

A-level COMPUTER SCIENCE

Paper 1

Monday 10 June 2024 Afternoon Time allowed: 2 hours 30 minutes

Materials

For this paper you must have:

- a computer
- a printer
- · appropriate software
- the Electronic Answer Document
- an electronic version and a hard copy of the Skeleton Program
- an electronic version and a hard copy of the Preliminary Material
- an electronic version of the Data files **puzzle1.txt**, **puzzle2.txt**, **puzzle3.txt** and **puzzle4.txt**. You must **not** use a calculator.

Instructions

- Type the information required on the front of your Electronic Answer Document.
- Before the start of the examination make sure your Centre Number, Candidate Name and Candidate Number are shown clearly in the footer of every page (also at the top of the front cover) of your Electronic Answer Document.
- Enter your answers into the Electronic Answer Document.
- Answer all questions.
- Save your work at regular intervals.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 100.
- No extra time is allowed for printing and collating.
- The question paper is divided into **four** sections.

Advice

You are advised to allocate time to each section as follows:

Section A – 40 minutes; Section B – 20 minutes; Section C – 20 minutes; Section D – 70 minutes.

At the end of the examination

Tie together all your printed Electronic Answer Document pages and hand them to the Invigilator.

Warning

It may not be possible to issue a result for this paper if your details are not on every page of your Electronic Answer Document.

IB/G/Jun24/G4001/E12 **7517/1**

Section A

You are advised to spend no longer than **40 minutes** on this section.

Enter your answers for Section~A in your Electronic Answer Document.

You **must save** this document at regular intervals.

0 1	State three advantages of using subroutines.	
	For each advantage, you must explain how the advantage is achieved.	[3 marks]
0 2	Circular queues and linear queues are examples of data structures that can implemented using a fixed-length array.	be
0 2.1	Explain why, when implemented using a fixed-length array, a circular queue considered to be a better choice of data structure than a linear queue.	is usually [2 marks]
0 2.2	Describe the steps that must be completed to remove (dequeue) an item from circular queue that has been implemented using a fixed-length array.	m a [5 marks]
0 3		
0 3.1	Describe the Halting problem.	[2 marks]
0 3.2	Explain the importance of the Halting problem.	[1 mark]

Figure 1 shows four sets **R**, **S**, **T** and **U**. Three dots (...) means the remaining members of the set follow the same pattern as the previous members of the set.

Figure 1

0 4. 1 What is meant by the cardinality of a set?

[1 mark]

0 4 . **2** Explain what is wrong with the statement:

'The only subsets of **R** are the sets {a}, {b} and {a, b}'.

[1 mark]

0 4. 3 How many members are there in the set formed by the intersection of R and U? [1 mark]

0 4. **4** The language defined by a regular expression can be represented as a set.

Explain the functionality of the | (vertical bar) metacharacter when it is used in a regular expression.

[1 mark]

The members of the set **V** are strings that match the regular expression a?b+

Set **W** is formed by the union of sets **S** and **T**.

Set **X** is formed by the set operation **V** – **W**.

0 4 . 5 Write a regular expression that would match with all the members of the set **W**. [2 marks]

0 4.6 Write a regular expression that would match with all the members of the set X. [2 marks]

(3 + 4) * 5 is an example of an infix expression. The same expression has been represented in a different expression format in **Figure 2**.

Figure 2

3 4 + 5 *

0 5. 1 What is the name of the expression format used in Figure 2?

[1 mark]

0 5. **2** Represent the infix expression 5 + 2 * 3 + 4 in the same expression format used in **Figure 2**.

[2 marks]

Turn over for the next question

Figure 3 shows a graph containing five nodes. Figure 4 shows how the graph in Figure 3 could be represented using three one-dimensional arrays: Data, Dir1 and Dir2.

Figure 3

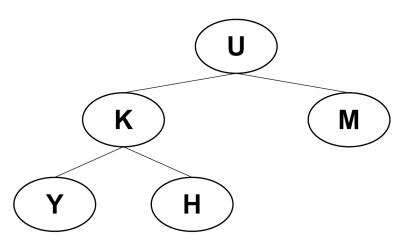


Figure 4

Index	Data	Dir1	Dir2
[0]	U	1	4
[1]	K	2	3
[2]	Y	-1	-1
[3]	Н	-1	-1
[4]	M	-1	-1

0 6 . 1

The graph in **Figure 3** is a binary tree. A binary tree is a rooted tree where each node has at most two child nodes.

There are three properties that a graph needs to have for it to be a tree. One of those properties is that it contains no cycles.

State the other **two** properties of this graph that make it a tree.

[2 marks]

Figure 5 contains pseudo-code for an algorithm that uses the arrays in Figure 4.

