	AO1 4.5.6.3.1

Question	Answers	Extra information	Mark	AO / Spec. Ref.
04.5	force		1	AO1 4.5.6.3.1

Question	Answers	Extra information	Mark	AO / Spec. Ref.
04.6	(thinking distance =) 20 and (braking distance =) 60 stopping distance = 20 + 60 80 (m)	subsequent marks may be awarded if incorrect reading(s) are taken from the graph	1 1 1	AO2 4.5.6.3.1

Question	Answers	Extra information	Mark	AO / Spec. Ref.
04.7	the driver becoming tired driving on a wet road		1 1	AO1 4.5.6.3.2 4.5.6.3.3

Total Question 4	14
-------------------------	-----------

Question 5

Question	Answers	Extra information	Mark	AO / Spec. Ref.
05.1	principal focus		1	AO1 4.6.2.5

Question	Answers	Extra information	Mark	AO / Spec. Ref.
05.2	refraction		1	AO1 4.6.2.5

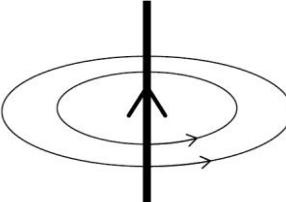
Question	Answers	Extra information	Mark	AO / Spec. Ref.
05.3			1	AO1 4.6.2.5

Question	Answers	Extra information	Mark	AO / Spec. Ref.
05.4	image height = 2.0 (cm) and object height = 0.8 (cm)		1	AO2 4.6.2.5

Question	Answers	Extra information	Mark	AO / Spec. Ref.
05.5	magnification = $\frac{2.0}{0.8}$ 2.5	allow ecf from 05.4	1 1	AO2 4.6.2.5

Question	Answers	Extra information	Mark	AO / Spec. Ref.
05.6	magnification is a ratio		1	AO1 4.6.2.5

Question	Answers	Extra information	Mark	AO / Spec. Ref.
05.7	<p>colourless glass: (white) light is transmitted</p> <p>blue glass: (only) blue light is transmitted</p> <p>all other colours / wavelengths / frequencies of light are absorbed</p>	<p>allow all colours / wavelengths / frequencies (of white light) are transmitted</p> <p>allow blue glass will absorb green and red light</p>	1 1 1	AO3 4.6.2.6


Total Question 5	10
-------------------------	-----------

Question 6

Question	Answers	Extra information	Mark	AO / Spec. Ref.
06.1	cobalt steel		1 1	AO1 4.7.1.2

Question	Answers	Extra information	Mark	AO / Spec. Ref.
06.2	induced magnets		1	AO1 4.7.1.1

Question	Answers	Extra information	Mark	AO / Spec. Ref.
06.3	←		1	AO3 4.7.1.2

Question	Answers	Extra information	Mark	AO / Spec. Ref.
06.4			1	AO1 4.7.2.1

Question	Answers	Extra information	Mark	AO / Spec. Ref.
06.5	increase the current shape the wire into a solenoid		1 1	AO1 4.7.2.1

Total Question 6

7

Question 7

Question	Answers	Extra information	Mark	AO / Spec. Ref.
07.1	the turning effect of the force		1	AO1 4.5.4

Question	Answers	Extra information	Mark	AO / Spec. Ref.
07.2	the resultant moment is clockwise		1	AO3 4.5.4

Question	Answers	Extra information	Mark	AO / Spec. Ref.
07.3	the tag should be positioned left of the pivot		1	AO3 4.5.4
	the tag should be on position 7		1	

Question	Answers	Extra information	Mark	AO / Spec. Ref.
07.4	moment (of a force) = force \times distance or $M = F d$		1	AO1 4.5.4

Question	Answers	Extra information	Mark	AO / Spec. Ref.
07.5	$1.8 = 0.15 \times d$ $d = \frac{1.8}{0.15}$ $d = 12 \text{ (cm)}$		1 1 1	AO2 4.5.4

