

AS

COMPUTER SCIENCE

7516/1

Paper 1

Mark scheme

June 2025

Version: 1.0 Final

256A7516/1/MS

for more: tyrionpapers.com

MARK SCHEME – AS COMPUTER SCIENCE – 7516/1 – JUNE 2025

2

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant

questions, by a panel of subject teachers. This mark scheme includes any amendments made at the

standardisation events which all associates participate in and is the scheme which was used by them in

this examination. The standardisation process ensures that the mark scheme covers the students’

responses to questions and that every associate understands and applies it in the same correct way.

As preparation for standardisation each associate analyses a number of students’ scripts. Alternative

answers not already covered by the mark scheme are discussed and legislated for. If, after the

standardisation process, associates encounter unusual answers which have not been raised they are

required to refer these to the Lead Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and

expanded on the basis of students’ reactions to a particular paper. Assumptions about future mark

schemes on the basis of one year’s document should be avoided; whilst the guiding principles of

assessment remain constant, details will change, depending on the content of a particular examination

paper.

No student should be disadvantaged on the basis of their gender identity and/or how they refer to the

gender identity of others in their exam responses.

A consistent use of ‘they/them’ as a singular and pronouns beyond ‘she/her’ or ‘he/him’ will be credited in

exam responses in line with existing mark scheme criteria.

Further copies of this mark scheme are available from aqa.org.uk

Copyright information

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own

internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third

party even for internal use within the centre.

Copyright © 2025 AQA and its licensors. All rights reserved.

for more: tyrionpapers.com

MARK SCHEME – AS COMPUTER SCIENCE – 7516/1 – JUNE 2025

3

AS Computer Science

Paper 1 (7516/1) – applicable to all programming languages A, B, D and E

June 2025

The following annotation is used in the mark scheme:

; - means a single mark

// - means alternative response

/ - means an alternative word or sub-phrase

A. - means acceptable creditworthy answer

R. - means reject answer as not creditworthy

NE. - means not enough

I. - means ignore

DPT. - means ‘Don't penalise twice’. In some questions a specific error made by a candidate, if

repeated, could result in the loss of more than one mark. The DPT label indicates that this

mistake should only result in a candidate losing one mark, on the first occasion that the error is

made. Provided that the answer remains understandable, subsequent marks should be

awarded as if the error was not being repeated.

for more: tyrionpapers.com

MARK SCHEME – AS COMPUTER SCIENCE – 7516/1 – JUNE 2025

4

Level of response marking instructions

Level of response mark schemes are broken down into levels, each of which has a descriptor. The

descriptor for the level shows the average performance for the level. There are marks in each level.

Before you apply the mark scheme to a student’s answer read through the answer and annotate it (as

instructed) to show the qualities that are being looked for. You can then apply the mark scheme.

Step 1 Determine a level

Start at the lowest level of the mark scheme and use it as a ladder to see whether the answer meets the
descriptor for that level. The descriptor for the level indicates the different qualities that might be seen in
the student’s answer for that level. If it meets the lowest level then go to the next one and decide if it
meets this level, and so on, until you have a match between the level descriptor and the answer. With
practice and familiarity you will find that for better answers you will be able to quickly skip through the
lower levels of the mark scheme.

When assigning a level you should look at the overall quality of the answer and not look to pick holes in
small and specific parts of the answer where the student has not performed quite as well as the rest. If
the answer covers different aspects of different levels of the mark scheme you should use a best fit
approach for defining the level and then use the variability of the response to help decide the mark within
the level, ie if the response is predominantly level 3 with a small amount of level 4 material it would be
placed in level 3 but be awarded a mark near the top of the level because of the level 4 content.

Step 2 Determine a mark

Once you have assigned a level you need to decide on the mark. The descriptors on how to allocate
marks can help with this. The exemplar materials used during standardisation will help. There will be an
answer in the standardising materials which will correspond with each level of the mark scheme. This
answer will have been awarded a mark by the Lead Examiner. You can compare the student’s answer
with the example to determine if it is the same standard, better or worse than the example. You can then
use this to allocate a mark for the answer based on the Lead Examiner’s mark on the example.

You may well need to read back through the answer as you apply the mark scheme to clarify points and
assure yourself that the level and the mark are appropriate.

Indicative content in the mark scheme is provided as a guide for examiners. It is not intended to be
exhaustive and you must credit other valid points. Students do not have to cover all of the points
mentioned in the Indicative content to reach the highest level of the mark scheme.

An answer which contains nothing of relevance to the question must be awarded no marks.

for more: tyrionpapers.com

MARK SCHEME – AS COMPUTER SCIENCE – 7516/1 – JUNE 2025

5

Examiners are required to assign each of the candidate’s responses to the most appropriate level
according to its overall quality, and then allocate a single mark within the level. When deciding upon a
mark in a level, examiners should bear in mind the relative weightings of the assessment objectives

eg

In question 16.1, the marks available for the AO3 elements are as follows:

AO3 (design) 2 marks
AO3 (programming) 8 marks

In question 17.1, the marks available for the AO3 elements are as follows:

AO3 (design) 3 marks
AO3 (programming) 9 marks

Where a candidate’s answer only reflects one element of the AO, the maximum mark they can receive
will be restricted accordingly.

for more: tyrionpapers.com

MARK SCHEME – AS COMPUTER SCIENCE – 7516/1 – JUNE 2025

6

Section A

Qu Marks

01 3 marks for AO2 (application)

1 mark for each correct set of values in the correct sequence (boxed in red)

I. presence/absence of quotation marks around values in all columns and case in

Output column

Max 2 if any errors

M i Symbol Current Output

"1001" 0

 0 1 20

 1 0 14

 2 0 4

 3 1 24 X

3

02 2 marks for AO1 (understanding)

(Code within) WHILE/Figure 3 loop structure is not executed // final value of X remains

the same;

(Code within) REPEAT/Figure 4 loop structure will be executed (once) // the value of X

changes/decreases;

The WHILE loop tests the condition at the start of the loop whereas the REPEAT loop

tests the condition at the end of the loop;

Max 2

2

for more: tyrionpapers.com

MARK SCHEME – AS COMPUTER SCIENCE – 7516/1 – JUNE 2025

7

03 1 8 marks for AO3 (programming)

Mark as follows:
1. Correct variable declarations for S, Max, Matched, i, Letter1, Letter2;

 I. case

Note to examiners:

If a language allows variables to be used without explicit declaration, (eg Python), then

this mark should be awarded if the correct variables exist in the program code and the

first value they are assigned is of the correct data type.

2. Correct WHILE loop syntax allowed by the programming language and correct

condition;
3. Correct prompt "Enter a word or phrase: " and S assigned value entered

by user;

 I. case
4. Correct calculation of Max;

5. FOR loop iterates correct number of times;

6. Correct IF THEN statement syntax allowed by the programming language and

correct condition within FOR loop; R. if inappropriate values for Letter1 or

Letter2

7. Correct assignment to Matched in THEN part;

8. Correct IF THEN ELSE statement syntax allowed by the programming language

and correct condition after FOR loop and correct output; I. case, spelling, spacing

Max 7 if code does not function correctly

8

03 2 Mark is for AO3 (evaluate)

**** SCREEN CAPTURE ****

Must match code from 03.1.