Figure 5

```
Done ← False
Pos ← -1
Current ← 0
WHILE Done = False
  WHILE Current \neq -1
    Pos ← Pos + 1
    Temp[Pos] ← Current
    Current ← Dir1[Current]
  ENDWHILE
  IF Pos = -1 THEN
    Done 

True
  ELSE
    OUTPUT Data[Temp[Pos]]
    Current ← Dir2[Temp[Pos]]
    Pos ← Pos - 1
  ENDIF
ENDWHILE
```

O 6 . 2 Complete the unshaded cells in **Table 1** to show the result of tracing the algorithm shown in **Figure 5** using the arrays in **Figure 4**.

Table 1

		Temp				
Done	Pos	[0]	[1]	[2]	Current	OUTPUT
	l					

Copy the contents of the unshaded cells in **Table 1** into the table in your Electronic Answer Document.

[7 marks]
Turn over ▶

0 6. The array Temp needs to be able to store three values when used with the binary tree shown in **Figure 3**, on page 6.

For some binary trees with only five nodes, the array Temp would need to be able to store five values.

Describe the structure of a five-node binary tree that would require Temp to be able to store five values.

[2 marks]

0 6. **4** State the type of data structure the algorithm shown in **Figure 5** implements using the array Temp.

[1 mark]

0 6 Describe the changes that need to be made to the algorithm shown in **Figure 5** so that the order that the data values are output in is reversed.

In your answer, you should only describe changes to the existing lines of code in the algorithm; you must **not** suggest the addition of extra lines of code.

Turn over for the next section

Section B

You are advised to spend no more than **20 minutes** on this section.

Enter your answers to **Section B** in your Electronic Answer Document.

You **must save** this document at regular intervals.

The question in this section asks you to write program code starting from a new program/project/file.

You are advised to **save** your program at regular intervals.

0 7

Write a program that gets the user to enter an integer. It should keep doing this until they enter a value greater than 0.

The program should then tell the user if they have entered a perfectly bouncy number, a bouncy number or a number that is not bouncy.

A **bouncy number** is a number that is not an increasing number and not a decreasing number.

An **increasing number** is one where each digit is greater than or equal to the previous digit in the number.

A **decreasing number** is one where each digit is less than or equal to the previous digit in the number.

A **perfectly bouncy number** is a bouncy number in which the number of digits that are followed by a larger digit is equal to the number of digits that are followed by a smaller digit.

Examples

- 13578 is not a bouncy number because it is an increasing number.
- 973 is not a bouncy number because it is a decreasing number.
- 98657 is a bouncy number.
- 1111 is not a bouncy number because it is both an increasing number and a decreasing number.
- 13421 is a perfectly bouncy number as exactly two digits are followed by a larger digit and there are also exactly two digits followed by a smaller digit.
- 1829361 is a perfectly bouncy number as exactly three digits are followed by a larger digit and there are also exactly three digits followed by a smaller digit.
- 13333331 is a perfectly bouncy number as there is exactly one digit followed by a larger digit and also exactly one digit followed by a smaller digit.

Evidence that you need to provide

Include the following evidence in your Electronic Answer Document.

0 7.1 Your PROGRAM SOURCE CODE

[12 marks]

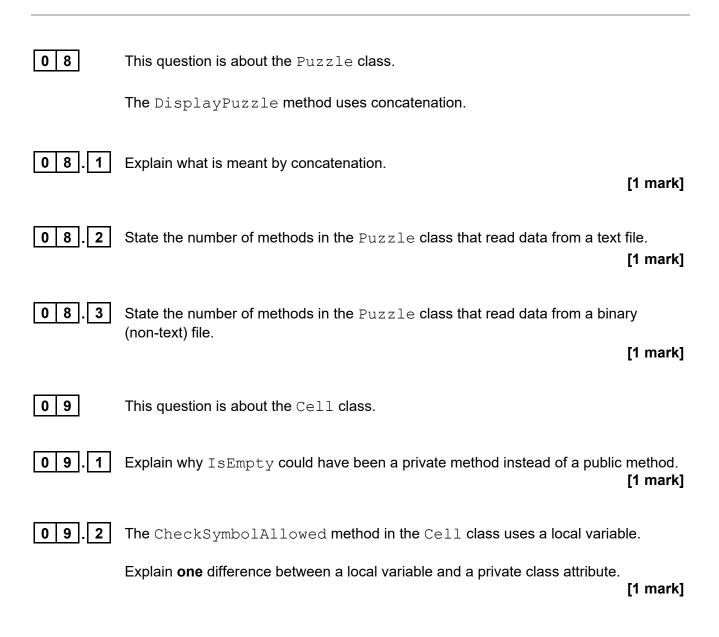
- **0 7 . 2** SCREEN CAPTURE(S) showing the results of testing the program by entering the integers:
 - −3
 - 14982
 - 1234