Total Question 7**8**

Question 8

Question	Answers	Mark	AO / Spec. Ref.
08.1	<p>Level 2: Scientifically relevant facts, events or processes are identified and given in detail to form an accurate account</p> <p>Level 1: Facts, events or processes are identified and simply stated but their relevance is not clear</p> <p>No relevant content</p> <p>Indicative content</p> <p>Differences</p> <ul style="list-style-type: none"> sound waves are mechanical whereas visible light waves are electromagnetic waves sound waves require a medium to travel through whereas visible light waves can travel through a vacuum sound waves are longitudinal whereas visible light waves are transverse sound waves travel slower (in air) than visible light waves sound waves travel faster in solids than in air whereas visible light waves travel slower in solids than in air sound waves have longer wavelengths than visible light sound waves have a lower frequency than visible light waves <p>Similarities</p> <ul style="list-style-type: none"> both types of waves can be reflected both types of waves can be refracted both types of waves can be diffracted both types of wave transfer energy 	4–6 1–3 0	AO1 4.6.1.1 4.6.2.1

Question	Answers	Extra information	Mark	AO / Spec. Ref.
08.2	$\text{speed} = \frac{\text{distance}}{\text{time}}$		1	AO1 4.5.6.1.2

Question	Answers	Extra information	Mark	AO / Spec. Ref.
08.3	$330 = \frac{13\ 200}{t}$ or $13\ 200 = 330 \times t$ $t = \frac{13\ 200}{330}$ 40 (s)		1 1 1	AO2 4.5.6.1.2

Total Question 8	10
------------------	----

Question 9

Question	Answers	Extra information	Mark	AO / Spec. Ref.
09.1	force (applied to spring) or weight (of the masses)	allow mass (hung from spring)	1	AO1 4.5.3 RPA6

Question	Answers	Extra information	Mark	AO / Spec. Ref.
09.2	<p>stand could tip over and hurt/hit the student or masses could fall off and hurt/hit the student</p> <p>clamp base of stand to desk</p> <p>OR</p> <p>spring could snap and hurt the student (1)</p> <p>wear goggles (1)</p>	<p>allow rotate base/clamp allow place some masses on the base of the clamp stand allow student should stand up allow limit the mass hung on spring</p> <p>allow limit the mass hung on spring</p>	1 1	AO1 4.5.3 RPA6

Question	Answers	Extra information	Mark	AO / Spec. Ref.
09.3	<p>any two from:</p> <ul style="list-style-type: none"> • ensure the ruler is vertical • clamp the ruler (close to the spring) • attach a pointer to bottom of the spring • use a ruler with a better resolution 	allow move ruler so it is in line with spring	2	AO3 4.5.3 RPA6

Question	Answers	Extra information	Mark	AO / Spec. Ref.
09.4	the spring length is not proportional to the force or the unstretched/initial length of the spring is not zero	allow student has plotted/measured spring length instead of extension	1	AO3 4.5.3 RPA6

Question	Answers	Extra information	Mark	AO / Spec. Ref.
09.5	the spring is inelastically deformed (so) the extension is no longer proportional to the force	allow the spring has reached/passed its limit of proportionality allow no longer obeys Hooke's law	1 1	AO3 4.5.3 RPA6

Question	Answers	Extra information	Mark	AO / Spec. Ref.
09.6	force = spring constant \times extension		1	AO1 4.5.3 RPA6

Question	Answers	Extra information	Mark	AO / Spec. Ref.
09.7	$4.0 = k \times 0.064$ $\frac{4.0}{0.064} = k$ $k = 62.5 \text{ (N/m)}$	allow 63 (N/m)	1 1 1	AO2 4.5.3 RPA6

Total Question 9	12
-------------------------	-----------

Question	Answers	Extra information	Mark	AO / Spec. Ref.
10.1	range = 0.61 – 0.49 or range = 0.12 uncertainty = \pm 0.06 (s)	allow mean = 0.55	1 1	AO2 4.5.6.1.5

Question	Answers	Extra information	Mark	AO / Spec. Ref.
10.2	random error		1	AO3 4.5.6.1.5

Question	Answers	Extra information	Mark	AO / Spec. Ref.
10.3	the ball may have been dropped from different heights or the initial speed of the ball may have been different or there may have been a different delay between the student pressing the start button and releasing the ball	allow the stopwatch did not always stop (immediately) when the ball hit the floor	1	AO3 4.5.6.1.5

Question	Answers	Extra information	Mark	AO / Spec. Ref.
10.4	corresponding values of height and time squared read from graph gradient = 5.0 acceleration = 10.0 (m/s ²)	eg 3.5 (m) and 0.70 (s ²) MP3 can be awarded for a correct calculation of acceleration using their gradient provided it is change in height \div change in time ²	1 1 1	AO2 4.5.6.1.5