Code for 03.1 must be sensible.

Screen capture showing:

Enter a word or phrase: madam

Palindrome

Enter a word or phrase: maam

Palindrome

Enter a word or phrase: adam

Not a palindrome

Enter a word or phrase: aam

Not a palindrome

Enter a word or phrase: x

Palindrome

1

for more: tyrionpapers.com

MARK SCHEME – AS COMPUTER SCIENCE – 7516/1 – JUNE 2025

8

03 3 Mark is for AO3 (evaluate)

Algorithm makes unnecessary comparisons // by example: eg first and last letters

compared twice;

The loop continues to iterate after it has been identified that a word is not a palindrome;
The loop continues to iterate after Matched has been set to False;

Max 1

1

04 1 Mark is for AO1 (knowledge)

A named/callable (out of line) block of code (that may be executed by writing the name

in a program statement);

1

04 2 3 marks for AO1 (understanding)

Easier to re-use code;

Easier to understand;

Easier to debug/update/maintain/test;

Easier to develop a solution // supports structured approach;

Less code // faster to develop a solution;

Facilitates multiple programmers working on a program simultaneously;

Reduces/eliminates side-effects;

A. enables use of local variables, which only use memory when subroutine is executing

Max 3

3

04 3 2 marks for AO1 (understanding)

Avoids the use of global variables // makes subroutines self-contained/encapsulated;
Makes it easier to use the subroutine with different values/expressions/variables;
Makes it easier to reuse the subroutine in a different program;
Makes it easier to test the subroutine independently of the rest of the program;
Makes it clearer which values from outside the subroutine are being used inside the
subroutine (as they are explicitly listed);

Max 2

2

05 Mark is for AO1 (understanding)

(The detail of) how the data are (actually) represented is hidden;

New kinds of data objects/structures can be constructed from previously defined types

(of data objects);

By example (eg stack/queue/tree implemented as an array);

Max 1

1

for more: tyrionpapers.com

MARK SCHEME – AS COMPUTER SCIENCE – 7516/1 – JUNE 2025

9

Section B

Qu Marks

06 Mark is for AO2 (analyse)

Found/ObstacleFound/ValidDirection/ValidDistance

/ObstacleInPath;

A. TreasureFound

R. if any additional code

R. if spelt incorrectly

I. case and spacing

1

07 Mark is for AO2 (analyse)

FindLandingPlace;

R. if any additional code

R. if spelt incorrectly

I. case and spacing

1

08 1 Mark is for AO2 (analyse)

CheckDistance;

R. if any additional code

R. if spelt incorrectly

I. case and spacing

1

08 2 2 marks for AO2 (analyse)

The string/character supplied may not be (convertible to) an integer;

Without exception handling the program would crash;

2

for more: tyrionpapers.com

MARK SCHEME – AS COMPUTER SCIENCE – 7516/1 – JUNE 2025

10

09 1 Mark is for AO2 (analyse)

Pirate;

A. PirateRecord

Java only: MoveCheckRecord;

R. if any additional code

R. if spelt incorrectly

I. case and spacing

1

09 2 Mark is for AO2 (analyse)

Map/HiddenMap/MapSize;

A. MapSizeRecord

R. if any additional code

R. if spelt incorrectly

I. case and spacing

1

for more: tyrionpapers.com

MARK SCHEME – AS COMPUTER SCIENCE – 7516/1 – JUNE 2025

11

10 1 Mark is for AO1 (knowledge)

Subroutine/procedure/function/method;

A. module/block of code

1

10 2 Mark is for AO2 (analyse)

PirateWalks/PirateDigs;

I. case and spacing

1

10 3 Mark is for AO2 (analyse)

PirateDigs/PirateWalks;

R. if given in 10.2

I. case and spacing

1

10 4 Mark is for AO1 (understanding)

(During the) design (stage);

R. more than one stage given

1

11 2 marks for AO2 (analyse)

Without this test the X would be overwritten / replaced by sand;

… after the pirate’s/player’s (first) move; A. … at the beginning of the game

Max 2

2

for more: tyrionpapers.com

MARK SCHEME – AS COMPUTER SCIENCE – 7516/1 – JUNE 2025

12

12 3 marks for AO2 (analyse)

Similarity (Max 1):

Both loops count up;

Both loops have a step of one;
Both loops use Column;

Differences (Max 2):
The loop for "E" starts at the start column whereas the loop for "W" starts at the end

column;
The loop for "E" ends at the end column whereas the loop for "W" ends at the start

column;
The start and end values for the loops are reversed (between E and W);

I. Exact start/end points as long as reference is made to the start and end columns

3

13 3 marks for AO2 (analyse)

Direction/NumberOfSquares/distance might be valid (independently);

But the combination of these …;

… could result in Row and/or Column to be outside the boundaries of the map;

(CheckPath) would attempt to address elements beyond the bounds of the (Map)

data structure // would then malfunction/crash;

Max 3

3

14 1 2 marks for AO2 (analyse)

User presses Enter (without entering any other value first) when asked for pirate action;

The pirate finds the treasure;

2

14 2 Mark is for AO2 (analyse)

Finding a coconut/treasure;

1

14 3 Mark is for AO2 (analyse)

Pirate walking/digging;

1

for more: tyrionpapers.com

MARK SCHEME – AS COMPUTER SCIENCE – 7516/1 – JUNE 2025

13

Section C

Qu Marks

15 1 4 marks for AO3 (programming)

Marking guidance:

Evidence of AO3 programming – 4 marks:

Evidence of programming to look for in response:

1. Field initialised in ResetPirateRecord;

2. Selection structure to detect all eight compass points;

3. Correct calculation of hours walked for all eight directions;
4. In DisplayResults output number of hours walked with suitable message;

Max 3 if any errors

4

15 2 Mark is for AO3 (evaluate)

**** SCREEN CAPTURE ****
Must match code from 15.1, including prompts on screen capture matching those in
code.
Code for 15.1 must be sensible.

Screen capture showing:

 012345678901234567890123456789012345678901

0 WW

1 WWWWWWW.........................WWWWWWWWWW

2 WWWWW.............................WWWWWWWW N

3 WWWW................................WWWWWW NW | NE

4 WW.....................R..............WWWW \ | /

5 W......................................WWW W -----|----- E

6 W.......................................WW / | \

7 W............*..*...*....................W SW | SE

8 W..W S

9 W...........*.......*...........H........W

0 W...............*................P.......W

1 W............*....*......................W

2 WW....................................BBWW

3 WWW..................................BBWWW

4 WWWWW......................BBBBBB...BBWWWW

5 WWWWWW....................BBWWWWWBBBBWWWWW

6 WWWWWWW................BBBWWWWWWWWWWWWWWWW

7 WWWWWWWWWW............BBWWWWWWWWWWWWWWWWWW

8 WWWWWWWWWWW.....X....BBWWWWWWWWWWWWWWWWWWW

9 WW

Pirate to walk (W) or dig (D), to finish game press Enter:

0.0 hours spent digging

20.2 hours spent walking

The score is 90

Press Enter to finish

1

for more: tyrionpapers.com

MARK SCHEME – AS COMPUTER SCIENCE – 7516/1 – JUNE 2025

14

16 1 2 marks for AO3 (design) and 8 marks for AO3 (programming)

Marking guidance:

Evidence of AO3 design – 2 marks:

Evidence of design to look for in response:

1. Identify the need to ask for row and column;

2. Identify the need to test for sand or water to check for a beach;

Note: AO3 (design) points are for selecting appropriate techniques to use to solve the

problem, so should be credited whether the syntax of programming language

statements is correct or not and regardless of whether the solution works.