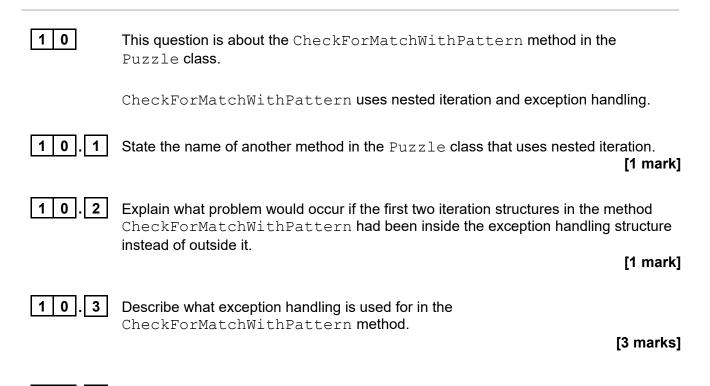
You will need to execute your program more than once to test all of the integers.

[1 mark]

Turn over for the next section

Section C


You are advised to spend no more than **20 minutes** on this section.


Enter your answers to **Section C** in your Electronic Answer Document.

You **must save** this document at regular intervals.

These questions refer to the **Preliminary Material** and the **Skeleton Program**, but **do not** require any additional programming.

Refer either to the Preliminary Material issued with this question paper or your electronic copy.

A value of 10 is returned sometimes when it should not be. **Figure 6** and **Figure 7** show example 4×4 grids. The pattern in **Figure 6** correctly results in a value of 10 being returned. The pattern in **Figure 7** also results in a value of 10 being returned, but it should return 0.

Figure 6

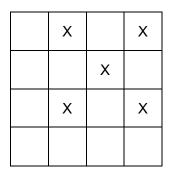
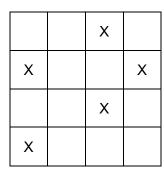



Figure 7

Explain why the pattern in **Figure 7** results in the value 10 being returned by the CheckForMatchWithPattern method.

Section D

You are advised to spend no more than **70 minutes** on this section.

Enter your answers to **Section D** in your Electronic Answer Document.

You **must save** this document at regular intervals.

These questions require you to load the **Skeleton Program** and to make programming changes to it.

1 1 This question refers to the method AttemptPuzzle in the Puzzle class.

The Skeleton Program is to be changed so that it checks the choice made by the user for the **column** number. A choice is valid if it is between one and the number of columns in the puzzle inclusive. You do **not** need to add checks for the row number.

The program should keep getting the user to enter a value until a valid choice has been made.

What you need to do

Task 1

Modify the method AttemptPuzzle so it checks that the value entered by the user is valid. If an invalid value is entered, the user should be made to enter another value.

Task 2

Test that the changes you have made work:

- run the Skeleton Program
- press the Enter key
- enter 1
- enter 10
- enter 4

Evidence that you need to provide

Include the following evidence in your Electronic Answer Document.

1 1. 1 Your PROGRAM SOURCE CODE for the amended method AttemptPuzzle.

[4 marks]

1 1. 2 SCREEN CAPTURE(S) showing the results of the requested test.

This question extends the Skeleton Program by tracking the user's average score and highest score for the puzzle.

After the user chooses not to do another puzzle, the program should display the user's highest score achieved on the puzzle and the user's average score. Your amended Skeleton Program should calculate the average and highest scores for any number of puzzle attempts.

Example

If the user:

- gets a score of 30 when they complete a puzzle
- decides to do another puzzle
- gets a score of 20 for the second puzzle
- decides not to do another puzzle

the program should display messages saying that their highest score was 30 and their average score was 25

What you need to do

Task 1

Modify the Main subroutine so that after the user decides not to attempt another puzzle their highest score for the puzzles attempted and their average score for the puzzles attempted are displayed.

Task 2

Test that the changes you have made work:

- run the Skeleton Program
- load the file puzzle1
- enter 5
- enter 5
- enter X
- enter Y
- load the file puzzle1
- enter 1
- enter 4
- enter X
- enter N

Evidence that you need to provide

Include the following evidence in your Electronic Answer Document.

1 2 . 1 Your PROGRAM SOURCE CODE for the amended subroutine Main.

[5 marks]

1 2 . 2 SCREEN CAPTURE(S) showing the requested test.

This question extends the Skeleton Program by giving the user an option to shift all the cells in one row in the puzzle one place to the left.

When shifting left, the first cell in the row will move to the last position in the row.

