AQA

AS

COMPUTER SCIENCE
7516/1

Paper 1

Mark scheme
June 2025

Version: 1.0 Final

2 56 A 7516/ 1/ MS

for more: tyrionpapers.com

MARK SCHEME - AS COMPUTER SCIENCE - 7516/1 - JUNE 2025

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant
questions, by a panel of subject teachers. This mark scheme includes any amendments made at the
standardisation events which all associates participate in and is the scheme which was used by them in
this examination. The standardisation process ensures that the mark scheme covers the students’
responses to questions and that every associate understands and applies it in the same correct way.
As preparation for standardisation each associate analyses a number of students’ scripts. Alternative
answers not already covered by the mark scheme are discussed and legislated for. If, after the
standardisation process, associates encounter unusual answers which have not been raised they are
required to refer these to the Lead Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and
expanded on the basis of students’ reactions to a particular paper. Assumptions about future mark
schemes on the basis of one year's document should be avoided; whilst the guiding principles of
assessment remain constant, details will change, depending on the content of a particular examination
paper.

No student should be disadvantaged on the basis of their gender identity and/or how they refer to the
gender identity of others in their exam responses.

A consistent use of ‘they/them’ as a singular and pronouns beyond ‘she/her’ or ‘he/him’ will be credited in
exam responses in line with existing mark scheme criteria.

Further copies of this mark scheme are available from aga.org.uk

Copyright information

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own
internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third
party even for internal use within the centre.

Copyright © 2025 AQA and its licensors. All rights reserved.

for more: tyrionpapers.com

MARK SCHEME - AS COMPUTER SCIENCE - 7516/1 - JUNE 2025

AS Computer Science
Paper 1 (7516/1) — applicable to all programming languages A, B, D and E

June 2025

The following annotation is used in the mark scheme:

; - means a single mark

I - means alternative response

/ - means an alternative word or sub-phrase
A. - means acceptable creditworthy answer
R. - means reject answer as not creditworthy
NE. - means not enough

l. - means ignore

DPT. - means ‘Don't penalise twice’. In some questions a specific error made by a candidate, if
repeated, could result in the loss of more than one mark. The DPT label indicates that this
mistake should only result in a candidate losing one mark, on the first occasion that the error is
made. Provided that the answer remains understandable, subsequent marks should be
awarded as if the error was not being repeated.

for more: tyrionpapers.com

MARK SCHEME - AS COMPUTER SCIENCE - 7516/1 - JUNE 2025

Level of response marking instructions

Level of response mark schemes are broken down into levels, each of which has a descriptor. The
descriptor for the level shows the average performance for the level. There are marks in each level.

Before you apply the mark scheme to a student’s answer read through the answer and annotate it (as
instructed) to show the qualities that are being looked for. You can then apply the mark scheme.

Step 1 Determine a level

Start at the lowest level of the mark scheme and use it as a ladder to see whether the answer meets the
descriptor for that level. The descriptor for the level indicates the different qualities that might be seen in
the student’s answer for that level. If it meets the lowest level then go to the next one and decide if it
meets this level, and so on, until you have a match between the level descriptor and the answer. With
practice and familiarity you will find that for better answers you will be able to quickly skip through the
lower levels of the mark scheme.

When assigning a level you should look at the overall quality of the answer and not look to pick holes in
small and specific parts of the answer where the student has not performed quite as well as the rest. If
the answer covers different aspects of different levels of the mark scheme you should use a best fit
approach for defining the level and then use the variability of the response to help decide the mark within
the level, ie if the response is predominantly level 3 with a small amount of level 4 material it would be
placed in level 3 but be awarded a mark near the top of the level because of the level 4 content.

Step 2 Determine a mark

Once you have assigned a level you need to decide on the mark. The descriptors on how to allocate
marks can help with this. The exemplar materials used during standardisation will help. There will be an
answer in the standardising materials which will correspond with each level of the mark scheme. This
answer will have been awarded a mark by the Lead Examiner. You can compare the student’s answer
with the example to determine if it is the same standard, better or worse than the example. You can then
use this to allocate a mark for the answer based on the Lead Examiner’s mark on the example.

You may well need to read back through the answer as you apply the mark scheme to clarify points and
assure yourself that the level and the mark are appropriate.

Indicative content in the mark scheme is provided as a guide for examiners. It is not intended to be
exhaustive and you must credit other valid points. Students do not have to cover all of the points
mentioned in the Indicative content to reach the highest level of the mark scheme.

An answer which contains nothing of relevance to the question must be awarded no marks.

for more: tyrionpapers.com

MARK SCHEME - AS COMPUTER SCIENCE - 7516/1 - JUNE 2025

Examiners are required to assign each of the candidate’s responses to the most appropriate level
according to its overall quality, and then allocate a single mark within the level. When deciding upon a
mark in a level, examiners should bear in mind the relative weightings of the assessment objectives

€g
In question 16.1, the marks available for the AO3 elements are as follows:

AO3 (design) 2 marks
AQO3 (programming) 8 marks

In question 17.1, the marks available for the AO3 elements are as follows:

AO3 (design) 3 marks
AO3 (programming) 9 marks

Where a candidate’s answer only reflects one element of the AO, the maximum mark they can receive
will be restricted accordingly.

for more: tyrionpapers.com

MARK SCHEME - AS COMPUTER SCIENCE - 7516/1 - JUNE 2025

Section A
Qu Marks
01 3 marks for AO2 (application) 3
M i Symbol Current Output
"1001" 0
0 1 20
1 0 14
2 0 4
3 1 24 X

1 mark for each correct set of values in the correct sequence (boxed in red)

I. presence/absence of quotation marks around values in all columns and case in
Output column

Max 2 if any errors

02 2 marks for AO1 (understanding) 2
(Code within) WHILE/Figure 3 loop structure is not executed // final value of X remains
the same;
(Code within) REPEAT/Figure 4 loop structure will be executed (once) // the value of X
changes/decreases;

The WHILE loop tests the condition at the start of the loop whereas the REPEAT loop
tests the condition at the end of the loop;

Max 2

for more: tyrionpapers.com

MARK SCHEME - AS COMPUTER SCIENCE - 7516/1 - JUNE 2025

03 8 marks for AO3 (programming) 8

Mark as follows:

1. Correct variable declarations for S, Max, Matched, i, Letterl, Letter?;

I. case

Note to examiners:

If a language allows variables to be used without explicit declaration, (eg Python), then

this mark should be awarded if the correct variables exist in the program code and the

first value they are assigned is of the correct data type.

2. Correct WHILE loop syntax allowed by the programming language and correct
condition;

3. Correct prompt "Enter a word or phrase: " and S assigned value entered
by user;

l. case

4. Correct calculation of Max;

5. FOR loop iterates correct number of times;

6. Correct IF THEN statement syntax allowed by the programming language and
correct condition within FOR loop; R. if inappropriate values for Letter1 or
Letter?