Evidence of AO3 programming – 8 marks:

Evidence of programming to look for in response:

3. Ask for user input whether different landing place required;

4. Correctly assign user input to entered row and column variables;

5. Check that the entered row and column represent sand;

6. Correctly check that entered position is next to water;

7. only if on sand and next to water …

8. … Set pirate position to entered position;

9. … and put pirate on map and display map;

10. … otherwise output a suitable message;

Max 9 if any errors

10

for more: tyrionpapers.com

MARK SCHEME – AS COMPUTER SCIENCE – 7516/1 – JUNE 2025

15

16 2 Mark is for AO3 (evaluate)

**** SCREEN CAPTURE ****

Must match code from 16.1, including prompts on screen capture matching those in

code.

Code for 16.1 must be sensible.

X marks the spot where the pirate comes ashore

Do you want the pirate to land elsewhere? (Y/N): Y

Which row is the pirate coming ashore? 6

Which column is the pirate coming ashore? 1

 012345678901234567890123456789012345678901

0 WW

1 WWWWWWW.........................WWWWWWWWWW

2 WWWWW.............................WWWWWWWW N

3 WWWW................................WWWWWW NW | NE

4 WW.....................R..............WWWW \ | /

5 W......................................WWW W -----|----- E

6 WP......................................WW / | \

7 W............*..*...*....................W SW | SE

8 W..W S

9 W...........*.......*...........H........W

0 W...............*........................W

1 W............*....*......................W

2 WW....................................BBWW

3 WWW..................................BBWWW

4 WWWWW......................BBBBBB...BBWWWW

5 WWWWWW....................BBWWWWWBBBBWWWWW

6 WWWWWWW................BBBWWWWWWWWWWWWWWWW

7 WWWWWWWWWW............BBWWWWWWWWWWWWWWWWWW

8 WWWWWWWWWWW.....X....BBWWWWWWWWWWWWWWWWWWW

9 WW

1

for more: tyrionpapers.com

MARK SCHEME – AS COMPUTER SCIENCE – 7516/1 – JUNE 2025

16

16 3 Mark is for AO3 (evaluate)

**** SCREEN CAPTURE ****

Must match code from 16.1, including prompts on screen capture matching those in

code.

Code for 16.1 must be sensible.

X marks the spot where the pirate comes ashore

Do you want the pirate to land elsewhere? (Y/N): Y

Which row is the pirate coming ashore? 17

Which column is the pirate coming ashore? 21

That was not a good landing place, so the pirate lands at X

Pirate to walk (W) or dig (D), to finish game press Enter: W

Enter length (between 1 and 9) and direction (N, NE, E, SE, S,

SW, W, NW): 1N

 012345678901234567890123456789012345678901

0 WW

1 WWWWWWW.........................WWWWWWWWWW

2 WWWWW.............................WWWWWWWW N

3 WWWW................................WWWWWW NW | NE

4 WW.....................R..............WWWW \ | /

5 W......................................WWW W -----|----- E

6 W.......................................WW / | \

7 W............*..*...*....................W SW | SE

8 W..W S

9 W...........*.......*...........H........W

0 W...............*........................W

1 W............*....*......................W

2 WW....................................BBWW

3 WWW..................................BBWWW

4 WWWWW......................BBBBBB...BBWWWW

5 WWWWWW....................BBWWWWWBBBBWWWWW

6 WWWWWWW................BBBWWWWWWWWWWWWWWWW

7 WWWWWWWWWW......P.....BBWWWWWWWWWWWWWWWWWW

8 WWWWWWWWWWW.....X....BBWWWWWWWWWWWWWWWWWWW

9 WW

1

for more: tyrionpapers.com

MARK SCHEME – AS COMPUTER SCIENCE – 7516/1 – JUNE 2025

17

17 1 3 marks for AO3 (design) and 9 marks for AO3 (programming)

Level Description
Mark

Range

3

A line of reasoning has been followed to arrive at a logically

structured working or almost fully working programmed solution.

All of the appropriate design decisions have been taken.

9–12

2

There is evidence that a line of reasoning has been partially

followed. There is evidence of some appropriate design work.

This is a partially working programmed solution.

5–8

1

An attempt has been made to amend the subroutine
PirateWalks or to create one of the other two subroutines.

Some appropriate programming statements have been written.

There is little evidence to suggest that a line of reasoning has been

followed or that the solution has been designed. The statements

written may or may not be syntactically correct and the subroutines

will have very little or none of the extra required functionality. It is

unlikely that any of the key design elements of the task have been

recognised.

1–4

Marking guidance:

Evidence of AO3 design – 3 marks:

Evidence of design to look for in response:

1. Attempt to test for pirate west of hut as a subroutine.
2. Recognise the need for a nested loop to find the rock/treasure in the hidden map.
3. Attempt to calculate distance of treasure from rock in one direction.

Note: AO3 (design) points are for selecting appropriate techniques to use to solve the

problem, so should be credited whether the syntax of programming language

statements is correct or not and regardless of whether the solution works.

Evidence of AO3 programming – 9 marks:

Evidence of programming to look for in response:

4. Correct parameters and return values for WestOfHut.

5. Correct parameters for GetClue.

6. Correctly search for rock.
7. Correctly search for treasure.
8. Correctly calculate distance of treasure from rock in NS and EW direction within

subroutine GetClue

9. Output distance in NS and EW direction within subroutine GetClue DPT if in wrong

subroutine
10. Ensure distances are positive.
11. Call WestOfHut in correct place in PirateWalks.

12. Call GetClue under correct conditions.

Max 11 if code does not function correctly

12

for more: tyrionpapers.com

MARK SCHEME – AS COMPUTER SCIENCE – 7516/1 – JUNE 2025

18

17 2 Mark is for AO3 (evaluate)

**** SCREEN CAPTURE ****

Must match code from 17.1, including prompts on screen capture matching those in

code.

Code for 17.1 must be sensible.

Screen capture showing:

 012345678901234567890123456789012345678901

0 WW

1 WWWWWWW.........................WWWWWWWWWW

2 WWWWW.............................WWWWWWWW N

3 WWWW................................WWWWWW NW | NE

4 WW.....................R..............WWWW \ | /

5 W......................................WWW W -----|----- E

6 W.......................................WW / | \

7 W............*..*...*....................W SW | SE

8 W..W S

9 W...........*.......*..........PH........W

0 W...............*........................W

1 W............*....*......................W

2 WW....................................BBWW

3 WWW..................................BBWWW

4 WWWWW......................BBBBBB...BBWWWW

5 WWWWWW....................BBWWWWWBBBBWWWWW

6 WWWWWWW................BBBWWWWWWWWWWWWWWWW

7 WWWWWWWWWW............BBWWWWWWWWWWWWWWWWWW

8 WWWWWWWWWWW.....X....BBWWWWWWWWWWWWWWWWWWW

9 WW

The treasure is 2 squares away from the rock in the North -

South direction

The treasure is 4 squares away from the rock in the East - West

direction

1

for more: tyrionpapers.com

MARK SCHEME – AS COMPUTER SCIENCE – 7516/1 – JUNE 2025

19

VB.Net

03 1 Sub Main()

 Dim S As String = ""

 Dim Letter1, Letter2 As Char

 Dim Max As Integer

 Dim Matched As Boolean ' MP1

 While S <> "x" ' MP2

 Console.Write("Enter a word or phrase: ")

 S = Console.ReadLine() ' MP3

 Max = S.Length - 1 ' MP4

 Matched = True

 For i = 0 To Max ' MP5

 Letter1 = S(i)

 Letter2 = S(Max - i)

 If Letter1 <> Letter2 Then ' MP6

 Matched = False ' MP7

 End If

 Next

 If Matched = True Then

 Console.WriteLine("Palindrome")

 Else

 Console.WriteLine("Not a palindrome") ' MP8

 End If

 End While

 Console.ReadLine()

End Sub

8

for more: tyrionpapers.com

MARK SCHEME – AS COMPUTER SCIENCE – 7516/1 – JUNE 2025

20

15 1 Sub ResetPirateRecord(ByRef Pirate As PirateRecord)

 Pirate.Row = 0

 Pirate.Column = 0

 Pirate.Score = 100

 Pirate.DigTime = 0.0

 Pirate.TreasureFound = False

 Pirate.NumberOfCoinsFound = 0

 Pirate.WalkTime = 0.0 ' MP1 Task 1

End Sub

Sub PirateWalks(Map(,) As String, MapSize As MapSizeRecord,

HiddenMap(,) As String, ByRef Pirate As PirateRecord)

 Dim ObstacleInPath As Boolean = True

 Dim ValidDistance As Boolean = False

 Dim ValidDirection As Boolean = False

 Dim WalkData, Direction As String

 Dim Row, Column, NumberOfSquares As Integer

 While ObstacleInPath Or Not ValidDistance Or Not ValidDirection

 Console.Write("Enter length (1 to 9) and direction (N, NE, E, SE,

S, SW, W, NW): ")

 WalkData = Console.ReadLine()

 Row = Pirate.Row

 Column = Pirate.Column

 ValidDistance = CheckDistance(WalkData(0), NumberOfSquares)

 Direction = WalkData.Substring(1)

 ValidDirection = CheckDirection(Direction, Row, Column,

NumberOfSquares)

 If Row >= MapSize.Rows Or Column >= MapSize.Columns Or Row < 0 Or

Column < 0 Then

 ValidDirection = False

 Console.WriteLine("Error")

 End If

 If ValidDirection Then

 ObstacleInPath = CheckPath(Map, Pirate.Row, Pirate.Column, Row,

Column, Direction)

 If ObstacleInPath Then

 Console.WriteLine("Pirate can't walk this way as there is an

obstacle in the way")

 End If

 End If

 End While

 Move(Map, MapSize, Pirate, Row, Column)

 If Len(Direction) = 1 Then
 Pirate.WalkTime += NumberOfSquares ' MP2

 Else

 Pirate.WalkTime += NumberOfSquares * 1.4 ' MP3 Task 2

 End If

End Sub

Sub DisplayResults(Pirate As PirateRecord)

 If Pirate.NumberOfCoinsFound > 0 Then

 Console.WriteLine($"{Pirate.NumberOfCoinsFound} gold coins found")

 End If

 Console.WriteLine($"{Pirate.DigTime:N} hours spent digging")

 Console.WriteLine($"{Pirate.WalkTime:N} hours spent walking") ' MP4

Task3

 Console.WriteLine($"The score is { Pirate.Score }")

End Sub

4

for more: tyrionpapers.com

MARK SCHEME – AS COMPUTER SCIENCE – 7516/1 – JUNE 2025

21

Alternative answer 1 for mark points 2 and 3:

 Move(Map, MapSize, Pirate, Row, Column)

 If "EWNS".Contains(Direction) Then 'Task 2 NB EW or WE needs to be

first

 Pirate.WalkTime += NumberOfSquares ' MP2

 Else

 Pirate.WalkTime += NumberOfSquares * 1.4 ' MP3 Task 2

 End If

Alternative answer 2 for mark points 2 and 3:

 Move(Map, MapSize, Pirate, Row, Column)

 If {"N", "S", "E", "W"}.Contains(Direction) Then

 Pirate.WalkTime += NumberOfSquares ' MP2

 Else

 Pirate.WalkTime += NumberOfSquares * 1.4 ' MP3 Task 2

 End If

Alternative answer 3 for mark points 2 and 3:

 Move(Map, MapSize, Pirate, Row, Column)

 If Direction = "N" Or Direction = "S" Or Direction = "E" Or Direction

= "W" Then 'Task 2

 Pirate.WalkTime += NumberOfSquares ' MP2

 Else

 Pirate.WalkTime += NumberOfSquares * 1.4 ' MP3 Task 2

 End If

for more: tyrionpapers.com

MARK SCHEME – AS COMPUTER SCIENCE – 7516/1 – JUNE 2025

22

16 1 Sub FindLandingPlace(Map(,) As String, MapSize As MapSizeRecord, ByRef

Pirate As PirateRecord)

 Dim Found As Boolean = False

 Dim Row, Column As Integer

 Row = 0

 While Not Found And Row < MapSize.Rows

 Column = 0

 While Not Found And Column < MapSize.Columns

 If Map(Row, Column) = "X" Then

 Found = True

 Pirate.Row = Row

 Pirate.Column = Column

 End If

 Column += 1

 End While

 Row += 1

 End While

 DisplayMap(Map, MapSize)

 Console.WriteLine("X marks the spot where the pirate comes ashore")

 Console.WriteLine()

 Console.Write("Do you want the pirate to land elsewhere? (Y/N) ")

 Dim Reply As String = Console.ReadLine().ToUpper ' MP3

 If Reply = "Y" Then

 Console.Write("Which row is the pirate coming ashore? ")

 Row = Convert.ToInt32(Console.ReadLine())

 Console.Write("Which column is the pirate coming ashore? ") ' MP1

 Column = Convert.ToInt32 (Console.ReadLine()) ' MP4

 If Map(Row, Column) = SAND And (Map(Row + 1, Column) = WATER Or

Map(Row - 1, Column) = WATER Or Map(Row, Column + 1) = WATER Or

Map(Row, Column - 1) = WATER) Then ' MP2 MP5 MP6 MP7

 Pirate.Row = Row

 Pirate.Column = Column ' MP8

 Map(Row, Column) = PIRATES

 DisplayMap(Map, MapSize) ' MP9

 Else

 Console.WriteLine("That was not a good landing place, so the

priate lands at X") ' MP10

 End If

 End If

End Sub

10

for more: tyrionpapers.com

MARK SCHEME – AS COMPUTER SCIENCE – 7516/1 – JUNE 2025

23

17 1 Function WestOfHut(Map(,) As String, Pirate As PirateRecord) As Boolean

 If Map(Pirate.Row, Pirate.Column + 1) = HUT Then ' MP1 Task 1

 Return True

 Else

 Return False ' MP4

 End If

End Function

Sub GetClue(Map(,) As String, MapSize As MapSizeRecord, HiddenMap(,) As

String) ' MP5 Task 2

 Dim RockRow, RockColumn, TreasureRow, TreasureColumn as Integer

 Dim NSDistance, EWDistance As Integer

 For Row = 0 To MapSize.Rows - 1

 For Column = 0 To MapSize.Columns - 1 ' MP2

 If Map(Row, Column) = ROCK Then ' MP6

 RockRow = Row

 RockColumn = Column

 End If

 If HiddenMap(Row, Column) = TREASURE Then ' MP7

 TreasureRow = Row

 TreasureColumn = Column

 End If

 Next

 Next

 NSDistance = Math.Abs(RockRow - TreasureRow) ' MP3

 EWDistance = Math.Abs(RockColumn - TreasureColumn) ' MP8 MP10

 Console.WriteLine($"The treasure is {NSDistance} squares way from the

rock in the North - South direction")

 Console.WriteLine($" The treasure is {EWDistance} squares away from

the rock in the East - West direction") ' MP9

End Sub

Sub PirateWalks(Map(,) As String, MapSize As MapSizeRecord,

HiddenMap(,) As String, ByRef Pirate As PirateRecord)

 Dim ObstacleInPath As Boolean = True

 Dim ValidDistance As Boolean = False

 Dim ValidDirection As Boolean = False

 Dim WalkData, Direction As String

 Dim Row, Column, NumberOfSquares As Integer

 While ObstacleInPath Or Not ValidDistance Or Not ValidDirection

 Console.Write("Enter length (1 to 9) and direction (N, NE, E, SE,

S, SW, W, NW): ")

 WalkData = Console.ReadLine()

 Row = Pirate.Row

 Column = Pirate.Column

 ValidDistance = CheckDistance(WalkData(0), NumberOfSquares)

 Direction = WalkData.Substring(1)

 ValidDirection = CheckDirection(Direction, Row, Column,

NumberOfSquares)

 If Row >= MapSize.Rows Or Column >= MapSize.Columns Or Row < 0 Or

Column < 0 Then

 ValidDirection = False

 Console.WriteLine("Error")

 End If

 If ValidDirection Then

 ObstacleInPath = CheckPath(Map, Pirate.Row, Pirate.Column, Row,

Column, Direction)

 If ObstacleInPath Then

 Console.WriteLine("Pirate can't walk this way as there is an

obstacle in the way")

 End If

12

for more: tyrionpapers.com

MARK SCHEME – AS COMPUTER SCIENCE – 7516/1 – JUNE 2025

24

 End If

 End While

 Move(Map, MapSize, Pirate, Row, Column)

...

 If WestOfHut(Map, Pirate) Then ' MP11 Task 3

 GetClue(Map, MapSize, HiddenMap) ' MP12

 End If

End Sub

for more: tyrionpapers.com

MARK SCHEME – AS COMPUTER SCIENCE – 7516/1 – JUNE 2025

25

Python 3

03 1 S = ""

while S != "x": # MP1 # MP2

 S = input("Enter a word or phrase: ") # MP3

 Max = len(S) - 1 # MP4

 Matched = True

 for i in range(Max + 1): # MP5

 Letter1 = S[i]

 Letter2 = S[Max - i]

 if Letter1 != Letter2: # MP6

 Matched = False # MP7

 if Matched:

 print("Palindrome")

 else:

 print("Not a palindrome") # MP8

8

for more: tyrionpapers.com

MARK SCHEME – AS COMPUTER SCIENCE – 7516/1 – JUNE 2025

26

15 1 def ResetPirateRecord(Pirate):

 Pirate.Row = 0

 Pirate.Column = 0

 Pirate.Score = 100

 Pirate.DigTime = 0.0

 Pirate.TreasureFound = False

 Pirate.NumberOfCoinsFound = 0

 Pirate.WalkTime = 0.0 # MP1 Task 1

def PirateWalks(Map, MapSize, HiddenMap, Pirate):

 ObstacleInPath = True

 ValidDistance = False

 ValidDirection = False

 while ObstacleInPath or not ValidDistance or not ValidDirection:

 WalkData = input("Enter length (1 to 9) and direction (N, NE, E, SE, S,

SW, W, NW): ")

 Row = Pirate.Row

 Column = Pirate.Column

 ValidDistance, NumberOfSquares = CheckDistance(WalkData[0])

 Direction = WalkData[1:]

 ValidDirection, Row, Column = CheckDirection(Direction, Row, Column,

NumberOfSquares)

 if Row >= MapSize.Rows or Column >= MapSize.Columns or Row < 0 or Column

< 0:

 ValidDirection = False

 print("Error")

 if ValidDirection:

 ObstacleInPath = CheckPath(Map, Pirate.Row, Pirate.Column, Row,

Column, Direction)

 if ObstacleInPath:

 print("Pirate can't walk this way as there is an obstacle in the

way")

 Move(Map, MapSize, Pirate, Row, Column)

 if len(Direction) == 1: # Task 2

 Pirate.WalkTime += NumberOfSquares # MP2

 else: #

 Pirate.WalkTime += 1.4 * NumberOfSquares # MP3

def DisplayResults(Pirate):

 if Pirate.NumberOfCoinsFound > 0:

 print(f"{Pirate.NumberOfCoinsFound} gold coins found")

 print(f"{Pirate.DigTime} hours spent digging")

 print(f"{Pirate.WalkTime} hours spent walking") # MP4 Task 3

 print(f"The score is {Pirate.Score}")

Alternative answer 1 for mark points 2 and 3:

 Move(Map, MapSize, Pirate, Row, Column)

 if Direction in "WESN": # Task 2

 Pirate.WalkTime += NumberOfSquares # MP2

 else: #

 Pirate.WalkTime += 1.4 * NumberOfSquares # MP3

Alternative answer 2 for mark points 2 and 3:

 Move(Map, MapSize, Pirate, Row, Column)

 if Direction in ["N", "S", "E", "W"]: # Task 2

 Pirate.WalkTime += NumberOfSquares # MP2

 else: #

 Pirate.WalkTime += 1.4 * NumberOfSquares # MP3

4

for more: tyrionpapers.com

MARK SCHEME – AS COMPUTER SCIENCE – 7516/1 – JUNE 2025

27

Alternative answer 3 for mark points 2 and 3:

 Move(Map, MapSize, Pirate, Row, Column)

 if Direction == "N" or Direction == "S" or Direction == "E" or Direction

== "W": # Task 2

 Pirate.WalkTime += NumberOfSquares # MP2

 else: #

 Pirate.WalkTime += 1.4 * NumberOfSquares # MP3

16 1 def FindLandingPlace(Map, MapSize, Pirate):

 Found = False

 Row = 0

 while not Found and Row < MapSize.Rows:

 Column = 0

 while not Found and Column < MapSize.Columns:

 if Map[Row][Column] == 'X':

 Found = True

 Pirate.Row = Row

 Pirate.Column = Column

 Column += 1

 Row += 1

 DisplayMap(Map, MapSize)

 print("X marks the spot where the pirate comes ashore")

 print()

 Answer = input("Do you want the pirate to land elsewhere? (Y/N): ") # MP3

 if Answer == "Y":

 Row = 0

 Column = 0

 Row = int(input("Which row is the pirate coming ashore? ")) # MP1

 Column = int(input("Which column is the pirate coming ashore? ")) # MP4

 OnSand = False

 NextToWater = False

 if Map[Row][Column] == SAND: # MP5

 OnSand = True

 if Map[Row - 1][Column] == WATER or Map[Row + 1][Column] == WATER: # MP2

 NextToWater = True

 if Map[Row][Column + 1] == WATER or Map[Row][Column - 1] == WATER: # MP6

 NextToWater = True

 if OnSand and NextToWater: # MP7

 Pirate.Row = Row #

 Pirate.Column = Column # MP8

 Map[Row][Column] = PIRATES

 DisplayMap(Map, MapSize) # MP9

 else:

 print("That was not a good landing place, so the pirate lands at X") # MP10

10

for more: tyrionpapers.com

MARK SCHEME – AS COMPUTER SCIENCE – 7516/1 – JUNE 2025

28

17 1 def WestOfHut(Map, Pirate):

 if Map[Pirate.Row][Pirate.Column + 1] == HUT: # MP1 Task 1

 return True #

 else: #

 return False # MP4

def GetClue(Map, MapSize, HiddenMap): # MP5 Task 2

 for Row in range(MapSize.Rows):

 for Column in range(MapSize.Columns): # MP2

 if Map[Row][Column] == ROCK: # MP6

 RockRow = Row

 RockColumn = Column

 for Row in range(MapSize.Rows):

 for Column in range(MapSize.Columns):

 if HiddenMap[Row][Column] == TREASURE: # MP7

 TreasureRow = Row

 TreasureColumn = Column

 DistanceFromRock_NS = TreasureRow - RockRow # MP3

 if DistanceFromRock_NS < 0:

 DistanceFromRock_NS = - DistanceFromRock_NS

 DistanceFromRock_WE = TreasureColumn - RockColumn # MP8

 if DistanceFromRock_WE < 0:

 DistanceFromRock_WE = - DistanceFromRock_WE # MP10

 print(f"The treasure is {DistanceFromRock_NS} squares away from the rock

in the North - South direction") #

 print(f"The treasure is {DistanceFromRock_WE} squares away from the rock

in the East - West direction") # MP9

def PirateWalks(Map, MapSize, HiddenMap, Pirate):

 ObstacleInPath = True

 ValidDistance = False

 ValidDirection = False

 while ObstacleInPath or not ValidDistance or not ValidDirection:

 WalkData = input("Enter length (1 to 9) and direction (N, NE, E, SE, S,

SW, W, NW): ")

 Row = Pirate.Row

 Column = Pirate.Column

 ValidDistance, NumberOfSquares = CheckDistance(WalkData[0])

 Direction = WalkData[1:]

 ValidDirection, Row, Column = CheckDirection(Direction, Row, Column,

NumberOfSquares)

 if Row >= MapSize.Rows or Column >= MapSize.Columns or Row < 0 or Column

< 0:

 ValidDirection = False

 print("Error")

 if ValidDirection:

 ObstacleInPath = CheckPath(Map, Pirate.Row, Pirate.Column, Row,

Column, Direction)

 if ObstacleInPath:

 print("Pirate can't walk this way as there is an obstacle in the

way")

 Move(Map, MapSize, Pirate, Row, Column)

...

 if WestOfHut(Map, Pirate): # MP11 Task 3

 GetClue(Map, MapSize, HiddenMap) # MP12

12

for more: tyrionpapers.com

MARK SCHEME – AS COMPUTER SCIENCE – 7516/1 – JUNE 2025

29

C#

03 1 string s = "";

int max = 0;

bool matched = true;

string letter1 = "";

string letter2 = ""; // MP1

while (s != "x") // MP2

{

 Console.Write("Enter a word or phrase: ");

 s = Console.ReadLine(); // MP3

 max = s.Length - 1; // MP4

 matched = true;

 for (int i = 0; i <= max; i++) // MP5

 {

 letter1 = s[i].ToString();

 letter2 = s[max - i].ToString();

 if (letter1 != letter2) // MP6

 {

 matched = false; // MP7

 }

 }

 if (matched == true)

 {

 Console.WriteLine("Palindrome");

 }

 else

 {

 Console.WriteLine("Not a Palindrome"); // MP8

 }

}

8

for more: tyrionpapers.com

MARK SCHEME – AS COMPUTER SCIENCE – 7516/1 – JUNE 2025

30

15 1 public static void ResetPirateRecord(ref PirateRecord pirate)

 {

 pirate.row = 0;

 pirate.column = 0;

 pirate.score = 100;

 pirate.digTime = 0.0;

 pirate.treasureFound = false;

 pirate.numberOfCoinsFound = 0;

 pirate.walkTime = 0.0; // MP1 Task 1

 }

 static void PirateWalks(string[,] map, MapSizeRecord mapSize,

string[,] hiddenMap, ref PirateRecord pirate)

 {

 bool obstacleInPath;

 bool validDistance;

 bool validDirection;

 string walkData;

 string direction = "";

 int row = 0;

 int column = 0;

 int numberOfSquares = 0;

 obstacleInPath = true;

 validDistance = false;

 validDirection = false;

 while (obstacleInPath || !validDistance || !validDirection)

 {

 Console.Write("Enter length (1 to 9) and direction (N, NE,

E, SE, S, SW, W, NW): ");

 walkData = Console.ReadLine();

 row = pirate.row;

 column = pirate.column;

 (validDistance, numberOfSquares) =

CheckDistance(walkData[0].ToString());

 direction = walkData.Substring(1);

 (validDirection, row, column) = CheckDirection(direction,

row, column, numberOfSquares);

 if (row >= mapSize.rows || column >= mapSize.columns ||

row < 0 || column < 0)

 {

 validDirection = false;

 Console.WriteLine("Error");

 }

 if (validDirection)

 {

 obstacleInPath = CheckPath(map, pirate.row,

pirate.column, row, column, direction);

 if (obstacleInPath)

 {

 Console.WriteLine("Pirate can't walk this way as there

is an obstacle in the way");

 }

 }

 }

 Move(map, mapSize, ref pirate, row, column);

 if (direction.Length == 1) // Task 2

4

for more: tyrionpapers.com

MARK SCHEME – AS COMPUTER SCIENCE – 7516/1 – JUNE 2025

31

 {

 pirate.walkTime += numberOfSquares; // MP2

 }

 else

 {

 pirate.walkTime += 1.4 * numberOfSquares; // MP3

 }

 }

for more: tyrionpapers.com

MARK SCHEME – AS COMPUTER SCIENCE – 7516/1 – JUNE 2025

32

16 1 public static void FindLandingPlace(string[,] map,

MapSizeRecord mapSize, ref PirateRecord pirate)

 {

 bool found = false;

 int row = 0;

 while (!found && (row < mapSize.rows))

 {

 int column = 0;

 while (!found && (column < mapSize.columns))

 {

 if (map[row, column] == "X")

 {

 found = true;

 pirate.row = row;

 pirate.column = column;

 }

 column++;

 }

 row++;

 }

 DisplayMap(map, mapSize);

 Console.WriteLine("X marks the spot where the pirate comes

ashore");

 Console.WriteLine();

 Console.Write("Do you want the pirate to land elsewhere

(Y/N) ");

 string answer = Console.ReadLine(); // MP3

 if (answer == "Y")

 {

 Console.Write("Which row is the pirate coming ashore? ");

 row = Convert.ToInt32(Console.ReadLine()); // MP1

 Console.Write("Which column is the pirate coming ashore?

");

 int column = Convert.ToInt32(Console.ReadLine()); // MP4

 bool onSand = false;

 bool nextToWater = false;

 if (map[row, column] == SAND) //MP5

 {

 onSand = true;

 }

 if (map[row - 1, column] == WATER || map[row + 1, column]

== WATER) // MP2

 {

 nextToWater = true;

 }

 if (map[row, column - 1] == WATER || map[row, column + 1]

== WATER) // MP6

 {

 nextToWater = true;

 }

 if (onSand && nextToWater) // MP7

 {

 pirate.row = row;

 pirate.column = column; // MP8

 map[row, column] = PIRATES;

 DisplayMap(map, mapSize); // MP9

10

for more: tyrionpapers.com

MARK SCHEME – AS COMPUTER SCIENCE – 7516/1 – JUNE 2025

33

 }

 else

 {

 Console.WriteLine("That was not a good landing place, so

the pirate lands at X"); // MP10

 }

 }

 }

for more: tyrionpapers.com

MARK SCHEME – AS COMPUTER SCIENCE – 7516/1 – JUNE 2025

34

17 1 private static bool WestOfHut(string[,] map, PirateRecord

pirate)

 {

 if (map[pirate.row, pirate.column + 1] == HUT) // MP1 Task 1

 {

 return true;

 }

 return false; // MP4

 }

 private static void GetClue(string[,] map, MapSizeRecord

mapSize, string[,] hiddenMap) // MP5 Task 2

 {

 int rockRow = 0, rockColumn = 0, treasureRow = 0,

treasureColumn = 0;

 int distanceFromRockNS = 0, distanceFromRockWE = 0;

 for (int row = 0; row < mapSize.rows; row++)

 {

 for (int column = 0; column < mapSize.columns; column++)

// MP2

 {

 if (map[row, column] == ROCK) // MP6

 {

 rockRow = row;

 rockColumn = column;

 }

 }

 }

 for (int row = 0; row < mapSize.rows; row++)

 {

 for (int column = 0; column < mapSize.columns; column++)

 {

 if (hiddenMap[row, column] == TREASURE) // MP7

 {

 treasureRow = row;

 treasureColumn = column;

 }

 }

 }

 distanceFromRockNS = treasureRow - rockRow; // MP3

 if (distanceFromRockNS < 0)

 {

 distanceFromRockNS = -distanceFromRockNS;

 }

 distanceFromRockWE = treasureColumn - rockColumn; // MP8

 if (distanceFromRockWE < 0)

 {

 distanceFromRockWE = -distanceFromRockWE; // MP10

 }

 Console.WriteLine($"The treasure is {distanceFromRockNS}

squares away from the rock in the North - South direction");

 Console.WriteLine($"The treasure is {distanceFromRockWE}

squares away from the rock in the East - West direction"); //

MP9

 }

12

for more: tyrionpapers.com

MARK SCHEME – AS COMPUTER SCIENCE – 7516/1 – JUNE 2025

35

 static void PirateWalks(string[,] map, MapSizeRecord mapSize,

string[,] hiddenMap, ref PirateRecord pirate)

 {

 bool obstacleInPath;

 bool validDistance;

 bool validDirection;

 string walkData;

 string direction = "";

 int row = 0;

 int column = 0;

 int numberOfSquares = 0;

 obstacleInPath = true;

 validDistance = false;

 validDirection = false;

 while (obstacleInPath || !validDistance || !validDirection)

 {

 Console.Write("Enter length (1 to 9) and direction (N, NE,

E, SE, S, SW, W, NW): ");

 walkData = Console.ReadLine();

 row = pirate.row;

 column = pirate.column;

 (validDistance, numberOfSquares) =

CheckDistance(walkData[0].ToString());

 direction = walkData.Substring(1);

 (validDirection, row, column) = CheckDirection(direction,

row, column, numberOfSquares);

 if (row >= mapSize.rows || column >= mapSize.columns ||

row < 0 || column < 0)

 {

 validDirection = false;

 Console.WriteLine("Error");

 }

 if (validDirection)

 {

 obstacleInPath = CheckPath(map, pirate.row,

pirate.column, row, column, direction);

 if (obstacleInPath)

 {

 Console.WriteLine("Pirate can't walk this way as there

is an obstacle in the way");

 }

 }

 }

 Move(map, mapSize, ref pirate, row, column);

 if (WestOfHut(map, pirate)) // MP11 Task 3

 {

 GetClue(map, mapSize, hiddenMap); // MP12

 }

 }

for more: tyrionpapers.com

MARK SCHEME – AS COMPUTER SCIENCE – 7516/1 – JUNE 2025

36

Java

03 1 String S = "";

while (!S.equals("x")) { // MP2

 Console.write("Enter a word or phrase: ");

 S = Console.readLine(); // MP3

 int Max = S.length() - 1; // MP4

 boolean Matched = true;

 for (int i=0; i<Max+1; i++) { // MP5

 char Letter1 = S.charAt(i);

 char Letter2 = S.charAt(Max - i); // MP1

 if (Letter1 != Letter2) { // MP6

 Matched = false; // MP7

 }

 }

 if (Matched) {

 Console.println("Palindrome");

 } else {

 Console.println("Not a palindrome"); // MP8

 }

}

8

for more: tyrionpapers.com

MARK SCHEME – AS COMPUTER SCIENCE – 7516/1 – JUNE 2025

37

15 1 void ResetPirateRecord(PirateRecord Pirate) {

 Pirate.Row = 0;

 Pirate.Column = 0;

 Pirate.Score = 100;

 Pirate.DigTime = 0.0f;

 Pirate.TreasureFound = false;

 Pirate.NumberOfCoinsFound = 0;

 Pirate.WalkTime = 0.0f; // MP1 Task 1

 }

 void PirateWalks(String[][] Map, MapSizeRecord MapSize, String[][]

HiddenMap, PirateRecord Pirate) {

 boolean ObstacleInPath = true;

 boolean ValidDistance = false;

 boolean ValidDirection = false;

 int Row = 0, Column = 0, NumberOfSquares = 0;

 String Direction = "";

 while (ObstacleInPath || !ValidDistance || !ValidDirection) {

 Console.write("Enter length (1 to 9) and direction (N, NE, E, SE, S,

SW, W, NW): ");

 String WalkData = Console.readLine();

 Row = Pirate.Row;

 Column = Pirate.Column;

 MoveCheckRecord DistanceData =

CheckDistance(String.valueOf(WalkData.charAt(0)));

 ValidDistance = DistanceData.valid;

 NumberOfSquares = DistanceData.numberOfSquares;

 Direction = WalkData.substring(1);

 MoveCheckRecord DirectionData = CheckDirection(Direction, Row, Column,

NumberOfSquares);

 ValidDirection = DirectionData.valid;

 Row = DirectionData.row;

 Column = DirectionData.column;

 if (Row >= MapSize.Rows || Column >= MapSize.Columns || Row < 0 ||

Column < 0) {

 ValidDirection = false;

 Console.writeLine("Error");

 }

 if (ValidDirection) {

 ObstacleInPath = CheckPath(Map, Pirate.Row, Pirate.Column, Row,

Column, Direction);

 if (ObstacleInPath) {

 Console.writeLine("Pirate can't walk this way as there is an

obstacle in the way");

 }

 }

 }

 Move(Map, MapSize, Pirate, Row, Column);

 if (Direction.length() == 1) {

 Pirate.WalkTime += NumberOfSquares; // MP2 Task 2

 } else {

 Pirate.WalkTime += 1.4 * NumberOfSquares; // MP3 Task 2

 }

 }

 void DisplayResults(PirateRecord Pirate) {

 if (Pirate.NumberOfCoinsFound > 0) {

 Console.writeLine(Pirate.NumberOfCoinsFound + " gold coins found");

 }

 Console.writeLine(Pirate.DigTime + " hours spent digging");

for more: tyrionpapers.com

MARK SCHEME – AS COMPUTER SCIENCE – 7516/1 – JUNE 2025

38

 Console.writeLine(Pirate.WalkTime + " hours spent walking"); // MP4

Task3

 Console.writeLine("The score is " + Pirate.Score);

 }

Alternative answer 1 for mark points 2 and 3:

if ("NSEW".contains(Direction)) {

 Pirate.WalkTime += NumberOfSquares;

} else {

 Pirate.WalkTime += 1.4 * NumberOfSquares;

}

Alternative answer 2 for mark points 2 and 3:

if (Direction == "N" || Direction == "S" || Direction == "E" || Direction ==

"W") {

 Pirate.WalkTime += NumberOfSquares;

} else {

 Pirate.WalkTime += 1.4 * NumberOfSquares;

}

for more: tyrionpapers.com

MARK SCHEME – AS COMPUTER SCIENCE – 7516/1 – JUNE 2025

39

16 1 void FindLandingPlace(String[][] Map, MapSizeRecord MapSize, PirateRecord Pirate) {

 boolean Found = false;

 int Row = 0;

 while (!Found && Row < (MapSize.Rows)) {

 int Column = 0;

 while (!Found && Column < (MapSize.Columns)) {

 if (Map[Row][Column].equals("X")) {

 Found = true;

 Pirate.Row = Row;

 Pirate.Column = Column;

 }

 Column += 1;

 }

 Row += 1;

 }

 DisplayMap(Map, MapSize);

 Console.writeLine("X marks the spot where the pirate comes ashore");

 Console.writeLine();

 Console.write("Do you want the pirate to land elsewhere? (Y/N): ");

 String Answer = Console.readLine(); // MP3

 if (Answer.equals("Y")) {

 Row = 0;

 int Column = 0;

 Console.write("Which row is the pirate coming ashore? ");

 Row = Integer.parseInt(Console.readLine()); // MP1

 Console.write("Which column is the pirate coming ashore? ");

 Column = Integer.parseInt(Console.readLine()); // MP4

 boolean OnSand = false;

 boolean NextToWater = false;

 if (Map[Row][Column].equals(SAND)) { // MP5

 OnSand = true;

 }

 if (Map[Row-1][Column].equals(WATER) || Map[Row+1][Column].equals(WATER)) {

 NextToWater = true;

 }

 if (Map[Row][Column].equals(WATER) || Map[Row][Column-1].equals(WATER)) {

 NextToWater = true; // MP2 // MP6

 }

 if (OnSand && NextToWater) { // MP7

 Pirate.Row = Row;

 Pirate.Column = Column; // MP8

 Map[Row][Column] = PIRATES;

 DisplayMap(Map, MapSize); // MP9

 } else {

 Console.writeLine("That was not a good landing place, so the pirate lands at

X"); // MP10

 }

 }

}

10

for more: tyrionpapers.com

MARK SCHEME – AS COMPUTER SCIENCE – 7516/1 – JUNE 2025

40

17 1 boolean WestOfHut(String[][] Map, PirateRecord Pirate) {

 return Map[Pirate.Row][Pirate.Column + 1].equals(HUT); // MP1 MP4 Task 1

}

void GetClue(String[][] Map, MapSizeRecord MapSize, String[][] HiddenMap,

PirateRecord Pirate) { // MP5 Task 2

 int RockRow = 0, RockColumn = 0, TreasureRow = 0, TreasureColumn = 0;

 for (int row = 0; row < MapSize.Rows; row++) {

 for (int column = 0; column < MapSize.Columns; column++) { // MP2

 if (Map[row][column].equals(ROCK)) { // MP6

 RockRow = row;

 RockColumn = column;

 }

 }

 }

 for (int row = 0; row < MapSize.Rows; row++) {

 for (int column=0; column < MapSize.Columns; column++) {

 if (HiddenMap[row][column].equals(TREASURE)) { // MP7

 TreasureRow = row;

 TreasureColumn = column;

 }

 }

 }

 int DistanceFromRock_NS = TreasureRow - RockRow; // MP3

 if (DistanceFromRock_NS < 0) {

 DistanceFromRock_NS *= -1;

 }

 int DistanceFromRock_WE = TreasureColumn - RockColumn; // MP6

 if (DistanceFromRock_WE < 0) {

 DistanceFromRock_WE *= -1; // MP10

 }

 Console.writeLine("The treasure is " + DistanceFromRock_NS + " squares

away from the rock in the North - South direction");

 Console.writeLine("The treasure is " + DistanceFromRock_WE + " squares

away from the rock in the East - West direction"); // MP9

}

void PirateWalks(String[][] Map, MapSizeRecord MapSize, String[][]

HiddenMap, PirateRecord Pirate) {

 boolean ObstacleInPath = true;

 boolean ValidDistance = false;

 boolean ValidDirection = false;

 int Row = 0, Column = 0, NumberOfSquares = 0;

 String Direction = "";

 while (ObstacleInPath || !ValidDistance || !ValidDirection) {

 Console.write("Enter length (1 to 9) and direction (N, NE, E, SE, S, SW,

W, NW): ");

 String WalkData = Console.readLine();

 Row = Pirate.Row;

 Column = Pirate.Column;

 MoveCheckRecord DistanceData =

CheckDistance(String.valueOf(WalkData.charAt(0)));

 ValidDistance = DistanceData.valid;

 NumberOfSquares = DistanceData.numberOfSquares;

 Direction = WalkData.substring(1);

 MoveCheckRecord DirectionData = CheckDirection(Direction, Row, Column,

NumberOfSquares);

 ValidDirection = DirectionData.valid;

 Row = DirectionData.row;

 Column = DirectionData.column;

12

for more: tyrionpapers.com

MARK SCHEME – AS COMPUTER SCIENCE – 7516/1 – JUNE 2025

41

 if (Row >= MapSize.Rows || Column >= MapSize.Columns || Row < 0 ||

Column < 0) {

 ValidDirection = false;

 Console.writeLine("Error");

 }

 if (ValidDirection) {

 ObstacleInPath = CheckPath(Map, Pirate.Row, Pirate.Column, Row,

Column, Direction);

 if (ObstacleInPath) {

 Console.writeLine("Pirate can't walk this way as there is an

obstacle in the way");

 }

 }

 }

 Move(Map, MapSize, Pirate, Row, Column);

 if (WestOfHut(Map, Pirate)) { // MP11 Task 3

 GetClue(Map, MapSize, HiddenMap, Pirate); // MP12

 }

}

for more: tyrionpapers.com

