

Mark Scheme (Results)

June 2025

Pearson Edexcel GCE In Physics (9PH0) Paper 03 General and Practical Principles in Physics

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2025
Question Paper Log Number P78522A
Publications Code 9PH0_03_2506_MS
All the material in this publication is copyright
© Pearson Education Ltd 2025

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Mark scheme notes

Underlying principle

The mark scheme will clearly indicate the concept that is being rewarded, backed up by examples. **It is not a set of model answers.**

1. Mark scheme format

- 1.1 You will not see 'wtte' (words to that effect). Alternative correct wording should be credited in every answer unless the MS has specified specific words that must be present. Such words will be indicated by underlining e.g. 'resonance'
- 1.2 Bold lower case will be used for emphasis e.g. 'and' when two pieces of information are needed for 1 mark.
- 1.3 Round brackets () indicate words that are not essential e.g. "(hence) distance is increased".
- 1.4 Square brackets [] indicate advice to examiners or examples e.g. [Do not accept gravity] [ecf].

2. Unit error penalties

- 2.1 A separate mark is not usually given for a unit but a missing or incorrect unit will normally mean that the final calculation mark will not be awarded.
- 2.2 This does not apply in 'show that' questions or in any other question where the units to be used have been given, for example in a spreadsheet.
- 2.3 The mark will not be awarded for the same missing or incorrect unit only once within one clip in epen.
- 2.4 Occasionally, it may be decided not to insist on a unit e.g the candidate may be calculating the gradient of a graph, resulting in a unit that is not one that should be known and is complex.
- 2.5 The mark scheme will indicate if no unit error is to be applied by placing brackets around the unit.

3. Significant figures

- 3.1 Use of too many significant figures in the theory questions will not prevent a mark being awarded if the answer given rounds to the answer in the MS.
- 3.2 Too few significant figures will mean that the final mark cannot be awarded in 'show that' questions where one more significant figure than the value in the question is needed for the candidate to demonstrate the validity of the given answer.
- 3.3 The use of one significant figure might be inappropriate in the context of the question e.g. reading a value off a graph. If this is the case, there will be a clear indication in the MS.
- 3.4 The use of $g = 10 \text{ m s}^{-2}$ or 10 N kg⁻¹ instead of 9.81 m s⁻² or 9.81 N kg⁻¹ will be penalised by one mark (but not more than once per clip). Accept 9.8 m s⁻² or 9.8 N kg⁻¹
- 3.5 In questions assessing practical skills, a specific number of significant figures will be required e.g. determining a constant from the gradient of a graph or in uncertainty calculations. The MS will clearly identify the number of significant figures required.

4. Calculations

- 4.1 **use of** the formula means that the candidate demonstrates substitution of physically correct values, although there may be conversion errors e.g. power of 10 error.
- 4.2 If a 'show that' question is worth 2 marks, then both marks will be available for a reverse working. If the question is worth 3 marks then only 2 marks will be available.
- 4.3 The mark scheme will show a correctly worked answer for illustration only.

5. Quality of Written Expression

- 5.1 Questions that asses the ability to show a coherent and logically structured answer are marked with an asterisk.
- 5.2 Marks are awarded for indicative content and for how the answer is structured.
- 5.3 Linkage between ideas, and fully-sustained reasoning is expected.

6. Graphs

- 6.1 A mark given for axes requires both axes to be labelled with quantities and units, and drawn the correct way round.
- 6.2 Sometimes a separate mark will be given for units or for each axis if the units are complex. This will be indicated on the mark scheme.
- 6.3 A mark given for choosing a scale requires that the chosen scale allows all points to be plotted, spreads plotted points over more than half of each axis and is not an awkward scale e.g. multiples of 3, 7 etc.
- 6.4 Points should be plotted to within 1 mm.
- 6.5 For a line mark there must be a thin continuous line which is the best-fit line for the candidate's results.

Question Number	Acceptable Answer		Additional Guidance	Mark
1(a)	 The ammeter is in series with the bulb and the voltmeter is in parallel with the bulb Or Adjusting the variable resistor will vary the current/p.d. The circuit may not be able to give a full range of applied 	(1)	Allow "the measurements of current and p.d. will be valid"	
	p.d.s Or Reducing the variable resistance will place a p.d. across the bulb much larger than 3 V	(1)		
	 Comment on suitability consistent with stated characteristics of circuit 	(1)		3
1(b)	• Precision is the closeness of agreement (consistency) between (repeated) measurements	(1)		
	 As the student has only taken a single value of current, the student cannot say the current is precise 	(1)		
	• Accuracy is how close the measured value is to the true value	(1)		
	 The true value is not known, so the student cannot say the value will be accurate Or There may be a systematic error, so the student cannot say the value will be accurate 	(1)		4

(Total for Question 1 = 7 marks)

Question Number	Acceptable Answer		Additional Guidance	Mark
2	An explanation that makes reference to the following points:			
	Microwaves are reflected (from the metal plate)	(1)		
	 Superposition / interference occurs Or A standing wave is produced 	(1)		
	Maximum (intensity) where waves arrive in phase Or minimum (intensity) where waves arrive in antiphase	(1)	For "in phase" accept phase difference $(2n)\pi$ or path difference $(2n)\lambda$ For "in antiphase" accept phase difference $(n+1)\pi/2$ or path difference $(n+1)\lambda/2$	
	• Use of $v = f\lambda$	(1)		
	• $\lambda = 2.8$ cm so separation of minima is 1.4 cm ≈ 1.5 cm	(1)	May use 1.5 cm to calculate speed and then compare with 3.0×10^8 m s ⁻¹ or 10.7 GHz	5
			Example of calculation $\lambda = \frac{v}{f} = \frac{3.0 \times 10^8 \text{ m s}^{-1}}{10.7 \times 10^9 \text{ Hz}} = 0.028 \text{ m}$	
			$\frac{\lambda}{2} = \frac{2.8 \text{ cm}}{2} = 1.4 \text{ cm}$	

(Total for Question 2 = 5 marks)

Question Number	Acceptable Answer		Additional Guidance	Mark
3(a)(i)	An explanation that makes reference to the following points:		Allow an explanation based on use of equations.	
	 The prism and the centre of gravity are at different distances from the pivot Or The prism is not at the centre of gravity of the rule So for moments about the pivot to balance the force 	(1)	Allow "For the forces to be equal, they would have to	
	from the prism must be larger (than the weight of the rule)	(1)	be the same distance from the pivot to balance the moments"	2
3(a)(ii)	• Use of $F = mg$	(1)	Example of calculation Force at prism = F	
	• Use of moment = Fx	(1)	$F = (0.1802 \text{ kg} - 0.0255 \text{ kg}) \times 9.81 \text{ N kg}^{-1} = 1.52 \text{ N}$	
	Application of principle of moments about the pivot	(1)	Taking moments about the pivot point	
	• $W = 0.84 \text{ N}$	(1)	$1.52 \text{ N} \times (30.0 - 5.0) \text{ cm} = W \times (50.0 - 5.0) \text{ cm}$	4
			$\therefore W = \frac{1.52 \text{ N} \times 25.0 \text{ cm}}{45.0 \text{ cm}} = 0.84 \text{ N}$	

3(b)	The distance to the pivot would increase Or Percentage uncertainty in distance decreases	(1)		
	The force at the prism would decrease Or Percentage uncertainty in force/mass increases	(1)	Allow "reading on the balance decreases"	
	(As one increases and the other decreases) we cannot be sure how the percentage uncertainty would change	(1)	Dependent upon MP1 and MP2	3

(Total for Question 3 = 9 marks)

Question Number	Acceptable Answer		Additional Guidance	Mark
4(a)(i)	The detector area exposed to γ-radiation is larger in the set-up of Student A	(1)	 Alternative MP1 and MP2 d should be measured to the middle of the counter (1) 	
	• So the count (rate) will be greater (at a given distance from the source)	(1)	• The error (or uncertainty) in <i>d</i> is reduced in set-up of Student A (1)	
	Hence (the percentage uncertainty will be smaller for) Student A	(1)	MP3 dependent on MP1 and MP2	3
4(a)(ii)	An explanation that makes reference to the following points:			
	Record the background count (rate) and subtract from recorded count (rate)	(1)		
	Gives count (rate) of source only Or As background count adds to the count from the source	(1)	Allow "Adds a systematic error"	
	Record the count for a longer time	(1)	 Alternative MP3 and MP4 Repeat the measurement of the count and calculate a mean (1) 	
	As this will increase the total count (at a given distance)	(1)	As radioactive decay is random (1)	4

4(b)	An explanation that makes reference to the following points:			
	Place an aluminum sheet between the source and the detector	(1)	Allow up to 3 mm of lead	
	As this will absorb/block the alpha and beta radiation emitted by the source	(1)		2

(Total for Question 4 = 9 marks)

Question Number	Acceptable Answer		Additional Guidance	Mark
5(a)	Use a micrometer screw gauge	(1)	Allow digital calipers not vernier calipers	
	 Check (and correct) for zero error Or Use the ratchet on the micrometer 	(1)		
	 Measure diameter at different positions along wire and calculate a mean Or Measure diameter at different orientations and calculate a 			
	mean	(1)		
	• Calculate cross sectional area using $\frac{\pi d^2}{4}$			
	Or Calculate radius and then use πr^{2}	(1)		4
5(b)(i)	An explanation that makes reference to the following points:			
	 Electrons collide with (lattice) ion and transfer energy Or Current in wire causes temperature of wire to increase 	(1)		
	• So the amplitude of vibration (of the lattice ions) increases	(1)		
	• Electrons make more frequent collisions (with lattice ions), so the resistance increases	(1)		3

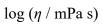
5(b)(ii)	Max TWO from:		
	• (For a black body radiator) Stefan(-Boltzmann) law applies Or (For a black body radiator) $L = \sigma A T^4$	(1)	
	The rate of energy transfer from the wire is determined by its surface area	(1)	
	Increasing the length increases the surface area, so more energy is radiated away (and the temperature does not change)	(1)	

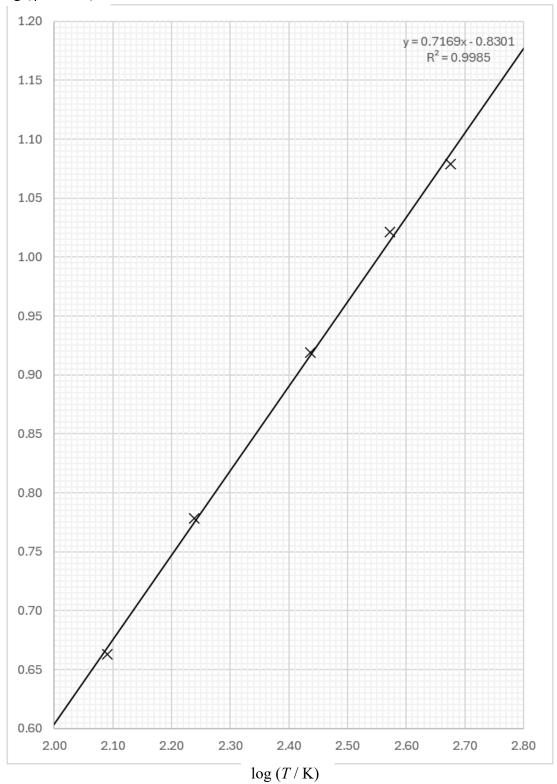
(Total for Question 5 = 9 marks)

Question Number	Acceptable Answer	Additional Guidance	Mark
*6	This question assesses a student's ability to show a coherent and logical structured answer with linkage and fully-sustained reasoning.	Marks are awarded for indicative content and for how the answer is structured and shows lines of reasoning. The following table shows how the marks should be awarded for indicative content.	
	Indicative content: IC1 Average kinetic energy of (air) molecules decreases	Number of indicative marks awarded marking points seen in answer Number of marks awarded for indicative points seen in answer	
	IC2 So the (mean square) speed/velocity (of air molecules) decreases Or So the momentum (of air molecules) decreases	6 4 5-4 3 3-2 2 1 1 0 0 Answer is partially structured with some linkages and lines of reasoning 1 Answer has no linkages 0	
	IC3 Rate of collision with container walls decreases Or Momentum change in each collision with container walls decreases	Total marks awarded is the sum of marks for indicative content and the marks for structure and lines of reasoning	
	IC4 Rate of change of momentum (with container walls) decreases	IC points IC mark Max linkage Max final mark mark 6 4 2 6	
	IC5 So force (on container walls) decreases	5 3 2 5 4 3 1 4	
	IC6 $P = F/A$ so pressure (exerted by air molecules) decreases	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6
		1 1 0 1 0 0 0 0	

(Total for Question 6 = 6 marks)

Question Number	Acceptable Answer		Additional Guidance	Mark
7(a)	 Measure the total thickness of a number of discs (stacked) together 	(1)		
	 Divide by the number of discs (in the stack) to determine the average thickness of one disc 	(1)		
	Measure the total length of a number of discs lined up together			
	Or Measure diameter of a number of discs using vernier calipers	(1)		
	 Divide by the number of discs to determine the average diameter of one disc 	(1)		4


7(b)	• Uses $V = \pi r^2 t$	(1)	Example of calculation	
	• Use of $\rho = \frac{m}{V}$	(1)	$V = \pi \left(\frac{5.2 \times 10^{-2} \text{ m}}{2}\right)^2 \times 1.9 \times 10^{-3} \text{ m} = 4.04 \times 10^{-6} \text{ m}^3$	
	• $\rho = 1.1 \times 10^4 \text{ kg m}^{-3}$	(1)	,	
	 Uses % uncertainty in mass or diameter or thickness 	(1)	$\rho = \frac{42.5 \times 10^{-3} \text{ kg}}{4.04 \times 10^{-6} \text{ m}^3} = 1.05 \times 10^4 \text{ kg m}^{-3}$	
	• Uses 2 × % U in diameter	(1)	For mass % U = $\frac{0.5 \text{ g}}{42.5 \text{ g}} \times 100\% = 1.2 \%$	
	• % U in density = 10 %	(1)	For diameter % U = $\frac{0.1 \text{ cm}}{5.2 \text{ cm}} \times 100\% = 1.9 \%$	6
			For thickness % $U = \frac{0.1 \text{ mm}}{1.9 \text{ mm}} \times 100\% = 5.3 \%$	
			% U in density = 1.2 % + (2 × 1.9 %) + 5.3 % = 10.3 %	
			Alternative MP4 and MP5	
			Uses absolute uncertainties to calculate upper or lower limit	
			Uses half range	


(Total for Question 7 = 10 marks)

Question Number	Acceptable Answer		Additional Guidance	Mark
8(a)	• Uses $V = \frac{4}{3}\pi r^3$	(1)	Example of calculation	
	• Use of $\rho = \frac{m}{V}$	(1)	$V = \frac{4}{3}\pi \times (6.8 \times 10^{-3} \text{ m})^3 = 1.32 \times 10^{-6} \text{ m}^3$	
	• Use of $W = mg$ to calculate upthrust	(1)	$m = \rho V = 925 \text{ kg m}^{-3} \times 1.32 \times 10^{-6} \text{ m}^3 = 1.22 \times 10^{-3} \text{ kg}$	
	• Use of $F = 6\pi \eta r v$	(1)	upthrust = $1.22 \times 10^{-3} \text{ kg} \times 9.81 \text{ N kg}^{-1} = 1.20 \times 10^{-2} \text{ N}$	
	• $v = 1.8 \times 10^{-3} \text{ m s}^{-1}$	(1)	$v = \frac{1.20 \times 10^{-2} \text{ N}}{6\pi \times 52.6 \text{ Pa s} \times 0.68 \times 10^{-2} \text{ m}} = 1.77 \times 10^{-3} \text{ m s}^{-1}$	5
8(b)(i)	An explanation that makes reference to the following points:			
	EITHER			
	• Shows expansion $\log \eta = B \log T + \log A$	(1)		
	 Compares with y = mx + c and states that gradient is B (which is a constant) 	(1)	Do not accept <i>m</i> for gradient MP2 dependent on MP1	
	OR • Shows expansion $\log \eta = \log A + B \log T$	(1)		
	• Compares with $y = c + mx$ and states that gradient is B (which is a constant)	(1)	Do not accept <i>m</i> for gradient MP2 dependent on MP1	2

8(b)(ii)	Log values correct and consistent to 3 decimal places	[Each column is internally consistent]							
	• Axis labels y as $\log (\eta / \text{mPa s})$, x as $\log (T / \text{K})$	(1)	T/K	η / mPa s	log T	log T	log η	$\log \eta$	
	• Scales	(1)	123	4.60	2.090	2.09	0.663	0.66	
	• Plots	(1)	173	6.00	2.238	2.24	0.778	0.78	
	• Flots	(1)	273	8.30	2.436	2.44	0.919	0.92	5
	• Line of best fit		373	10.4	2.572	2.57	1.017	1.02	
			473	12.0	2.675	2.67	1.079	1.08	
8(b)(iii)	Gradient determined using large triangle	(1)	Example	of calculation	<u>1</u>				
	• $B = 0.68 \rightarrow 0.75 \text{ to } 2 \text{ or } 3 \text{ sf}$	(1)	Gradient	$=B = \frac{1.105 - 0}{2.70 - 2}$	$\frac{.675}{.10} = 0.7$	17			
	Inverse log of intercept determined	(1)		$\log \eta - B \log T$	= 1.105-	0.717×2.′	7 = -0.831		
	• $A = 0.12 \rightarrow 0.18$ ignore unit	(1)	$A = 10^{-0.8}$	331 = 0.148					4
			MP3: Allow intercept from false origin						

(Total for Question 8 = 16 marks)

Question Number	Acceptable Answer	Additional Guidance	Mark	
9(a)(i)	An explanation that makes reference to the following points:			
	Use a (fiducial) marker	(1)		
	Placed at the equilibrium position (of cantilever)	(1)		
	(This will reduce timing errors) as end of cantilever is moving fastest at the equilibrium position	(1)		3
9(a)(ii)	An explanation that makes reference to the following points:			
	Time a larger number of oscillations	(1)		
	This will increase the total time recorded	(1)		2

9(b)	Calculation of average time (period)	(1)	Example of calculation	
	• Use of $T^2 \propto \frac{ML^3}{E}$	(1)	$T_1 = \frac{14.69 \text{ s} + 14.64 \text{ s} + 14.76 \text{ s})/3}{5} = 2.94 \text{ s}$	
	• Calculates $\frac{E_1}{E_2}$	(1)	$T_2 = \frac{5.33 \text{ s} + 5.40 \text{ s} + 5.24 \text{ s})/3}{5} = 1.06 \text{ s}$	
	• Calculates $\frac{E_{\text{spruce}}}{E_{\text{cedar}}}$	(1)	$\left(\frac{T_1}{T_2}\right)^2 = \left(\frac{L_1}{L_2}\right)^3 \times \frac{E_2}{E_1} \therefore \frac{E_1}{E_2} = \left(\frac{L_1}{L_2}\right)^3 \times \left(\frac{T_2}{T_1}\right)^2$	
	• $\frac{E_1}{E_2}$ = 1.22 and $\frac{E_{\text{spruce}}}{E_{\text{cedar}}}$ = 1.25	(1)	$\therefore \frac{E_1}{E_2} = \left(\frac{0.95 \text{ m}}{0.45 \text{ m}}\right)^3 \times \left(\frac{1.06 \text{ s}}{2.94 \text{ s}}\right)^2 = 1.22$	
	• As 1.22 is close to 1.25, the metre rule must be made from spruce and half-metre rule from cedar		$\frac{E_{\text{spruce}}}{E_{\text{cedar}}} = \frac{9.6 \text{ GPa}}{7.7 \text{ GPa}} = 1.25$	
	Or Conclusion based on comparison of calculated values from using calculated ratio	(1)	Alternative MP4 and MP5	6
			• Calculates $E_{\text{cedar}} \times \frac{E_1}{E_2} = E_{\text{spruce}}$ • $\frac{E_1}{E_2} = 1.22$ and $E_{\text{spruce}} = 9.5$ (or $E_{\text{cedar}} = 7.9$)	

(Total for Question 9 = 11 marks)

Question Number	Acceptable Answer	Additional Guidance Mark
10(a)	• Use of $P = \frac{V^2}{R}$ • $P = 48.2 \text{ (W)}$ (1)	Example of calculation $P = \frac{(8.5 \text{ V})^2}{1.5 \Omega} = 48.2 \text{ W}$ Bald answer of 48.2 can score MP2 only Bald answer of 48 scores 0
10(b)	• Use of $\rho = \frac{m}{v}$ (1) • Use of $\Delta E = mc\Delta\theta$ (1) • Use of $P = \frac{\Delta W}{\Delta t}$ (1) • Time = 128 s (ecf from (a))	Example of calculation $m = 1.25 \times 10^{-4} \text{ m}^3 \times 1050 \text{ kg m}^{-3} = 0.131 \text{ kg}$ $t = \frac{0.131 \text{ kg} \times 3930 \text{ J kg}^{-1} \text{ K}^{-1} \times 12 \text{ K}}{48.2 \text{ W}} = 128 \text{ s}$ Allow 130s Show that value gives 129 s

10(c)	(Connect oscilloscope to the a.c. supply and) adjust time base so that a complete wave can be seen on the screen	(1)	Accept several complete cycles for MP1, but in that case require measurement across several cycles for MP2.	
	Measure the (horizontal) distance from peak to peak	(1)		
	Use the time base setting × distance between peaks (to determine the time for one cycle)	(1)		
	• Use $f = \frac{1}{T}$ to calculate the supply frequency	(1)		
	• Use the voltage sensitivity and amplitude (of a peak to determine the peak p.d.)	(1)		
	• Use $V_{\rm rms} = \frac{V_0}{\sqrt{2}}$ (to calculate the r.m.s. p.d. and compare with the voltmeter reading)	(1)		6

(Total for Question 10 = 12 marks)

Question Number	Acceptable Answer		Additional Guidance	Mark
11(a)(i)	 An explanation that makes reference to the following points: The velocity/momentum increases as the energy of the protons increases r = ^p/_{Bq} and p=mv so the magnetic flux density must increase (to keep r constant). 	(1)		
	Or $r = \frac{p}{Bq}$ and $E_k = \frac{p^2}{2m}$ so the magnetic flux density must increase (to keep r constant). Or $F = \frac{mv^2}{r}$ and $F = Bqv$ so the magnetic flux density must increase (to keep r constant)	(1)		2

11(a)(ii)	Radius calculated	(1)		
	• Use of $F = \frac{mv^2}{r}$	(1)	Allow use of $p = mv$ for MP2	
	• Use of $F = Bqv$	(1)	and use of $r = \frac{p}{Bq}$ for MP3	
	• $B = 7.3 \times 10^{-5} \text{ T}$	(1)	Example of calculation	4
			$r = \frac{\text{circumference}}{2\pi} = \frac{27 \times 10^3 \text{ m}}{2\pi} = 4.30 \times 10^3 \text{ m}$	
			$F = \frac{1.67 \times 10^{-27} \text{ kg} \times (3.0 \times 10^7 \text{ m s}^{-1})^2}{4.30 \times 10^3 \text{ m}} = 3.50 \times 10^{-16} \text{ N}$	
			$B = \frac{3.50 \times 10^{-16} \text{ N}}{1.6 \times 10^{-19} \text{ C} \times 3.0 \times 10^7 \text{ m s}^{-1}} = 7.28 \times 10^{-5} \text{ T}$	
11(a)(iii)	Conversion to joule	(1)	Example of calculation	
	• Use of $\Delta E = c^2 \Delta m$	(1)	$E = 13600 \times 10^9 \text{ eV} \times 1.6 \times 10^{-19} \text{ J eV}^{-1} = 2.18 \times 10^{-6} \text{ J}$	
	• $m = 2.4 \times 10^{-23} \text{ (kg)}$	(1)	$m = \frac{2.18 \times 10^{-6} \text{ J}}{(3.0 \times 10^8 \text{ m s}^{-1})^2} = 2.42 \times 10^{-23} \text{ kg}$	3

*11(b)	cohe	question assesses a student's ability to show a rent and logical structured answer with linkage fully-sustained reasoning
	Indic	eative content:
	IC1	In a fixed target collision there is momentum before the collision so there is momentum after the collision
	IC2	So particle(s) created must have some kinetic energy
	IC3	So not all kinetic energy converted to mass
	IC4	In a colliding beam experiment total initial momentum is zero (if the colliding particles have the same mass and speed)
	IC5	Momentum after the collision will be zero
	IC6	So (almost) all of the kinetic energy is converted to mass

Marks are awarded for indicative content and for how the answer is structured and shows lines of reasoning.

The following table shows how the marks should be awarded for indicative content.

Number of Number of indicative marks awarded marking for indicative marking points points seen in answer 4 6 5-4 3 3-2 2 0

	Number of marks awarded for structure of answer and sustained line of reasoning
Answer shows a coherent and logical structure with linkages and fully sustained lines of reasoning demonstrated throughout	2
Answer is partially structured with some linkages and lines of reasoning	1
Answer has no linkages between points and is unstructured	0

Total marks awarded is the sum of marks for indicative content and the marks for structure and lines of reasoning.

and the marks for structure and fines of reasoning.					
IC points	IC mark	Max linkage	Max final		
		mark	mark		
6	4	2	6		
5	3	2	5		
4	3	1	4		
3	2	1	3		
2	2	0	2		
1	1	0	1		
0	0	0	0		

•

(Total for Question 11 = 15 marks)

Question Number	Acceptable Answer		Additional Guidance	Mark
12(a)(i)	 An explanation that makes reference to the following points: t₁ is not significantly different from the other times Or t₁ is only 0.6% different from t_{mean} Or there is not enough data to show that t₁ is anomalous So the student who says that all the data should be used is correct 	(1) (1)	MP2 dependent upon MP1	2
12(a)(ii)	 Mean t calculated Uses half range Or Uses furthest from mean % U = 0.4 % given to 1 or 2 sig figs only 0.5% using furthest from mean 	(1) (1) (1)	$\frac{\text{Example of calculation}}{t_{\text{mean}}} = \frac{7.85 \text{ s} + 7.81 \text{ s} + 7.79 \text{ s} + 7.80 \text{ s}}{4}$ $= 7.81 \text{ s}$ Half range = $\frac{7.85 \text{ s} - 7.79 \text{ s}}{2} = 0.03 \text{ s}$ $\% \text{ U} = \frac{0.03 \text{ s}}{7.81 \text{ s}} \times 100\% = 0.38 \%$	3
12(a)(iii)	Height of cylinder Or Length of cylinder	(1)		1

12(b)(i)	• Use of $v^2 = u^2 + 2as$	(1)	Example of calculation $v^2 = u^2 + 2as$	
	• $v = 3.8 \text{ m s}^{-1}$	(1)	$v = \sqrt{2 \times 9.81 \text{ m s}^{-2} \times 0.75 \text{ m}} = 3.84 \text{ m s}^{-1}$	2
12(b)(ii)	An explanation that makes reference to the following points:			
	The cylinder is travelling (very) quickly (when it reaches the light gate)	(1)		
	Therefore the time taken for the cylinder to pass through the light gate is (very) short	(1)		
	Using the light gate and a data logger there is minimal effect from reaction time Or Difficult/impossible to press stepwatch button again.			
	Or Difficult/impossible to press stopwatch button again after such a short time	(1)		3

(Total for Question 12 = 11 marks)

TOTAL FOR PAPER = 120 MARKS

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom