

Mark Scheme (Results)

Summer 2025

Pearson Edexcel GCE A Level In Physics (9PH0) Paper 01: Advanced Physics I

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2025
Question Paper Log Number P78524A
Publications Code 9PH0_01_2506_MS
All the material in this publication is copyright
© Pearson Education Ltd 2025

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Mark scheme notes

Underlying principle

The mark scheme will clearly indicate the concept that is being rewarded, backed up by examples. It is not a set of model answers.

1. Mark scheme format

- 1.1 You will not see 'wtte' (words to that effect). Alternative correct wording should be credited in every answer unless the MS has specified specific words that must be present. Such words will be indicated by underlining e.g. 'resonance'
- 1.2 Bold lower case will be used for emphasis e.g. 'and' when two pieces of information are needed for 1 mark.
- 1.3 Round brackets () indicate words that are not essential e.g. "(hence) distance is increased".
- 1.4 Square brackets [] indicate advice to examiners or examples e.g. [Do not accept gravity] [ecf].

2. Unit error penalties

- 2.1 A separate mark is not usually given for a unit but a missing or incorrect unit will normally mean that the final calculation mark will not be awarded.
- 2.2 This does not apply in 'show that' questions or in any other question where the units to be used have been given, for example in a spreadsheet.
- 2.3 The mark will not be awarded for the same missing or incorrect unit only once within one clip in epen.
- 2.4 Occasionally, it may be decided not to insist on a unit e.g the candidate may be calculating the gradient of a graph, resulting in a unit that is not one that should be known and is complex.
- 2.5 The mark scheme will indicate if no unit error is to be applied by placing brackets around the unit.

3. Significant figures

- 3.1 Use of too many significant figures in the theory questions will not prevent a mark being awarded if the answer given rounds to the answer in the MS.
- 3.2 Too few significant figures will mean that the final mark cannot be awarded in 'show that' questions where one more significant figure than the value in the question is needed for the candidate to demonstrate the validity of the given answer.
- 3.3 The use of one significant figure might be inappropriate in the context of the question e.g. reading a value off a graph. If this is the case, there will be a clear indication in the MS.
- 3.4 The use of $g = 10 \text{ m s}^{-2}$ or 10 N kg⁻¹ instead of 9.81 m s⁻² or 9.81 N kg⁻¹ will be penalised by one mark (but not more than once per clip). Accept 9.8 m s⁻² or 9.8 N kg⁻¹
- 3.5 In questions assessing practical skills, a specific number of significant figures will be required e.g. determining a constant from the gradient of a graph or in uncertainty calculations. The MS will clearly identify the number of significant figures required.

4. Calculations

- 4.1 **use of** the formula means that the candidate demonstrates substitution of physically correct values, although there may be conversion errors e.g. power of 10 error.
- 4.2 If a 'show that' question is worth 2 marks, then both marks will be available for a reverse working. If the question is worth 3 marks then only 2 marks will be available.
- 4.3 The mark scheme will show a correctly worked answer for illustration only.

5. Quality of Written Expression

- 5.1 Questions that asses the ability to show a coherent and logically structured answer are marked with an asterisk.
- 5.2 Marks are awarded for indicative content and for how the answer is structured.
- 5.3 Linkage between ideas, and fully-sustained reasoning is expected.

Question Number	Acceptable Answer	Additional Guidance	Mark
1	The only correct answer is A (structure of an atom)		1
	B is not the correct answer, as this experiment investigated the structure of the atom		
	C is not the correct answer, as this experiment investigated the structure of the atom		
	D is not the correct answer, as this experiment investigated the structure of the atom		
2	The only correct answer is A (charge)		1
	B is not the correct answer, as displacement is a vector C is not the correct answer, as electric field strength is a vector D is not the correct answer, as force is a vector		
3	The only correct answer is C (There is a force on the person due to Newton's third law.)		1
	A is not the correct answer, as a centripetal force acts on the ball B is not the correct answer, as Newton's first law describes the force on the ball		
	D is not the correct answer, as weight does not act in the horizontal plane		
4	The only correct answer is D $\frac{R}{4}$		1
	A is not the correct answer, as $R = \rho l/A$ and A is four times larger B is not the correct answer, as $R = \rho l/A$ and A is four times larger C is not the correct answer, as $R = \rho l/A$ and A is four times larger		

5	The only correct answer is B (into the page)	1
	A is not the correct answer, as the positron is anticlockwise, the force is to the centre of the spiral and use of Flemings left hand rule C is not the correct answer, as the positron is anticlockwise, the force is to the centre of the spiral and use of Flemings left hand rule D is not the correct answer, as the positron is anticlockwise, the force is to the centre of the spiral and use of Flemings left hand rule	
6	The only correct answer is C (P to Q; increased)	1
	A is not the correct answer, as the field direction is towards the plate connected to the negative terminal and the field strength is increased B is not the correct answer, as the field direction is towards the plate connected to the negative terminal and the field strength is increased D is not the correct answer, as the field direction is towards the plate connected to the negative terminal and the field strength is increased	
7	A is not the correct answer, as current is only present when capacitor changes so charges or discharges B is not the correct answer, current is only present when capacitor changes and charges or discharges D is not the correct answer, as current is only present when capacitor	1
	D is not the correct answer, as current is only present when capacitor changes and charges or discharges	

8	The only correct answer is B $\frac{2}{\ln 3}$	1
	A is not the correct answer, as Time constant $RC = t/\ln 3$ C is not the correct answer, as Time constant $RC = t/\ln 3$ D is not the correct answer, as Time constant $RC = t/\ln 3$	
9	The only correct answer is D	1
	A is not the correct answer, as the only force acting on the ball is weight B is not the correct answer, as the only force acting on the ball is weight	
	C is not the correct answer, as the only force acting on the ball is weight	
10	The only correct answer is A	1
	B is not the correct answer, as the acceleration in the vertical plane is g C is not the correct answer, as the acceleration in the vertical plane is g D is not the correct answer, as the acceleration in the vertical plane is g	

(Total for Multiple Choice Questions = 10 marks)

Question Number	Acceptable Answer		Additional Guidance	Mark
11(a)	 I = 0 for V less than 0 [Ignore any breakdown pd] I = 0 from 0 to a positive value of V and then increases with a steep gradient 	(1)	Allow I close to 0 Allow curve or positively sloping straight line rather than abrupt right angle Example of graph Current Potential difference	2
11(b)	• Use of $E = V_1 + V_2$	(1)	 	
	• Use of $V = IR$ • Resistance = 90 Ω	(1) (1)	Example of calculation $5 \text{ V} - 3.2 \text{ V} = 20 \times 10^{-3} \text{ A} \times R$ $R = 90 \Omega$	3

(Total for Question 11 = 5 marks)

Question Number	Acceptable Answer		Additional Guidance	Mark
12(a)	• Resultant force = 0	(1)		
	• Resultant moment (about any point) = 0	(1)	Accept Clockwise moment = anticlockwise moment (about a point)	2
12(b)	• Use of Moment = $F.x$ around P	(1)	Accept: Use of Moment = $M.x$ around P	
	 Use of perpendicular component ie cos80 Use of clockwise moment = anticlockwise moment 	(1) (1)	Example of calculation Clockwise moment = $0.260 \text{ kg} \times 9.81 \text{ N kg}^{-1} \times 0.04 \text{ m}$ = 0.102 N m	
	• $W = 3.3 \text{ N}$	(1)	Anticlockwise moment = $W \times 0.18 \text{ m} \times \cos 80$ So $0.102 \text{ Nm} = W \times 0.0313$ W = 3.26 N	4
12(c)	The whole lever-arm rotates through the same angle	(1)		
	As the distance of pointer from the pivot is larger O r distance of the pan from pivot is smaller	(1)	Accept as lever-arm radius is larger Or radius to pan is smaller	2

(Total for Question 12 = 8 marks)

Acceptable Answer		Additional Guidance	Mark
Voltmeter in parallel with solar cell	(1)	Example of circuit diagram	
Ammeter in series with variable resistor	(1)	(V) (A)	2
• Use of $P = IV$	(1)	Example of calculation $P = 0.54 \text{ V} \times 3.4 \text{ A}$	
• $P = 1.8 \text{ (W)}$	(1)	P = 1.84 W	2
		Allow range of values calculated between points on the graph from 0.50 V 3.6 A [gives 1.80 W] to 0.55 V 3.2 A [gives 1.76 W]	
• Use of $I = P / A$	(1)	Example of calculation Power of sunlight = $1000 \text{ W m}^{-2} \times 104 \times 10^{-4} \text{ m}^2 = 10.4 \text{ W}$	
• Use of efficiency = $P_{\text{out}} / P_{\text{in}}$	(1)		
• Efficiency = 0.18 Or 18 % (allow ecf from (b)(i))	(1)	Efficiency = 1.84 W / 10.4 W = 0.177 [Show that value gives 0.19]	3
• Recognise $E = 0.58 \text{ V}$	(1)		
Determine p.d. across internal resistance	(1)		
• Internal resistance = 0.012Ω [allow ecf from (b)(i) ie pair of values for V and I that were out of range]	(1)	Example of calculation Internal resistance = $\frac{0.58 \text{ V} - 0.54 \text{ V}}{3.4 \text{ A}} = 0.012 \Omega$	3
	 Voltmeter in parallel with solar cell Ammeter in series with variable resistor Use of P = IV P = 1.8 (W) Use of efficiency = P_{out} / P_{in} Efficiency = 0.18 Or 18 % (allow ecf from (b)(i)) Recognise E = 0.58 V Determine p.d. across internal resistance Internal resistance = 0.012 Ω [allow ecf from (b)(i) ie pair of values for V and 	• Voltmeter in parallel with solar cell • Ammeter in series with variable resistor • Use of $P = IV$ • Use of $I = P / A$ • Use of efficiency = $P_{\text{out}} / P_{\text{in}}$ • Use of efficiency = $0.18 \text{ Or } 18 \%$ (allow ecf from (b)(i)) • Recognise $E = 0.58 \text{ V}$ • Internal resistance = 0.012Ω [allow ecf from (b)(i) ie pair of values for V and	• Voltmeter in parallel with solar cell • Ammeter in series with variable resistor (1) • Use of $P = IV$ • Use of $P = IV$ • $P = 1.8 \text{ (W)}$ (1) • Use of $I = IV$ • Use of efficiency $I = IV$ • Use of efficienc

(Total for Question 13 = 10 marks)

Question Number	Acceptable Answer		Additional Guidance	Mark
14(a)	At least four straight equispaced lines	(1)	Example	
	Arrow on at least one line pointing to the charge	(1)		2
14(b)(i)	• Use of $V = Q/4\pi\varepsilon_0 r$	(1)	Example of calculation $-16 \text{ V} = \frac{Q}{4\pi \times 8.85 \times 10^{-12} \text{ F m}^{-1} \times 0.06 \text{ m}}$	
	 Converts to nC Q = (-) 0.11 (nC) 	(1)(1)	$Q = -1.07 \times 10^{-10} \text{ C}$ $Q = -0.11 \text{ nC}$	3
14(b)(ii)	• Use of $E = \frac{Q}{4\pi\varepsilon_0 r^2}$	(1)	Example of calculation (-)120 V m ⁻¹ = $\frac{(-) 1.1 \times 10^{-10} \text{ C}}{4\pi \times 8.85 \times 10^{-12} \text{ F m}^{-1} \times r^2}$	
	• Either calculates $r = 0.091$ (m) using $E = 120 \text{ V m}^{-1}$ or $E = 99 \text{ (V m}^{-1})$ using $r = 0.10 \text{ m}$ (Show that value gives $r = 0.087$ (m) using $E = 120 \text{ V m}^{-1}$ or $E = 90 \text{ (V m}^{-1})$ using $r = 0.10 \text{ m}$)	(1)	$r = 0.091 \text{ m}$ Or calculates the field strength $E = \frac{(-) 1.1 \times 10^{-10} \text{ C}}{4\pi \times 8.85 \times 10^{-12} \text{ F m}^{-1} \times 0.10^2}$	
		(4)	$E = 99 \text{ V m}^{-1}$ Accept statement is incorrect because the bee can	
	 Comparison of student's answer for distance with r = 10 (cm) and an opinion about the statement Or Comparison of student's answer for field strength with the field strength = 120 (V m⁻¹) and an opinion about the statement 	(1)	detect the field at 9.1 (cm) or less Or Accept statement is incorrect because the bee cannot detect the field at 10 (cm)	3
14(c)	Hair must be charged	(1)	Accept "negative" or "positive"	
	As an electric field exerts a force on a charge	(1)	Accept as like charges repel Or opposite charges attract (Total for Operion 14 = 1	2

(Total for Question 14 = 10 marks)