Figure 8 shows an example puzzle and **Figure 9** shows the result obtained from shifting all the cells in row 2 from the puzzle in **Figure 8** one place to the left.

Figure 8

	1	2	3	4	5	6	7	8
8			@					
7			@	@				
6								
5							@	
4								
3		@		@				
2	X	X		Х				
1						@		

Figure 9

	1	2	3	4	5	6	7	8
8			@					
7			@	@				
6								
5							@	
4								
3		(3)		@				
2	X		X					Х
1						@		_

After the cells have been shifted, the user's score should be reduced by 20 and the new state of the grid and the user's new score should be displayed. No other changes to the user's score should be made.

Shifting the cells does not count as a turn. After choosing to shift cells, the user should carry on with the rest of their turn by selecting a cell to place a symbol in.

When answering this question, you should make sure your program code will work for any size of puzzle grid.

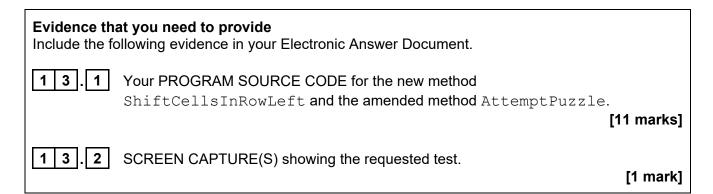
What you need to do

Task 1

Create a new method called ShiftCellsInRowLeft in the Puzzle class that takes an integer parameter that specifies the row number to use with the shift.

Each cell, in the row indicated by the parameter, should be moved in Grid so that it is one place to the left; the leftmost cell should shift to the end of the row.

Task 2


Modify the AttemptPuzzle method in the Puzzle class so that it gives the user the option to shift the cells in a row. Inside the iteration structure used to get a row number from the user your program should:

- display a modified message telling the user to enter a row number or to enter 0 to shift cells
- if the user enters 0:
 - o ask the user to enter the row number for the row to shift
 - o call the method ShiftCellsInRowLeft with the number entered as a parameter
 - o subtract 20 from the user's score
 - o display the new grid
 - o display the new score
 - o set Valid to be false.

Task 3

Test that the changes you have made work:

- run the Skeleton Program
- load the file puzzle2
- enter 0
- enter 1
- enter 1

1 3. The movement of the cells within a row can be described using vectors.

State the 2-vector that describes the movement for all but the leftmost cell in the row.

[1 mark]

1 3 . 4 State the 2-vector that describes the movement for the leftmost cell in the row.

Your vector should work for any grid size.

Turn over for the next question

This question extends the Skeleton Program so that there is a new type of cell – a countdown cell.

A countdown cell has a timer associated with it that decreases by one each time the user tries to place a symbol in the puzzle grid.

The location of a countdown cell is shown by a numeric digit representing the current value of its timer. When its timer reaches zero, the cell's symbol changes to an @.

A countdown cell should be added to the board each time the user's score is increased. The location for the countdown cell should be an empty cell on the grid and selected randomly.

What you need to do

Task 1

Create a new class called CountdownCell that is a subclass of the BlockedCell class.

Create a constructor for the <code>CountdownCell</code> class that sets the initial value of the timer and makes sure that the symbol displayed for the cell will be the value of its timer. The first symbol that should be displayed for the timer value of a <code>CountdownCell</code> is 3

Create a method UpdateCell in the CountdownCell class that:

- overrides the method from the base class
- decreases the value of the timer by one
- changes the symbol to @ when the timer has a value of zero.

Task 2

Modify the AttemptPuzzle method in the Puzzle class so that, if the amount to add to the score is greater than zero, it selects an empty cell in the grid at random and replaces that cell with a new CountdownCell.

Task 3

Modify the AttemptPuzzle method in the Puzzle class so that, immediately before it checks if the number of symbols left is zero, it calls the UpdateCell method for each cell in the grid.

Task 4

Test that the changes you have made work:

- run the Skeleton Program
- load the file puzzle3
- enter 1
- enter 4
- enter X
- place a T in an empty cell
- place a T in an empty cell
- place a T in an empty cell.

Evidence that you need to provide Include the following evidence in your Electronic Answer Document. 1 4.1 Your PROGRAM SOURCE CODE for the new class CountdownCell and the amended AttemptPuzzle method. [13 marks] 1 4.2 SCREEN CAPTURE(S) showing the requested test. [1 mark]

END OF QUESTIONS

There are no questions printed on this page

There are no questions printed on this page

There are no questions printed on this page

Copyright information

For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet is published after each live examination series and is available for free download from www.aqa.org.uk

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team.

Copyright © 2024 AQA and its licensors. All rights reserved.