7. Correct assignment to Matched in THEN part;

8. Correct IF THEN ELSE statement syntax allowed by the programming language
and correct condition after FOR loop and correct output; I. case, spelling, spacing

Max 7 if code does not function correctly

03 Mark is for AO3 (evaluate) 1

*xxk SCREEN CAPTURE ****
Must match code from 03.1.
Code for 03.1 must be sensible.

Screen capture showing:

Enter a word or phrase: madam
Palindrome

Enter a word or phrase: maam
Palindrome

Enter a word or phrase: adam
Not a palindrome

Enter a word or phrase: aam
Not a palindrome

Enter a word or phrase: x
Palindrome

for more: tyrionpapers.com

MARK SCHEME - AS COMPUTER SCIENCE - 7516/1 - JUNE 2025

03 | 3 | Mark is for AO3 (evaluate) 1

Algorithm makes unnecessary comparisons // by example: eg first and last letters
compared twice;

The loop continues to iterate after it has been identified that a word is not a palindrome;
The loop continues to iterate after Matched has been setto False;

Max 1

04 | 1 | Mark is for AO1 (knowledge) 1

A named/callable (out of line) block of code (that may be executed by writing the name
in a program statement);

04 | 2 | 3 marks for AO1 (understanding) 3

Easier to re-use code;

Easier to understand;

Easier to debug/update/maintain/test;

Easier to develop a solution // supports structured approach;

Less code // faster to develop a solution;

Facilitates multiple programmers working on a program simultaneously;
Reduces/eliminates side-effects;

A. enables use of local variables, which only use memory when subroutine is executing

Max 3

04 | 3 | 2 marks for AO1 (understanding) 2

Avoids the use of global variables // makes subroutines self-contained/encapsulated,;
Makes it easier to use the subroutine with different values/expressions/variables;
Makes it easier to reuse the subroutine in a different program;

Makes it easier to test the subroutine independently of the rest of the program;
Makes it clearer which values from outside the subroutine are being used inside the
subroutine (as they are explicitly listed);

Max 2

05 Mark is for AO1 (understanding) 1

(The detail of) how the data are (actually) represented is hidden;

New kinds of data objects/structures can be constructed from previously defined types
(of data objects);

By example (eg stack/queue/tree implemented as an array);

Max 1

for more: tyrionpapers.com

MARK SCHEME - AS COMPUTER SCIENCE - 7516/1 - JUNE 2025

Section B
Qu Marks
06 Mark is for AO2 (analyse) 1

Found/ObstacleFound/ValidDirection/ValidDistance
/ObstacleInPath;

A. TreasureFound
R. if any additional code

R. if spelt incorrectly
I. case and spacing

07 Mark is for AO2 (analyse) 1
FindLandingPlace
R. if any additional code

R. if spelt incorrectly
|. case and spacing

08 | 1 | Mark is for AO2 (analyse) 1
CheckDistance;
R. if any additional code

R. if spelt incorrectly
I. case and spacing

08 | 2 | 2 marks for AO2 (analyse) 2

The string/character supplied may not be (convertible to) an integer;
Without exception handling the program would crash;

for more: tyrionpapers.com

MARK SCHEME - AS COMPUTER SCIENCE - 7516/1 - JUNE 2025

09

Mark is for AO2 (analyse)
Pirate;

A.PirateRecord

Java only: MoveCheckRecord;
R. if any additional code

R. if spelt incorrectly
I. case and spacing

09

Mark is for AO2 (analyse)
Map/HiddenMap/MapSize;
A.MapSizeRecord

R. if any additional code

R. if spelt incorrectly
I. case and spacing

10

for more: tyrionpapers.com

MARK SCHEME - AS COMPUTER SCIENCE - 7516/1 - JUNE 2025

10

Mark is for AO1 (knowledge)

Subroutine/procedure/function/method,;

A. module/block of code

10

Mark is for AO2 (analyse)

PirateWalks/PirateDigs;

I. case and spacing

10

Mark is for AO2 (analyse)

PirateDigs/PirateWalks;

R. if given in 10.2
I. case and spacing

10

Mark is for AO1 (understanding)
(During the) design (stage);

R. more than one stage given

11

2 marks for AO2 (analyse)

Without this test the X would be overwritten / replaced by sand;

... after the pirate’s/player’s (first) move;

Max 2

A. ... at the beginning of the game

for more: tyrionpapers.com

11

MARK SCHEME - AS COMPUTER SCIENCE - 7516/1 - JUNE 2025

12

3 marks for AO2 (analyse)

Similarity (Max 1):

Both loops count up;

Both loops have a step of one;

Both loops use Column;

Differences (Max 2):

The loop for "E" starts at the start column whereas the loop for "W" starts at the end
column;

The loop for "E" ends at the end column whereas the loop for "W" ends at the start
column;

The start and end values for the loops are reversed (between E and W);

I. Exact start/end points as long as reference is made to the start and end columns

13

3 marks for AO2 (analyse)

Direction/NumberOfSquares/distance might be valid (independently);

But the combination of these ...;

... could result in Row and/or Column to be outside the boundaries of the map;
(CheckPath) would attempt to address elements beyond the bounds of the (Map)
data structure // would then malfunction/crash;

Max 3

14

2 marks for AO2 (analyse)

User presses Enter (without entering any other value first) when asked for pirate action;
The pirate finds the treasure;

14

Mark is for AO2 (analyse)

Finding a coconut/treasure;

14

Mark is for AO2 (analyse)

Pirate walking/digging;

12

for more: tyrionpapers.com

MARK SCHEME - AS COMPUTER SCIENCE - 7516/1 - JUNE 2025

Section C

Qu Marks

15 | 1 | 4 marks for AO3 (programming) 4
Marking guidance:
Evidence of AO3 programming — 4 marks:
Evidence of programming to look for in response:
1. Field initialised in ResetPirateRecord;
2. Selection structure to detect all eight compass points;
3. Correct calculation of hours walked for all eight directions;
4. In DisplayResults output number of hours walked with suitable message;
Max 3 if any errors

15 | 2 | Mark is for AO3 (evaluate) 1
xx SCREEN CAPTURE **
Must match code from 15.1, including prompts on screen capture matching those in
code.
Code for 15.1 must be sensible.
Screen capture showing:

012345678901234567890123456789012345678901
0 WWWWWWWWWWWWWWWWWWWWWWNWWNWWNWWNWWWWWW AW
T WWWHWIWH . ¢ v e et e e e eeeeeeeeeennn WWWWWWWWWW
2 WWWIW .« v e e e e e e e e e e e eee e eaeeeennn WWWWWWWW N
T 1 WWWWIWW NW | NE
P 2 WWWW N/
D W e et e e e e e e e e e e e e e WWW W ————- | ————-— E
D W e e et et e et e e e e e e e WW /1N
A Ea P W SW | SE
B e e et et et e e e e e e W S
9 Wevvvvnnnn. e K e Hooooonn. W
O Wewooee e Lol P.o...... W
S * E e e W
1 BBWW
3 I . e e e et e e e e e e e e BBWWW
4 WNWWW . o v e e e e e e ee e ee e BBBBBB. . . BBWWWW
5 WWWHWWIW . ¢ v e e e e e eeeeeee e BBWWWWWBBBBWWWWW
6 WWWWWWIW. oo e e e ee e BBBWWWWWWWWNWWWWWWWW
7T WNWAWNWWNEW . « o v ee e BBWWWWWWWWWWWWWWWWWW
8 WWWWWWWWWWW. X....BBUWWWWNWAWNWWWWWWWWWAW
9 WWWWWWWWWWWWWWWWWWWWNWWNWWNWWWWWWWWWWWW AW
Pirate to walk (W) or dig (D), to finish game press Enter:
0.0 hours spent digging
20.2 hours spent walking
The score is 90
Press Enter to finish
13

for more: tyrionpapers.com

MARK SCHEME - AS COMPUTER SCIENCE - 7516/1 - JUNE 2025

16

2 marks for AO3 (design) and 8 marks for AO3 (programming)
Marking guidance:

Evidence of AO3 desigh — 2 marks:

Evidence of design to look for in response:

1. Identify the need to ask for row and column;
2. Identify the need to test for sand or water to check for a beach;

Note: AO3 (design) points are for selecting appropriate techniques to use to solve the
problem, so should be credited whether the syntax of programming language
statements is correct or not and regardless of whether the solution works.

Evidence of AO3 programming — 8 marks:
Evidence of programming to look for in response:

3. Ask for user input whether different landing place required,;
4. Correctly assign user input to entered row and column variables;
5. Check that the entered row and column represent sand;
6. Correctly check that entered position is next to water;

7. only if on sand and next to water ...
8. ... Set pirate position to entered position;
9. ... and put pirate on map and display map;
10. ... otherwise output a suitable message;

Max 9 if any errors

10

14

for more: tyrionpapers.com

MARK SCHEME - AS COMPUTER SCIENCE - 7516/1 - JUNE 2025

16 Mark is for AO3 (evaluate) 1
¥+ SCREEN CAPTURE ****
Must match code from 16.1, including prompts on screen capture matching those in
code.
Code for 16.1 must be sensible.
X marks the spot where the pirate comes ashore
Do you want the pirate to land elsewhere? (Y/N): Y
Which row is the pirate coming ashore? 6
Which column is the pirate coming ashore? 1
012345678901234567890123456789012345678901
0 WWWWIWWWWWWNWNWWWNWNWWWNWWWWWNWWNWWNWWWHWWNW
1 WIWWWIWIW . v e e e e e e e e e e et e e e eaeennns WIWWWWWWWIWW
2 W . v e e e e e e e e e et ee e eaneaeenns WIWWWWWWW N
G T WIWWIWWW NW | NE
L Rooooooooooo, WWWW N/
0 T WIWW W ————- | ————~ E
B P e et e et e e et WwW /1A
T W oo et eeeen oL e e et e e e e W SW | SE
B Wt it ittt et it ettt ittt e e et e W S
9 W. oo, Lol K e e e e e o W
O We oo oo eeeeann K e e e e e e e e et e e W
I Weeooiioeon. e e e e e e e e e e W
P BBWW
T BBWWW
T A BBBBBB. . .BBWWWW
S5 WWWWIWW . & vt e e e e e e eeennn BBWWWWIWBBBBWWWWW
6 WWWWWIWW. . oo v vt eneenn BBBWWWWWWWWWWWWWWWW
7T WWWWWWAHWAW. « o v e e e BBWWWWIWWWWWWWNIWWWWWW
8 WWWWWWWWWWW. X....BBWWWWWWNWNWWWNNNNWWW
9 WWWWWWWWIWWWWWWWWWWWWNWWWWWNWWHWWNWWHWWNWWA
15

for more: tyrionpapers.com

MARK SCHEME - AS COMPUTER SCIENCE - 7516/1 - JUNE 2025

16 Mark is for AO3 (evaluate)
*¥x SCREEN CAPTURE ****
Must match code from 16.1, including prompts on screen capture matching those in
code.
Code for 16.1 must be sensible.
X marks the spot where the pirate comes ashore
Do you want the pirate to land elsewhere? (Y/N): Y
Which row is the pirate coming ashore? 17
Which column is the pirate coming ashore? 21
That was not a good landing place, so the pirate lands at X
Pirate to walk (W) or dig (D), to finish game press Enter: W
Enter length (between 1 and 9) and direction (N, NE, E, SE, S,
SW, W, NW): 1IN
012345678901234567890123456789012345678901
0 WWWWIWWWIWWWIWWWNWWWINWWWWWNWWWWWNWWNWWNWWWWWNW
1 WIWWWIWIW . o v e et e e e e e e et e e e eaeennns WIWWWWWWIWWW
2 W . v e e e e e e e e e e et eeee e eaneaeenns WIWWWWWWW N
G T WIWWIWWW NW | NE
1 Roooooooooooo, WWWW N/
0 T WIWW W ————- | ————- E
B W ettt e e WW /1N
T We oo ioeeeean. LU Fo S W SW | SE
B Wt it ittt e e it e et ettt et e e e e W S
9 W. e vieii... e K e e e e e o W
O Weeoooeeeeeennn K e e e e e e et et e W
I Weeooioooo.. e e e e e e W
L BBWW
B W . et e e et e e e e e et et e BBWWW
4 WWWIWIW . ¢ e e e e e e e e e e e eeeenenas BBBBBB. . .BBWWWW
5 WWWIWIWW . o v v vt et ettt ee e BBWWWWIWBBBBWWWWW
6 WHWWWWWIW. o v vv e e e e e eennnn BBBWWWWWWWWWWWWWWWW
7T WWWWAWWWWANW. P..... BBWWWWIWWWWWWWNIWWWWWW
8 WWWWWWWWWWW. X....BBWWWWWWWWNWWWNNNNWWW
9 WWWWWWWWIWWWWWWWWWWWWWWWHWWNWWWWWNWWHWWNWWA
16

for more: tyrionpapers.com

MARK SCHEME - AS COMPUTER SCIENCE - 7516/1 - JUNE 2025

17

3 marks for AO3 (design) and 9 marks for AO3 (programming)

Mark

Level | Description Range

A line of reasoning has been followed to arrive at a logically
3 structured working or almost fully working programmed solution. 9-12
All of the appropriate design decisions have been taken.

There is evidence that a line of reasoning has been partially
2 followed. There is evidence of some appropriate design work. 5-8
This is a partially working programmed solution.

An attempt has been made to amend the subroutine
PirateWalks or to create one of the other two subroutines.
Some appropriate programming statements have been written.
There is little evidence to suggest that a line of reasoning has been
1 followed or that the solution has been designed. The statements 1-4
written may or may not be syntactically correct and the subroutines
will have very little or none of the extra required functionality. It is
unlikely that any of the key design elements of the task have been
recognised.

Marking guidance:
Evidence of AO3 design — 3 marks:
Evidence of design to look for in response:

1. Attempt to test for pirate west of hut as a subroutine.
2. Recognise the need for a nested loop to find the rock/treasure in the hidden map.
3. Attempt to calculate distance of treasure from rock in one direction.

Note: AO3 (design) points are for selecting appropriate techniques to use to solve the
problem, so should be credited whether the syntax of programming language
statements is correct or not and regardless of whether the solution works.

Evidence of AO3 programming — 9 marks:
Evidence of programming to look for in response:

Correct parameters and return values for westOfHut.

Correct parameters for GetClue.

Correctly search for rock.

Correctly search for treasure.

Correctly calculate distance of treasure from rock in NS and EW direction within

subroutine GetClue

9. Output distance in NS and EW direction within subroutine GetClue DPT if in wrong
subroutine

10. Ensure distances are positive.

11.Call WestOfHut in correct place in PirateWalks.

12. Call GetClue under correct conditions.

©NO O A

Max 11 if code does not function correctly

12

for more: tyrionpapers.com

17

MARK SCHEME - AS COMPUTER SCIENCE - 7516/1 - JUNE 2025

17 Mark is for AO3 (evaluate) 1
*xx SCREEN CAPTURE ****
Must match code from 17.1, including prompts on screen capture matching those in
code.
Code for 17.1 must be sensible.
Screen capture showing:
012345678901234567890123456789012345678901
0 WWWWWWWWWWWWWNWWNWWNWWWWWWWWW WV AWW AW WA
T WWWWWIW . o v e e e et e et eeeeeeeeennn WWWWWNWWWW
2 W . v v e e e e e et et et e e eeeeeeeeennns WWWWWIWWIW N
B3 W e v e e e e et e et et e e ee e e WWWWWIW NW | NE
1 Reteiiiineennn WIWWW N/
D W e ettt et et ettt e WWW W ————- | -———-— E
B e e et et et e et e e e e e e WW /1N
T Weeeoeeennnn. * LK Eol W SW | SE
B W e ettt et ettt e e et e W S
9 W.veeweennn e K e PH........ W
O Weowoieieeeeen. Eol W
1 Weeooiieeen. * ol W
2 BBWW
B I . e e e e e e e e et e e e BBWWW
4 WHWWW . o vt et e e e e e e eeeeennn BBBBBB. . . BBWWWW
5 WHWWWIW . ¢ v vt e e e e eeennns BBWWWIWWBBBBWWWWW
6 WAWWWWW. « v v v e e eee e, BBBWWWWWIWWWWWWWWWWW
7 WAWWWWWWWW . o v e et BBWWWIWWWWWWWWWWWWWWW
8 WWWWWWWWWWW. X....BBUWWWWWNWWNWWNWANWWW
9 WWWWWWWWWWWWNWWWNWWWNWWWWWWWWWWWWWW AW W AN WA
The treasure is 2 squares away from the rock in the North -
South direction
The treasure is 4 squares away from the rock in the East - West
direction
18

for more: tyrionpapers.com

MARK SCHEME - AS COMPUTER SCIENCE - 7516/1 - JUNE 2025

VB.Net

03 |1

Sub Main ()
Dim S As String = ""
Dim Letterl, Letter2 As Char
Dim Max As Integer
Dim Matched As Boolean
While S <> "x"
Console.Write ("Enter a word or phrase: ")
S = Console.ReadLine ()
Max = S.Length - 1
Matched = True
For i = 0 To Max
Letterl = S (1)
Letter2 = S(Max - 1)
If Letterl <> Letter2 Then
Matched = False
End If
Next
If Matched = True Then
Console.WriteLine ("Palindrome")
Else
Console.WriteLine ("Not a palindrome™)
End If
End While
Console.ReadLine ()
End Sub

for more: tyrionpapers.com

19

MARK SCHEME - AS COMPUTER SCIENCE - 7516/1 - JUNE 2025

15 Sub ResetPirateRecord(ByRef Pirate As PirateRecord)
Pirate.Row = 0
Pirate.Column = 0
Pirate.Score = 100
Pirate.DigTime = 0.0
Pirate.TreasureFound = False
Pirate.NumberOfCoinsFound = 0
Pirate.WalkTime = 0.0
End Sub
Sub PirateWalks (Map(,) As String, MapSize As MapSizeRecord,
HiddenMap(,) As String, ByRef Pirate As PirateRecord)
Dim ObstacleInPath As Boolean = True
Dim ValidDistance As Boolean = False
Dim ValidDirection As Boolean = False
Dim WalkData, Direction As String
Dim Row, Column, NumberOfSquares As Integer
While ObstacleInPath Or Not ValidDistance Or Not ValidDirection
Console.Write ("Enter length (1 to 9) and direction (N, NE, E, SE,
S, SW, W, NW): ™)
WalkData = Console.ReadLine ()
Row = Pirate.Row
Column = Pirate.Column
ValidDistance = CheckDistance (WalkData (0), NumberOfSquares)
Direction = WalkData.Substring (1)
ValidDirection = CheckDirection (Direction, Row, Column,
NumberOfSquares)
If Row >= MapSize.Rows Or Column >= MapSize.Columns Or Row < 0 Or
Column < 0 Then
ValidDirection = False
Console.WriteLine ("Error")
End If
If ValidDirection Then
ObstacleInPath = CheckPath (Map, Pirate.Row, Pirate.Column, Row,
Column, Direction)
If ObstacleInPath Then
Console.WritelLine ("Pirate can't walk this way as there is an
obstacle in the way")
End If
End If
End While
Move (Map, MapSize, Pirate, Row, Column)
If Len(Direction) = 1 Then
Pirate.WalkTime += NumberOfSquares
Else
Pirate.WalkTime += NumberOfSquares * 1.4
End If
End Sub
Sub DisplayResults (Pirate As PirateRecord)
If Pirate.NumberOfCoinsFound > 0 Then
Console.WriteLine ($"{Pirate.NumberOfCoinsFound} gold coins found")
End If
Console.WriteLine ($"{Pirate.DigTime:N} hours spent digging")
Console.WritelLine ($"{Pirate.WalkTime:N} hours spent walking")
Console.WritelLine ($"The score is { Pirate.Score }")
End Sub
20

for more: tyrionpapers.com

MARK SCHEME - AS COMPUTER SCIENCE - 7516/1 - JUNE 2025

Alternative answer 1 for mark points 2 and 3:

Move (Map, MapSize, Pirate, Row, Column)

If "EWNS".Contains (Direction) Then Task 2 NB EW or WE needs to be

first
Pirate.WalkTime += NumberOfSquares
Else
Pirate.WalkTime += NumberOfSquares * 1.4
End If

Alternative answer 2 for mark points 2 and 3:

Move (Map, MapSize, Pirate, Row, Column)

If {"N", "S", "E", "W"}.Contains (Direction) Then
Pirate.WalkTime += NumberOfSquares
Else

Pirate.WalkTime += NumberOfSquares * 1.4
End If

Alternative answer 3 for mark points 2 and 3:

Move (Map, MapSize, Pirate, Row, Column)

If Direction = "N" Or Direction = "S" Or Direction = "E" Or Direction

= "W" Then 'Task 2
Pirate.WalkTime += NumberOfSquares
Else
Pirate.WalkTime += NumberOfSquares * 1.4
End If

for more: tyrionpapers.com

21

MARK SCHEME - AS COMPUTER SCIENCE - 7516/1 - JUNE 2025

Sub FindLandingPlace (Map(,) As String, MapSize As MapSizeRecord, ByRef 10
Pirate As PirateRecord)
Dim Found As Boolean = False
Dim Row, Column As Integer
Row = 0
While Not Found And Row < MapSize.Rows
Column = 0
While Not Found And Column < MapSize.Columns
If Map (Row, Column) = "X" Then

Found = True
Pirate.Row = Row
Pirate.Column = Column
End If
Column += 1
End While
Row += 1
End While
DisplayMap (Map, MapSize)
Console.WriteLine ("X marks the spot where the pirate comes ashore")
Console.WriteLine ()
Console.Write ("Do you want the pirate to land elsewhere? (Y/N) ")
Dim Reply As String = Console.ReadLine () .ToUpper
If Reply = "Y" Then

Console.Write ("Which row is the pirate coming ashore? ")

Row = Convert.ToInt32 (Console.ReadLine())

Console.Write("Which column is the pirate coming ashore? ")

Column = Convert.ToInt32 (Console.ReadLine())

If Map(Row, Column) = SAND And (Map(Row + 1, Column) = WATER Or
Map(Row - 1, Column) = WATER Or Map(Row, Column + 1) = WATER Or
Map (Row, Column - 1) = WATER) Then

Pirate.Row = Row
Pirate.Column = Column
Map (Row, Column) = PIRATES
DisplayMap (Map, MapSize)
Else
Console.WritelLine("That was not a good landing place, so the
priate lands at X")
End If
End If
End Sub

for more: tyrionpapers.com

MARK SCHEME - AS COMPUTER SCIENCE - 7516/1 - JUNE 2025

17

Function WestOfHut (Map(,) As String, Pirate As PirateRecord) As Boolean
If Map(Pirate.Row, Pirate.Column + 1) = HUT Then
Return True
Else
Return False
End If
End Function

Sub GetClue (Map(,) As String, MapSize As MapSizeRecord, HiddenMap(,) As
String)
Dim RockRow, RockColumn, TreasureRow, TreasureColumn as Integer
Dim NSDistance, EWDistance As Integer
For Row = 0 To MapSize.Rows - 1
For Column = 0 To MapSize.Columns - 1
If Map (Row, Column) = ROCK Then
RockRow = Row
RockColumn = Column
End If
If HiddenMap (Row, Column) = TREASURE Then
TreasureRow = Row
TreasureColumn = Column
End If
Next
Next
NSDistance = Math.Abs (RockRow - TreasureRow)
EWDistance Math.Abs (RockColumn - TreasureColumn)
Console.WriteLine ($"The treasure is {NSDistance} squares way from the
rock in the North - South direction")
Console.WriteLine ($" The treasure is {EWDistance} squares away from
the rock in the East - West direction")
End Sub

Sub PirateWalks (Map(,) As String, MapSize As MapSizeRecord,
HiddenMap(,) As String, ByRef Pirate As PirateRecord)
Dim ObstacleInPath As Boolean = True
Dim ValidDistance As Boolean = False
Dim ValidDirection As Boolean = False
Dim WalkData, Direction As String
Dim Row, Column, NumberOfSquares As Integer
While ObstacleInPath Or Not ValidDistance Or Not ValidDirection
Console.Write ("Enter length (1 to 9) and direction (N, NE, E, SE,
S, SW, W, Nw): ")
WalkData = Console.ReadLine ()
Row = Pirate.Row
Column = Pirate.Column
ValidDistance = CheckDistance (WalkData (0), NumberOfSquares)
Direction = WalkData.Substring (1)
ValidDirection = CheckDirection (Direction, Row, Column,
NumberOfSquares)
If Row >= MapSize.Rows Or Column >= MapSize.Columns Or Row < 0 Or
Column < 0 Then
ValidDirection = False
Console.WriteLine ("Error")
End If
If ValidDirection Then
ObstacleInPath = CheckPath (Map, Pirate.Row, Pirate.Column, Row,
Column, Direction)
If ObstacleInPath Then
Console.WritelLine ("Pirate can't walk this way as there is an
obstacle in the way")
End If

12

for more: tyrionpapers.com

23

MARK SCHEME - AS COMPUTER SCIENCE - 7516/1 - JUNE 2025

End If
End While
Move (Map, MapSize, Pirate, Row, Column)

If WestOfHut (Map, Pirate) Then
GetClue (Map, MapSize, HiddenMap)
End If
End Sub

for more: tyrionpapers.com

MARK SCHEME - AS COMPUTER SCIENCE - 7516/1 - JUNE 2025

Python 3

03

1

S = mn
while S != "x"
S = input ("Enter
Max = len(S) - 1
Matched = True
for i in range (Max +
Letterl = S[1i]
Letter2 =
if Letterl
Matched =
if Matched:
print ("Palindrome")
else:

1=

False

print ("Not a palindrome")

a word or phrase: ")

S[Max - 1i]
Letter2:

1):

25
for more: tyrionpapers.com

MARK SCHEME - AS COMPUTER SCIENCE - 7516/1 - JUNE 2025

15 def ResetPirateRecord(Pirate):
Pirate.Row = 0
Pirate.Column = 0
Pirate.Score = 100
Pirate.DigTime = 0.0
Pirate.TreasureFound = False
Pirate.NumberOfCoinsFound = 0
Pirate.WalkTime = 0.0
def PirateWalks (Map, MapSize, HiddenMap, Pirate):
ObstacleInPath = True
ValidDistance = False
ValidDirection = False
while ObstacleInPath or not ValidDistance or not ValidDirection:
WalkData = input ("Enter length (1 to 9) and direction (N, NE, E, SE, S,
SW, W, NW): ")
Row = Pirate.Row
Column = Pirate.Column
ValidDistance, NumberOfSquares = CheckDistance (WalkData[O0])
Direction = WalkData[l:]
ValidDirection, Row, Column = CheckDirection(Direction, Row, Column,
NumberOfSquares)
if Row >= MapSize.Rows or Column >= MapSize.Columns or Row < 0 or Column
< 0:
ValidDirection = False
print ("Error")
if ValidDirection:
ObstacleInPath = CheckPath (Map, Pirate.Row, Pirate.Column, Row,
Column, Direction)
if ObstacleInPath:
print ("Pirate can't walk this way as there is an obstacle in the
way")
Move (Map, MapSize, Pirate, Row, Column)
if len(Direction) == 1:
Pirate.WalkTime += NumberOfSquares
else:
Pirate.WalkTime += 1.4 * NumberOfSquares
def DisplayResults (Pirate):
if Pirate.NumberOfCoinsFound > O0O:
print (f"{Pirate.NumberOfCoinsFound} gold coins found")
print (f"{Pirate.DigTime} hours spent digging")
print (f"{Pirate.WalkTime} hours spent walking")
print (f"The score is {Pirate.Score}")
Alternative answer 1 for mark points 2 and 3:
Move (Map, MapSize, Pirate, Row, Column)
if Direction in "WESN":
Pirate.WalkTime += NumberOfSquares
else:
Pirate.WalkTime += 1.4 * NumberOfSquares
Alternative answer 2 for mark points 2 and 3:
Move (Map, MapSize, Pirate, Row, Column)
if Direction in ["N", "S", "E", "W"]:
Pirate.WalkTime += NumberOfSquares
else:
Pirate.WalkTime += 1.4 * NumberOfSquares
26

for more: tyrionpapers.com

MARK SCHEME - AS COMPUTER SCIENCE - 7516/1 - JUNE 2025

Alternative answer 3 for mark points 2 and 3:

Move (Map, MapSize, Pirate, Row, Column)

if Direction == "N" or Direction == "S" or Direction == "E" or Direction
—_— "W" :
Pirate.WalkTime += NumberOfSquares
else:

Pirate.WalkTime += 1.4 * NumberOfSquares

def FindLandingPlace (Map, MapSize, Pirate): 10
Found = False
Row = 0
while not Found and Row < MapSize.Rows:
Column = 0
while not Found and Column < MapSize.Columns:
if Map[Row] [Column] == 'X':

Found = True
Pirate.Row = Row
Pirate.Column = Column
Column += 1
Row += 1
DisplayMap (Map, MapSize)
print ("X marks the spot where the pirate comes ashore")

print ()
Answer = input("Do you want the pirate to land elsewhere? (Y/N): ")
if Answer == "Y":

Row = 0

Column = 0
Row = int(input("Which row is the pirate coming ashore? "))
Column = int(input("Which column is the pirate coming ashore? "))
OnSand False
NextToWater = False
if Map[Row] [Column] == SAND
OnSand = True
if Map[Row - 1] [Column] == WATER or Map[Row + 1] [Column] == WATER:
NextToWater = True
if Map[Row] [Column + 1] == WATER or Map[Row] [Column - 1] == WATER:
NextToWater = True
if OnSand and NextToWater:
Pirate.Row = Row
Pirate.Column = Column

Map [Row] [Column] = PIRATES
DisplayMap (Map, MapSize)
else:

print ("That was not a good landing place, so the pirate lands at X")

27
for more: tyrionpapers.com

MARK SCHEME - AS COMPUTER SCIENCE - 7516/1 - JUNE 2025

17

def WestOfHut (Map, Pirate):
if Map[Pirate.Row] [Pirate.Column + 1] == HUT:
return True
else:
return False

def GetClue (Map, MapSize, HiddenMap) :
for Row in range (MapSize.Rows) :
for Column in range (MapSize.Columns):
if Map[Row] [Column] == ROCK:
RockRow = Row
RockColumn = Column
for Row in range (MapSize.Rows) :
for Column in range (MapSize.Columns):
if HiddenMap|[Row] [Column] == TREASURE:
TreasureRow = Row
TreasureColumn = Column
DistanceFromRock NS = TreasureRow - RockRow
if DistanceFromRock NS < 0:

DistanceFromRock NS = - DistanceFromRock_NS
DistanceFromRock WE = TreasureColumn - RockColumn
if DistanceFromRock WE < O:

DistanceFromRock WE = - DistanceFromRock WE
print (f"The treasure is {DistanceFromRock NS} squares away from the rock

in the North - South direction")
print (f"The treasure is {DistanceFromRock WE} squares away from the rock
in the East - West direction")

def PirateWalks (Map, MapSize, HiddenMap, Pirate):
ObstacleInPath = True
ValidDistance = False
ValidDirection = False
while ObstacleInPath or not ValidDistance or not ValidDirection:
WalkData = input ("Enter length (1 to 9) and direction (N, NE, E, SE, S,
SW, W, NW): ")
Row = Pirate.Row
Column = Pirate.Column
ValidDistance, NumberOfSquares = CheckDistance (WalkData[O0])
Direction = WalkDatal[l:]
ValidDirection, Row, Column = CheckDirection(Direction, Row, Column,
NumberOfSquares)
if Row >= MapSize.Rows or Column >= MapSize.Columns or Row < 0 or Column
< 0:
ValidDirection = False
print ("Error")
if ValidDirection:
ObstacleInPath = CheckPath (Map, Pirate.Row, Pirate.Column, Row,
Column, Direction)
if ObstacleInPath:
print ("Pirate can't walk this way as there is an obstacle in the
way")
Move (Map, MapSize, Pirate, Row, Column)

if WestOfHut (Map, Pirate):
GetClue (Map, MapSize, HiddenMap)

12

28

for more: tyrionpapers.com

MARK SCHEME - AS COMPUTER SCIENCE - 7516/1 - JUNE 2025

C#

03 string s = "";
int max = 0;
bool matched = true;
string letterl = "";
string letter2 = "";
while (s != "x")

{

Console.Write ("Enter a word or phrase:

s = Console.ReadLine();
max = s.Length - 1;
matched = true;

for (int i = 0; i <= max; i++)

{
letterl = s[i].ToString();
letter2 = s[max - i].ToString();
if (letterl != letter2)

{
matched = false;

}
}
if (matched == true)
{

Console.WriteLine ("Palindrome") ;
}
else

{

Console.WriteLine ("Not a Palindrome") ;

}

for more: tyrionpapers.com

29

MARK SCHEME - AS COMPUTER SCIENCE - 7516/1 - JUNE 2025

15

public static void ResetPirateRecord(ref PirateRecord pirate)

{
pirate.row = 0;
pirate.column = 0
pirate.score = 100;
pirate.digTime = 0.0;
pirate.treasureFound = false;
pirate.numberOfCoinsFound = 0;
pirate.walkTime = 0.0;

O~

}

static void PirateWalks(string[,] map, MapSizeRecord mapSize,
string[,] hiddenMap, ref PirateRecord pirate)
{
bool obstacleInPath;
bool validDistance;
bool validDirection;
string walkData;
string direction = "";
int row = 0;
int column = 0;
int numberOfSquares = 0;
obstacleInPath = true;
validDistance = false;
validDirection = false;
while (obstacleInPath || !validDistance || !validDirection)
{
Console.Write ("Enter length (1 to 9) and direction (N, NE,
E, SE, S, SW, W, NW): ");
walkData = Console.ReadLine();
row = pirate.row;
column = pirate.column;
(validDistance, numberOfSquares) =
CheckDistance (walkData[0].ToString()) ;
direction = walkData.Substring(1l);
(validDirection, row, column) = CheckDirection(direction,
row, column, numberOfSquares);
if (row >= mapSize.rows || column >= mapSize.columns ||
row < 0 || column < 0)
{
validDirection = false;
Console.WriteLine ("Error");
}
if (validDirection)
{
obstacleInPath = CheckPath (map, pirate.row,
pirate.column, row, column, direction);
if (obstacleInPath)
{
Console.WriteLine ("Pirate can't walk this way as there
is an obstacle in the way");
}
}
}
Move (map, mapSize, ref pirate, row, column);
if (direction.Length == 1)

30

for more: tyrionpapers.com

MARK SCHEME - AS COMPUTER SCIENCE - 7516/1 - JUNE 2025

}

{

pirate.walkTime +=

}

else

{

pirate.walkTime +=

}

numberOfSquares;

1.4 * numberOfSquares;

for more: tyrionpapers.com

31

MARK SCHEME - AS COMPUTER SCIENCE - 7516/1 - JUNE 2025

public static void FindLandingPlace (string[,] map, 10
MapSizeRecord mapSize, ref PirateRecord pirate)
{
bool found = false;
int row = 0;
while (!found && (row < mapSize.rows))
{
int column = 0;
while (!found && (column < mapSize.columns))
{
if (map[row, column] == "X")
{
found = true;
pirate.row = row;
pirate.column = column;
}
column++;
}
row++;
}
DisplayMap (map, mapSize);
Console.WriteLine ("X marks the spot where the pirate comes
ashore");
Console.WritelLine () ;
Console.Write ("Do you want the pirate to land elsewhere
(Y/N) ");
string answer = Console.ReadLine() ;
if (answer == "Y")
{
Console.Write ("Which row is the pirate coming ashore? ");
row = Convert.ToInt32 (Console.ReadLine()) ;
Console.Write ("Which column is the pirate coming ashore?
")
int column = Convert.ToInt32 (Console.ReadLine()) ;
bool onSand = false;
bool nextToWater = false;
if (map[row, column] == SAND)
{
onSand = true;
}
if (map[row - 1, column] == WATER || map[row + 1, column]
== WATER)
{
nextToWater = true;
}
if (map[row, column - 1] == WATER || map[row, column + 1]
== WATER)
{
nextToWater = true;
}
if (onSand && nextToWater)
{
pirate.row = row;
pirate.column = column;
map[row, column] = PIRATES;
DisplayMap (map, mapSize) ;

for more: tyrionpapers.com

MARK SCHEME - AS COMPUTER SCIENCE - 7516/1 - JUNE 2025

}

else
{
Console.Writeline ("That was not a good landing place, so
the pirate lands at X");
}
}
}

for more: tyrionpapers.com

33

MARK SCHEME - AS COMPUTER SCIENCE - 7516/1 - JUNE 2025

17

private static bool WestOfHut (string[,] map, PirateRecord
pirate)
{ if (map[pirate.row, pirate.column + 1] == HUT)
{ return true;
Leturn false;

}

private static void GetClue(string[,] map, MapSizeRecord
mapSize, string[,] hiddenMap)
{
int rockRow = 0, rockColumn = 0, treasureRow = 0,
treasureColumn = 0;
int distanceFromRockNS = 0, distanceFromRockWE = O0;
for (int row = 0; row < mapSize.rows; row++)

{

for (int column = 0; column < mapSize.columns; column++)

{
if (map[row, column] == ROCK)
{
rockRow = row;
rockColumn = column;

}
}
for (int row = 0; row < mapSize.rows; row++)
{
for (int column = 0; column < mapSize.columns; column++)
{
if (hiddenMap[row, column] == TREASURE)
{
treasureRow = row;
treasureColumn = column;

}
}
distanceFromRockNS = treasureRow - rockRow;
if (distanceFromRockNS < 0)
{
distanceFromRockNS = -distanceFromRockNS;
}
distanceFromRockWE = treasureColumn - rockColumn;
if (distanceFromRockWE < 0)
{
distanceFromRockWE = -distanceFromRockWE;
}
Console.WriteLine ($"The treasure is {distanceFromRockNS}
squares away from the rock in the North - South direction");
Console.WriteLine ($"The treasure is {distanceFromRockWE}
squares away from the rock in the East - West direction");

}

12

34

for more: tyrionpapers.com

MARK SCHEME - AS COMPUTER SCIENCE - 7516/1 - JUNE 2025

static void PirateWalks(string[,] map, MapSizeRecord mapSize,
string[,] hiddenMap, ref PirateRecord pirate)
{
bool obstacleInPath;
bool validDistance;
bool validDirection;
string walkData;
string direction = "";

int row = 0;

int column = 0;

int numberOfSquares = 0;

obstacleInPath = true;

validDistance = false;

validDirection = false;

while (obstacleInPath || !validDistance || !validDirection)

{

Console.Write ("Enter length (1 to 9) and direction (N, NE,
E, SE, S, SW, W, NW): ");

walkData = Console.ReadLine();

row = pirate.row;

column = pirate.column;

(validDistance, numberOfSquares) =
CheckDistance (walkData[0] .ToString ()),

direction = walkData.Substring(1l);

(validDirection, row, column) = CheckDirection (direction,
row, column, numberOfSquares);
if (row >= mapSize.rows || column >= mapSize.columns ||
row < 0 || column < 0)
{
validDirection = false;

Console.WritelLine ("Error") ;
}
if (validDirection)
{
obstacleInPath = CheckPath (map, pirate.row,
pirate.column, row, column, direction);
if (obstacleInPath)
{
Console.WriteLine ("Pirate can't walk this way as there
is an obstacle in the way");
}
}
}
Move (map, mapSize, ref pirate, row, column);
if (WestOfHut (map, pirate))
{
GetClue (map, mapSize, hiddenMap) ;
}

for more: tyrionpapers.com

35

MARK SCHEME - AS COMPUTER SCIENCE - 7516/1 - JUNE 2025

Java
03|1 | String 5 = ""; 8
while (!S.equals("x")) {
Console.write ("Enter a word or phrase: ");
S = Console.readLine () ;
int Max = S.length() - 1;
boolean Matched = true;
for (int 1=0; i<Max+1l; i++) {
char Letterl = S.charAt(i);
char Letter?2 = S.charAt (Max - 1);
if (Letterl != Letter2) {
Matched = false;
}
}
if (Matched) {
Console.println ("Palindrome") ;
} else {
Console.println ("Not a palindrome");
}
}
36

for more: tyrionpapers.com

MARK SCHEME - AS COMPUTER SCIENCE - 7516/1 - JUNE 2025

15

void ResetPirateRecord (PirateRecord Pirate) {
Pirate.Row = 0;
Pirate.Column = 0;
Pirate.Score = 100;
Pirate.DigTime = 0.0f;
Pirate.TreasureFound = false;
Pirate.NumberOfCoinsFound = 0;
Pirate.WalkTime = 0.0f;

void PirateWalks (String[][] Map, MapSizeRecord MapSize, String[][]
HiddenMap, PirateRecord Pirate) ({
boolean ObstacleInPath = true;

boolean ValidDistance = false;

boolean ValidDirection = false;

int Row = 0, Column = 0, NumberOfSquares = 0;

String Direction = "";

while (ObstacleInPath || !'ValidDistance || !ValidDirection) {

Console.write ("Enter length (1 to 9) and direction (N, NE, E, SE, S,
SW, W, Nw): ");

String WalkData = Console.readLine();

Row = Pirate.Row;

Column = Pirate.Column;

MoveCheckRecord DistanceData =
CheckDistance (String.valueOf (WalkData.charAt (0)));

ValidDistance = DistanceData.valid;

NumberOfSquares = DistanceData.numberOfSquares;

Direction = WalkData.substring(l);

MoveCheckRecord DirectionData = CheckDirection (Direction, Row, Column,

NumberOfSquares) ;
ValidDirection = DirectionData.valid;
Row = DirectionData.row;
Column = DirectionData.column;
if (Row >= MapSize.Rows || Column >= MapSize.Columns || Row < 0 ||
Column < 0) {
ValidDirection = false;

Console.writeLine ("Erroxr");
}
if (ValidDirection) {
ObstacleInPath = CheckPath (Map, Pirate.Row, Pirate.Column, Row,
Column, Direction);
if (ObstacleInPath) {
Console.writelLine ("Pirate can't walk this way as there is an
obstacle in the way");
}
}
}

Move (Map, MapSize, Pirate, Row, Column);

if (Direction.length() == 1) {
Pirate.WalkTime += NumberOfSquares;
} else {

Pirate.WalkTime += 1.4 * NumberOfSquares;
}

void DisplayResults (PirateRecord Pirate) ({
if (Pirate.NumberOfCoinsFound > 0) {
Console.writeline (Pirate.NumberOfCoinsFound + " gold coins found");

}

Console.writelLine (Pirate.DigTime + " hours spent digging");

for more: tyrionpapers.com

37

MARK SCHEME - AS COMPUTER SCIENCE - 7516/1 - JUNE 2025

Console.writeline (Pirate.WalkTime + " hours spent walking");

Console.writeLine ("The score is " + Pirate.Score);

Alternative answer 1 for mark points 2 and 3:

if ("NSEW".contains (Direction)) {

Pirate.WalkTime += NumberOfSquares;
} else {

Pirate.WalkTime += 1.4 * NumberOfSquares;
}

Alternative answer 2 for mark points 2 and 3:

if (Direction == "N" || Direction == "S" || Direction == "E" || Direction
IIWII) {

Pirate.WalkTime += NumberOfSquares;
} else {

Pirate.WalkTime += 1.4 * NumberOfSquares;
}

38

for more: tyrionpapers.com

MARK SCHEME - AS COMPUTER SCIENCE - 7516/1 - JUNE 2025

16

void FindLandingPlace (String[][] Map, MapSizeRecord MapSize, PirateRecord Pirate) { 10
boolean Found = false;
int Row = 0;
while (!Found && Row < (MapSize.Rows)) {

int Column = 0;
while (!Found && Column < (MapSize.Columns)) {
if (Map[Row] [Column].equals ("X")) {

Found = true;
Pirate.Row = Row;
Pirate.Column = Column;
}
Column += 1;
}
Row += 1;
}
DisplayMap (Map, MapSize);
Console.writelLine ("X marks the spot where the pirate comes ashore");
Console.writelLine () ;
Console.write ("Do you want the pirate to land elsewhere? (Y/N): ");
String Answer = Console.readLine() ;
if (Answer.equals("Y")) {
Row = 0;
int Column = 0O;
Console.write("Which row is the pirate coming ashore? ");
Row = Integer.parselnt(Console.readLine())
Console.write ("Which column is the pirate coming ashore? ");
Column = Integer.parselnt(Console.readLine())
boolean OnSand = false;
boolean NextToWater = false;
if (Map[Row] [Column] .equals (SAND)) ({
OnSand = true;
}
if (Map[Row-1] [Column] .equals (WATER) || Map[Row+1l] [Column] .equals (WATER)) {
NextToWater = true;
}
if (Map[Row] [Column] .equals (WATER) || Map[Row] [Column-1].equals (WATER)) {
NextToWater = true;

if (OnSand && NextToWater) ({
Pirate.Row = Row;
Pirate.Column = Column;
Map[Row] [Column] = PIRATES;
DisplayMap (Map, MapSize) ;
} else {
Console.writelLine ("That was not a good landing place, so the pirate lands at

39
for more: tyrionpapers.com

MARK SCHEME - AS COMPUTER SCIENCE - 7516/1 - JUNE 2025

17 boolean WestOfHut (String[][] Map, PirateRecord Pirate) { 12
return Map[Pirate.Row] [Pirate.Column + 1] .equals (HUT) ;
}
void GetClue(String[][] Map, MapSizeRecord MapSize, String[][] HiddenMap,
PirateRecord Pirate) {
int RockRow = 0, RockColumn = 0, TreasureRow = 0, TreasureColumn = 0;
for (int row = 0; row < MapSize.Rows; row++) {
for (int column = 0; column < MapSize.Columns; column++) {
if (Map[row] [column].equals (ROCK)) {
RockRow = row;
RockColumn = column;
}
}
}
for (int row = 0; row < MapSize.Rows; row++) {
for (int column=0; column < MapSize.Columns; column++) {
if (HiddenMap[row] [column] .equals (TREASURE)) ({
TreasureROw = row;
TreasureColumn = column;
}
}
}
int DistanceFromRock NS = TreasureRow - RockRow;
if (DistanceFromRock NS < 0) {
DistanceFromRock NS *= -1;
}
int DistanceFromRock WE = TreasureColumn - RockColumn;
if (DistanceFromRock WE < 0) {
DistanceFromRock WE *= -1;
}
Console.writelLine ("The treasure is " + DistanceFromRock NS + " squares
away from the rock in the North - South direction");
Console.writeLine ("The treasure is " + DistanceFromRock WE + " squares
away from the rock in the East - West direction");
}
void PirateWalks (String[][] Map, MapSizeRecord MapSize, Stringl[][]
HiddenMap, PirateRecord Pirate) ({
boolean ObstacleInPath = true;
boolean ValidDistance = false;
boolean ValidDirection = false;
int Row = 0, Column = 0, NumberOfSquares = 0;
String Direction = "";
while (ObstacleInPath || !ValidDistance || !ValidDirection) {
Console.write ("Enter length (1 to 9) and direction (N, NE, E, SE, S, SW,
W, Nw): ");
String WalkData = Console.readLine();
Row = Pirate.Row;
Column = Pirate.Column;
MoveCheckRecord DistanceData =
CheckDistance (String.valueOf (WalkData.charAt (0)));
ValidDistance = DistanceData.valid;
NumberOfSquares = DistanceData.numberOfSquares;
Direction = WalkData.substring(l);
MoveCheckRecord DirectionData = CheckDirection (Direction, Row, Column,
NumberOfSquares) ;
ValidDirection = DirectionData.valid;
Row = DirectionData.row;
Column = DirectionData.column;
40

for more: tyrionpapers.com

MARK SCHEME - AS COMPUTER SCIENCE - 7516/1 - JUNE 2025

if (Row >= MapSize.Rows || Column >= MapSize.Columns || Row < 0 ||
Column < 0) {
ValidDirection = false;
Console.writelLine ("Error");
}
if (ValidDirection) {
ObstacleInPath = CheckPath (Map, Pirate.Row, Pirate.Column, Row,
Column, Direction);

if (ObstacleInPath) {
Console.writelLine ("Pirate can't walk this way as there is an
obstacle in the way");
}
}
}

Move (Map, MapSize, Pirate,
if (WestOfHut (Map, Pirate)) {
GetClue (Map, MapSize, HiddenMap, Pirate);

Row, Column);

}

41

for more: tyrionpapers.com

