

Mark Scheme (Results)

Summer 2024

Pearson Edexcel GCE In Statistics (9ST0) Paper 03

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2024

Question Paper Log Number 75706

Publications Code 9ST0_03_2406_MS

All the material in this publication is copyright

© Pearson Education Ltd 2024

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Question	Sch	eme	Marks	AO	Notes
1	Lower Quartile=5	8	B1	1.1	
	Upper quartile=75	j	B1	1.1	
	Inter quartile rang	e=17	M1	1.1	Their UQ-LQ
		17 = 100.5 $17 = 32.5$	M1	1.1	Using outlier formula with their UQ/LQ and IQR
			A1	1.1	Either bound correct
	100.5 > 91 a Therefore there ar	nd 32.5 < 45 e no outliers	E1dep	2.1b	Dep on both bounds correct and comparison
		Total	6		

Question	Scheme	Marks	AO	Notes
2(a)	H ₀ : $\mu_S = \mu_M = \mu_L$ H ₁ : At least two of the means differ	B1	1.3	oe Or $\mu_i = \mu$ for $i = S,M,L$ Other subscripts accepted if properly declared
	$SS_T = 182 569 - \frac{1683^2}{23}$ $= 59 417.3$	M1	1.3	SS_T method PI
	$SS_B = \frac{256^2}{8} + \frac{346^2}{7} + \frac{1081^2}{8} - \frac{1683^2}{23}$ $= 48\ 212.7$	M1	1.3	SS_B method PI
		M1dep	1.3	SS_E method No negative SS values. Dep one previous M1
Between times Error	SS df MS 48 213.7 2 24 106.4 11 204.6 20 560.2	B1	1.3	PI df 2 and 20
Total	59 417.3 22	M1dep	1.3	PI MS divide SS by df Dep all previous M marks but ft on df values
	$F = \frac{24\ 106.4}{560.2} = 43.03$	M1dep	1.3	PI F method awrt 43 or $p = 0.000000056/57$ Dep on all previous M marks but ft on df values

	$F_{20}^2 = 3.493$	B1	1.3	
	"43" > "3.493" Reject Ho	M1ft	2.1b	Comparison of their ts and cv and correct decision Or $p < 0.05$
	There is significant evidence to suggest that mean IGF-I levels vary between at least two of the lengths of time of insulin treatment.	E1dep	2.1a	Correct conclusion in context Dependent on correct solution apart from first B1
2(b)	Age of cat			
	Other health problems			
	Breed of cat			
	Diet of cat			
		E1,E1	2.1b, 2.1b	Any two reasonable factors
2(c)	IGF-I levels are normally distributed			
	The distributions from which the three samples are taken have equal variance			
	The selected cats must be independent of each other			
		E1, E1	3.1a, 3.1a	
2(d)	Because the variance of long- term,1350.4, is much larger than the variance of the other two categories ,128.6 and 142.0	E1	3.1a	

Question	Sch	eme	Marks	AO	Notes
3(a)	Ewa does not hav	e paired data	E1	3.1a	oe
3(b)	The Wilcoxon Ra parametric test so knowledge of the numbers of ticks	does not require	E1	3.1a	
3(c)	$H_0: \eta_T = \eta_G$ $H_1: \eta_T \neq \eta_G$		B1	1.3	H_0 : Samples from identical populations H_1 : Samples from different populations oe do not accept use of η_d
	Timber Acquisition (T)	Growing (G)			Attempt at ranking as
	2 9 4 7 5 6 9 2	1 10 3 8 6 5 7 4 8 3 10 1	M1	1.3	one group
	T_A =20 or T_B =35 A1 1.3	Both T correct (reverse totals 24,31)			
	$U_A = 20 - \frac{1}{2}$	(4)(5) = 10	M1	1.3	Attempt at either U
	$U_B = 35 - \frac{2}{2}$	(4)(5) = 10 $(6)(7) = 14$	A1	1.3	Either U correct
	Cv = 2	Cv = 2		1.3	or 22
	"2" < "10" Do not reject H ₀		M1ft	2.1b	or 22>(14), comparison, and correct decision for their t.s. and cv (correct tail)

Question	Scheme	Marks	AO	Notes
4 (a)	$X \sim N(1800, 100^2)$ $P(X > 2000) = 0.02275$	B1	1.2	awfw 0.0227-0.0228
4(b)	$\bar{X} \sim N\left(1800, \frac{100^2}{10}\right)$	M1	1.2	PI for use of ÷10 oe
	$P(\bar{X} < 1700) = 0.000783$	A1	1.2	
4(c)	H_0 : $\mu = 1750$ H_1 : $\mu < 1750$	B1	1.3	Both hypotheses correct oe
	$\bar{X} \sim N\left(1750, \frac{100^2}{10}\right)$	M1	1.3	PI correct model used
	$\frac{1700 - 1750}{\frac{100}{\sqrt{10}}} = -1.58$	A1	1.3	awrt -1.58 ignore sign or $p = \text{awrt } 0.057$
	"-1.58" > -1.6449 Do not reject H ₀ ,	M1	2.1b	Correct comparison of ts and cv or p value compared to sig level 0. 057 > 0.05
	There is not significant evidence to suggest the mean weight of packaged pumpkins is less than 1.75kg when harvested after 19 weeks	E1dep	2.1a	Correct conclusion in context Dependent on correct solution apart from first B1

Question	Scheme	Marks	AO	Notes
	Alternative			
	H_0 : $\mu = 1750$ H_1 : $\mu < 1750$	(B1)		Both hypotheses correct oe
	$\overline{X} \sim N\left(1750, \frac{100^2}{10}\right)$	(M1)		PI correct model used
	$1750 - 1.6449 \times \frac{100}{\sqrt{10}} = 1698$	(A1)		awrt 1698
	1700>1698 Do not reject H ₀ ,	(M1)		Correct comparison
	There is no significant evidence to suggest the mean weight of	(E11		Correct conclusion in context
	packaged pumpkins is less than 1.75kg when harvested after 19 weeks	(E1dep)		Dependent on correct solution apart from first B1
4 (d)	Assumption is sample is random	E1	2.1a	
	So not valid as all from same location	E1	3.1b	oe e.g. only valid if that corner is representative of the whole field
				Must include context
4 (e)	A parameter is a numerical property of a population	E1	1.1	
	Such as the mean of 1.8kg or the standard deviation of 100g	E1	2.1a	
	A statistic is a numerical property of a sample and is a function only of the values in the sample and contains no unknown parameters	E1	1.1	
	Such as the mean of 1.7kg	E1	2.1a	
4 (f)	z=1.88079	B1	1.2	PI
	$\frac{(2000 - 1880)}{\sigma} = 1.88079$	M1	1.2	PI Allow full marks for evidence of trial and improvement
	$\sigma = 63.8 \text{ g } (0.0638 \text{kg})$	A1	1.2	oe awrt 64g

Question	Scheme	Marks	AO	Notes
4 (g)	Approximately bell shaped	E1	3.1a	Accept symmetric about the mean
	No outliers			
	Or			
	Mean (peak) is around 1880g	E1	3.1a	
	Or			
	All values within 3 s.d. of mean			

Questio n	Scheme	Marks	AO	Notes
5(a)	2X represents twice change in value of a share of the company on a single day.	E1	2.1a	oe e.g. the change in price of two shares
5(b)	$X_1 + X_2$ represents the total change in price of a share on two randomly chosen days	E1	2.1a	
5(c)	$T = X_1 + X_2 + X_3 + X_4 + X_5$			
	$T \sim N(3.25, 23.9)$			PI
		M1	1.2	Mean
		M1	1.2	Variance
	P(T > 5) = 0.360	A1	1.2	awrt 0.36
5(d)	Linus has missed the possibility that the price could decrease by more than \$5			
	The price could increase on one day and decrease on another which results in a total change of more than five dollars, while the overall change is less than five dollars			
	Changes happen across the day, not just at the end and Linus is missing the possibility that a share increases and decreases on the same day			
	The model is for 2023 only and not for any working week.			
		E1, E1	3.1a, 3.1a	Any two reasons
5(e)	This implies that price changes on different days are not independent , so the calculation is not valid	E1	3.1a	
		E1	3.1a	Fully correct in context
5(f)	Linus should use data from over a longer period of time	E1	3.1a	Allow Linus should use a random sample of dates instead of just one month

Questio n	Scheme	Marks	AO	Notes
	As this will be a better representation of the change per day and ignore short term trends	E1	3.1a	

Question	Scheme	Marks	AO	Notes
6(a)(i)	Unrestricted random sampling	E1	1.1	Sampling with replacement
6(a)(ii)	(Restricted) Simple random sampling	E1	1.1	Sampling without replacement
6(b)	Sampling with replacement (unrestricted) allows the same song to be chosen more than once but sampling without replacement (simple) has no repetition	E1	1.1	
6(c)	Number her songs 001-145	E1	1.1	oe
	Generate 3 digit random numbers			
	Ignore numbers out of range	E1	1.1	
	Ignore repeats	E1	1.1	
	Keep going until you have 30 numbers and select the matching songs	E1	1.1	
6(d)(i)	$\frac{1}{145}$ (=0.006897)	B1	1.2	Awrt 0.00690
6(d)(ii)	$1 \times \frac{144}{145} \times \frac{143}{145} \times \frac{142}{145}$	M1	1.2	PI
	= 0.959	A1	1.2	
6(d)(iii)	0	B1	1.2	
6(e)	After it plays every song on a list once and shuffles the whole library again, the first song of the new list could be the same as the last song of the first list	B1	2.1b	

Question	Scheme		Marks	AO	Notes
6(f)	H ₀ : $p = \frac{35}{145} (=0.241)$ H ₁ : $p > \frac{35}{145}$		B1	1.3	oe
	$X \sim B\left(30, \frac{35}{145}\right)$		M1	2.1a	Use of binomial distribution, $n = 30$, and their Ho value PI
	$P(X \ge 11) = 0.0862$		A1	1.3	PI or critical region {12,30} oe
	"0.0862">0.05 Do not reject H ₀ ,		M1	2.1b	Comparison of their probability with 0.05 or comparison of 11 with their critical region and correct decision
	Not significant evidence the must player is biased	sic	E1dep	2.1a	Correct conclusion in context Dependent on correct solution apart from first B1
6 (g)	Suji's probability of selecting a song by the singer would not be constant		E1	3.1a	oe
	So binomial distribution would be suitable	not	E1	3.1a	
	So binomial distribution would i	not	E1	3.1a	