Question Number	Acceptable Answer		Additional Guidance	Mark
15(a)	Correct symbol for pion and neutron	(1)	Do note award MP1 if an additional symbol appears Example	
	Pion marked positive	(1)	$(\Sigma^{+}) \pi^{+} + n$ Ignore 0 if written next to n	2
15(b)	• Charge: $+1 \rightarrow +1 + 0$	(1)		
	• Baryon number: $1 \rightarrow 0 + 1$	(1)		2
15(c)	Three quarks	(1)		
	• (s) u u	(1)		2
15(d)(i)	The neutron is a neutral particle Or the neutron is not charged Or neutrons do not produce ionisation	(1)		1
15(d)(ii)	Measures radius 3.5 cm [range 3.0 cm to 9.0 cm]	(1)	Example of calculation $r = 0.035 \times 15 = 0.525 \text{ m}$	
	• Uses scale correctly (× 15)	(1)	Typical range after scaling 0.45 to 1.35 m	
	• Use of $r = p/BQ$ with $Q = 1.6 \times 10^{-19}$ C	(1)		
	• B = 1.3 T [value consistent with their measured scaled radius note 3.0 cm leads to 1.5 T and 9.0 cm leads to 0.51 T]	(1)	$0.525 \text{ m} = \frac{1.1 \times 10^{-19} \text{ N s}}{B \times 1.6 \times 10^{-19} \text{ C}}$ $B = 1.3 \text{ T}$	4

(Total for Question 15 = 11 marks)

Question Number	Acceptable Answer		Additional Guidance	Mark
16(a)(i)	• Use of $p = mv$ • $p = 38 \text{ (N s)}$	(1) (1)	Example of calculation $p = 18 \text{ kg} \times 2.1 \text{ m s}^{-1}$ p = 37.8 N s	2
16(a)(ii)	 Expression for component of p_B East Expression for component of p_B South Uses momentum conservation along line South Uses tan θ = component x / component y θ = 72° and so stone A moves in the direction shown Or θ = 72° and so stone A doesn't move in the direction shown [if using show that value θ = 62° and this is not in the right direction] 	(1) (1) (1)	$= 10.53 \text{ Ns}$ $p_{\text{B}} \text{ in south direction} = 18 \text{ kg} \times 2 \text{ m s}^{-1} \times \cos 17^{\circ}$ $= 34.43 \text{ Ns}$ Momentum conservation in South direction} $37.8 \text{ Ns} = 34.43 \text{ Ns} + p_{\text{A in South direction}}$ Or $p_{\text{A in south direction after collision}} = 37.8 - 34.43 = 3.37 \text{ Ns}$ [If show that value used = 5.57 N s]	5

Alternative making use of angle of 70° to determine the velocity of A by considering momentum conservation in two directions and comparing the two results

• Expression for component of v_B South

• Uses conservation along line South

- Expression for component of v_B East
- Uses conservation East West
- Gives two correct values of velocity/momenta for stone A eg 0.56 (m s⁻¹) and 0.62 (m s⁻¹) after the collision with a comparison of the two values and sensible conclusion such as the two values are not consistent so the stone does not move in this direction

[If momenta used the two values for momenta of A after the collision are $10.1~(N\,s)$ and $11.2~(N\,s)$]

The alternative is shown using velocity values but could be done using momentum values as above.

 $v_{\rm B}$ in south direction = 2 m s⁻¹ × cos 17° =1.91 m s⁻¹

Conservation in South direction

(1) $2.1 \text{ m s}^{-1} = 1.91 \text{ m s}^{-1} + v_{A \text{ in south direction after collision}}$ Or

 $v_{A \text{ in south direction after collision}} = 2.1 \text{ m} \text{ s}^{-1} - 1.91 \text{ m} \text{ s}^{-1}$

$$0.19 \text{ m s}^{-1} = v_A \cos 70$$

Gives $v_A = 0.56 \text{ m s}^{-1}$

(1)

(1)

(1)

 $v_{\rm B}$ in east direction = 2 m s⁻¹ × sin 17° = 0.585 m s⁻¹

Momentum conservation in East west direction

$$v_A \sin 70 = v_{B \text{ in east direction}} = 0.585$$

Gives $v_A = 0.62 \text{ m s}^{-1}$

MP5 Note: can compare the components of A and B in the East -west direction after the collision

If using a Vector diagram		Example of vector diagram	
• Labelled line representing p_A / v_A before collision	(1)	Note this could be done using momenta or velocities as	
		masses are the same.	
• Uses or states sensible (more than half the space) scale	(1)		
• Line representing $p_{\rm B}$ / $v_{\rm B}$ after collision starting at one end of $p_{\rm A}$ / $v_{\rm A}$ before collision line	(1)	Up after Collición before (2.0)	
 Line representing p_A / v_A after collision and completes triangle 	(1)	co (trion (2-1)	
• Measures angle: $\theta = 70^{\circ}$ and this is the required angle so stone A moves towards the button after the collision	(1)	The operate Collision	

16(b)	• Use of $v^2 = u^2 + 2as$	(1)		
			$0 = u^2 + 2 \times 0.10 \text{ m s}^{-1} \times 1.9 \text{ m}$	
	• Use of $E_{\mathbf{k}} = \frac{1}{2}mv^2$	(1)		
	. 2		Note that the velocity of A could be taken from a(ii) if so	
	• Determines E_k of A before collision = 40 J		award MP1 for the extra work already done as long as it	
	Or Determines E_k of A after collision = 3.5 J	(1)	is correct (range between 0.55 and 0.62 depending on	
	Of Determines D_{K} of M after complete 3.3		rounding)	
	• Total kinetic energy after = 39.5 J and suggests		$E_{\rm k}$ of A before collision = $\frac{1}{2}$ 18 kg × 2.1 ² (m s ⁻¹) ²	
	elastic / inelastic	(1)	= 39.7 J	
		(1)	$E_{\rm k}$ of B after collision = $\frac{1}{2}$ 18 kg × 2.0 ² (m s ⁻¹) ²	
			= 36.0 J	4
			$E_{\rm k}$ of A after collision = $\frac{1}{2}$ 18 kg × 0.62 ² (m s ⁻¹) ²	
			= 3.5 J	
			Total E_k after collision = $36.0 + 3.5 = 39.5$ J	
			[Note this could all be done using velocity values as the	
			mass of each stone is the same then unit m ² s ⁻²]	

(Total for Question 16 = 11 marks)

Question Number		Acce	ptable Answe	r	Add	Additional Guidance		
*17(a)		This question assesses a student's ability to show a coherent and logically structured answer with linkages and fully-sustained reasoning.				Marks are awarded for indicative content and for how the answer is structured and shows lines of reasoning.		
	Total marks awar marks for structu			ative content and the	The following table show for indicative content.			
	IC points	IC mark	Max linkage mark	Max final mark	Number of indicative points seen in answer	Number of for indicati	marks awarded ve points	
	6	4	2	6	5-4		3	
	5	3	2	5	3-4		2	
	4	3	1	4	1		1	
	3	2	1	3	0		0	
	2	2	0	2			Number of marks	
	0	0	0	0			awarded for structure and lines of reasoning	
	with alu	s a change in t iminium disc)		field/flux (linkage /flux	Answer shows a coher- logical structure with It fully sustained lines of demonstrated throughout Answer is partially stru- some linkages and line reasoning	inkage and reasoning ut	1	
		m.f. is induce			Answer has no linkage points and is unstructure			
	field Or Field	cts on the disc	e, as there is a continuous and the continuous and the continuous architecture.	current in a magnetic	IC4 Accept reference	e to $F = BI$	<i>l</i> if current in disc has	
	IC5 The disc	c moves to red	duce the change	e in field/flux	IC6 dependent on IC			

17(b)	(The speedometer reading is proportional / related to) angular velocity of axle/cable	(1)	Accept angular frequency Or frequency of rotations	
	• As $v = r\omega$ different radii / r will lead to different (road) speeds	(1)		2
	Or			
	• (different diameter) therefore circumference of wheels are different Or one rotation leads to a different distance travelled Or different number of rotations over a set distance	(1)		
	• So the angular velocity is different for the same speed Or the velocity is different for the same angular velocity	(1)	Accept angular frequency Or frequency of rotations	
17(c)	• Use of $P = W/t$ and $\Delta W = F\Delta s$ • Use of $\Delta E_{\rm grav} = mg\Delta h$	(1)	Example of calculation	
		(1)	$190 \text{ W} = F \times 8.3 \text{ m s}^{-1}$ F = 22.9 N	
		(-)	Power loss due to friction and air resistance = 22.9 N \times v	
	• Use of principle of conservation of energy [MP3 dependent on MP2]	(1)	Gain in G.P.E. / second = 75 kg × 9.81 m s ⁻² × $\frac{v}{20}$	
			330 W = 22.9 N × v +75 kg × 9.81 m s ⁻² × $\frac{v}{20}$	
	 Velocity = 5.5 (m s⁻¹) so speedometer reading slightly inaccurate Or Velocity = 5.5 (m s⁻¹) so speedometer reading is quite accurate Or Total power = 334 (W) so speedometer reading must have been correct 		330 W = 22.9v + 36.79v = 59.7v	
		(1)	$v = 5.53 \text{ m s}^{-1}$	4
			Alternative resulting on comparison of power: $190 \text{ W} = F \times 8.3 \text{ m s}^{-1}$ F = 22.9 N	
			Gain in G.P.E. / second = 75 kg × 9.81 m s ⁻² × $\frac{5.6}{20}$ m s ⁻¹	
			Gain in G.P.E. / second = 206 W	
			Power loss due to friction and air resistance = $22.9 \text{ N} \times 10^{-1} \text{ M} \cdot 10^{-1} \text{ M} \cdot$	
			$5.6 \text{ m s}^{-1} = 128 \text{ W}$ Total power = 334 W	

Alternative based on resolving forces:

- Use of P = W/t and $\Delta W = F\Delta s$
- Determines a component of force
- Determines total force along the slope
- Velocity = 5.5 (m s⁻¹) so (speedometer reading) slightly inaccurate
 Or Velocity = 5.5 (m s⁻¹) so (speedometer reading) is accurate
 Or Total power = 334 (W) so (speedometer reading) must be correct

Alternative based on resolving forces:

$$190 \text{ W} = F \times 8.3 \text{ m s}^{-1}$$

$$F = 22.9 \text{ N}$$

Component of weight along slope =75 kg × 9.81 m s⁻² × $\frac{1}{20}$ as $\sin \theta \sim \tan \theta = 1/20$

Force up slope from cyclist = 22.9 N + 75 kg × 9.81 m s⁻² × $\frac{1}{20}$ = 59.7 N

So velocity of cyclist = $\frac{330 \text{ W}}{59.7 \text{ N}} = 5.53 \text{ m s}^{-1}$

Or Cyclist Power = $59.7 \text{ N} \times 5.6 \text{ m s}^{-1} = 334 \text{ W}$

(Total for Question 17 = 12 marks)

Question Number	Acceptable Answer		Additional Guidance	Mark
18(a)	The frequency of the ac supply is constant	(1)		
	• The time in a tube = length of tube /speed	(1)		
	As (the beam/particles/ions) speed increases	(1)		
	The time between beam exiting each consecutive tube is constant	(1)	Accept time in each tube is constant	4
18(b)(i)	• Determines charge on the ion: 80e	(1)	Example of calculation Ion charge = $80e$	
	• Use of $W = VQ$	(1)	Kinetic energy of U ion = $200 \text{ MeV} \times 238$ U ion accelerated to a kinetic energy $80e \times V = 200 \text{ MeV} \times 238$	
	Recognises Nucleon Number: 238	(1)	V = 595 MV	
	• $V = 600 \text{ MV}$	(1)		4
18(b)(ii)	Conversion MeV to J	(1)	Example of calculation E_k of U ion in J = 200 × 10 ⁶ eV × 238 × 1.6 × 10 ⁻¹⁹ C	
	• Use of $E_k = \frac{1}{2}mv^2$	(1)	$= 7.616 \times 10^{-9} \mathrm{J}$	
	• $v/c = 65.3\%$	(1)	$\frac{1}{2}238 \times 1.66 \times 10^{-27} \text{ kg} \times v^2 = 7.616 \times 10^{-9} \text{ J}$ $v = 1.96 \times 10^8 \text{ m s}^{-1}$ $v/c = 1.96 \times 10^8 \text{ m s}^{-1} / 3.0 \times 10^8 \text{ m s}^{-1} = 65.3\%$ Allow use of 1.67×10^{-27} ti calculate final value Note that 238 can be omitted on both sides of this equation: Kinetic energy of U ion in J = 200 MeV × 1.6×10^{-19} C = 3.2×10^{-11} J $\frac{1}{2}1.66 \times 10^{-27} \text{ kg} \times v^2 = 3.2 \times 10^{-11}$ J $v = 1.96 \times 10^8 \text{ m s}^{-1}$	3

18(c)	 2 max This isotope of magnesium has a lot more neutrons than the usual isotope 	(1)		
	• Uranium has (far) more neutrons than protons	(1)		2
	• so is likely to produce neutron rich isotopes	(1)	Accept products produced with a lot of neutrons	

(Total for Question 18 = 13 marks)

TOTAL FOR PAPER = 90 MARKS

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom