

Mark Scheme (Results)

Summer 2025

Pearson Edexcel GCE A Level In Chemistry (9CH0) Paper 03: General and Practical Principles in Chemistry

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2025

Question Paper Log Number P77834A

Publications Code 9CH0_03_2506_MS

All the material in this publication is copyright

© Pearson Education Ltd 2025

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Using the Mark Scheme

Examiners should look for qualities to reward rather than faults to penalise. This does NOT mean giving credit for incorrect or inadequate answers, but it does mean allowing candidates to be rewarded for answers showing correct application of principles and knowledge. Examiners should therefore read carefully and consider every response: even if it is not what is expected it may be worthy of credit.

The mark scheme gives examiners:

- an idea of the types of response expected
- how individual marks are to be awarded
- the total mark for each question
- examples of responses that should NOT receive credit.

/ means that the responses are alternatives and either answer should receive full credit.

() means that a phrase/word is not essential for the award of the mark, but helps the examiner to get the sense of the expected answer.

Phrases/words in **bold** indicate that the <u>meaning</u> of the phrase or the actual word is **essential** to the answer. ecf/TE/cq (error carried forward) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question.

Candidates must make their meaning clear to the examiner to gain the mark. Make sure that the answer makes sense. Do not give credit for correct words/phrases which are put together in a meaningless manner. Answers must be in the correct context.

Quality of Written Communication

Questions which involve the writing of continuous prose will expect candidates to:

- write legibly, with accurate use of spelling, grammar and punctuation in order to make the meaning clear
- select and use a form and style of writing appropriate to purpose and to complex subject matter
- organise information clearly and coherently, using specialist vocabulary when appropriate.

Full marks will be awarded if the candidate has demonstrated the above abilities.

Questions where QWC is likely to be particularly important are indicated (QWC) in the mark scheme, but this does not preclude others.

Question Number	Answer		Additional Guidance	Mark
1(a)	An answer that makes reference to the following points: energy (required) to remove / lose 1 electron / first electron / last electron from an / each atom (of an element)	(1)	Allow e ⁽⁻⁾ for electron	(2)
	in 1 mol (e) of gaseous atoms (to form 1 mol of positive ions)	(1)	1 mol(e) must be referenced in either M1 or M2 to score both marks e.g. 'energy to remove 1 mol of electrons from gaseous atoms' scores 2 marks Correct example symbol or generic equation, for first IE, including state symbols scores 1 mark e.g. $X(g) \rightarrow X^+(g) + e^{(-)} / X(g) - e^{(-)} \rightarrow X^+(g)$ Ignore references to standard conditions / standard states	

Question Number	Answer		Additional Guidance	Mark
1(b)	 An explanation that makes reference to the following points: as there is a large difference / large increase / (large) jump / in ionisation energy between first and second ionisation energy / after first ionisation energy / before second ionisation energy 	(1)	Allow there is a very large increase in 2 nd IE Allow alkali metal	(2)
	• Group 1	(1)	M2 dependent on M1 Ignore reference to the subshell / orbital of the (outer) electron even if incorrect	

Question Number	Answer	Additional Guidance	Mark
1(c)	An explanation that makes reference to the following points:	Penalise ionic radius once only	(3)
	 element X as it has the lowest (first) ionisation energy as electron removed is furthest from nucleus (1) 	decreases down the group Do not award reference to other ionisation energies (unless all are mentioned as being lower) Allow 'outer electron' for 'electron removed' Allow atomic radius is greater	
	 so there is greater shielding (even though there is an increase in the number of protons) 	Ignore more shells Do not award ionic radius	
	(1)	Allow greater repulsion from inner electron shells	
		Allow 1 mark for there is less attraction between the nucleus and the outer electron if neither M2 or M3 is awarded.	
		Allow 1 mark for 'Z, because the nuclear charge / number of protons is the greatest'	
		Ignore effective nuclear charge	

(Total for Question 1 = 7 marks)

Question Number	Answer	Additional Guidance	Mark
2(a)(i)	An answer that makes reference to the following points:	Only award M2 if linked to the correct test	(2)
	Test		
	• add bromine water / bromine (1)	Allow Br ₂ or Br ₂ (aq)	
	Result	Do not award if Br or bromide used	
	which decolourises / (turns) colourless		
	(1)	Allow if near miss on reagent e.g. Br	
		Allow initial colours of orange, yellow, brown or	
	or	brown-red	
		Ignore references to heating Do not award incorrect initial colour e.g. red to	
	Test	colourless	
	add acidified KMnO ₄ /	Do not award clear	
	acidified potassium manganate(VII) / acidified potassium permanganate		
	avidition permeerant printanguitate	Allow initial colours of purple or pink	
		If formula is given it must be correct	
	Result	Do not award incorrect initial colour e.g. red to colourless	
	• which decolourises / (turns) colourless (1)	Do not award incorrect initial colour e.g. red to	
		colourless	
		Do not award clear	
		Allow if near miss on reagent e.g. omission of acidified	
		or name / formula recognisable but incorrect Ignore references to heating	

Question Number	Answer	Additional Guidance	Mark
2(a)(ii)	An answer that makes reference to the following points:	Do not award partial charge on C=C	(3)
	dipole on HBr		
	 curly arrow from C=C bond to H ^(δ+) 		
	curly arrow from H–Br bond to Br or just beyond	Allow structural, skeletal or hybrid formulae	
	correct intermediate	Penalise half arrows once only Penalise additional arrows once only	
	• lone pair and negative charge on Br	Penalise use of Br ₂ or other incorrect reactant once only	
	• curly arrow from lone pair (if shown) on Br ⁻ to C+	All 6 points scores 3	
		4 or 5 points scores 2 2 or 3 points scores 1	

H
CH₂OH
H
CH₂OH
H
$$\delta^+$$
H
 δ^+
H
 δ^-
Br
 $\delta^ \delta^ \delta^ \delta^ \delta^-$

Question Number	Answer		Additional Guidance	Mark
2(b)	An answer that makes reference to the following points:	(1)	Allow placement of 'n' anywhere vertically if it is in front of the reactant and after the product H H H H CH ₂ OH	(2)

Question Number	Answer		Additional Guidance	Mark
2(c)	An explanation that makes reference to the following points:			(2)
	pi bonds form by sideways overlap of (p) orbitals	(1)	Do not award 'head-on' overlap Ignore references to 's' orbitals May be shown on a (labelled) diagram	
	 so two (p) orbitals are at right angles / perpendicular (to each other) / π bonds are at right angles / perpendicular (to each other) 	(1)	Allow 'one orbital on central C is P_y , the other is P_z ' (any pair of x, y and z orbitals will suffice)	
			May be shown on a (labelled) diagram	
			Example of diagram Overlapping H Overlapping Overlapping Overlapping	
			Ignore repulsion between electrons / bonds etc	

Question Number	Answer	Additional Guidance	Mark
2(d)(i)	An answer that makes reference to the following point:		(1)
	• four / 4		

Question Number	Answer	Additional Guidance	Mark
2(d)(ii)	An answer that makes reference to the following point: • has two hydrogen (atoms) on (first) carbon (atom) of	Allow doesn't have different groups at the end of the (one of the) C=C bonds Do not award molecules	(1)
	double bond / has same group on (first) carbon (atom) of double bond	Allow 'hydrogen groups'	

Question Number	Answer	Additional Guidance	Mark
2(d)(iii)	An explanation that makes reference to the following points:		(3)
	• prop-2-en-1-ol is more soluble than bombykol (1)	Allow prop-2-en-1-ol is soluble and bombykol is insoluble	
	 both (have OH / alcohol group that) can form hydrogen bonds (with water) 		
	bombykol has a (very) long (hydro)carbon chain or forms stronger London forces (1)	Allow as bombykol has a (very) long hydrophobic / non-polar hydrocarbon chain	

(Total for Question 2 = 14 marks)

Question Number	Answe	r	Additional Guidance	Mark
*3	This question assesses a student's ab coherent and logically structured ans sustained reasoning. Marks are awarded for indicative con is structured and shows lines of reason. The following table shows how the rawarded for indicative content.	ility to show a wer with linkages and fully- ntent and for how the answer oning. narks should be umber of marks awarded for indicative marking points 4 3 2 1 0 narks should be awarded for marks should be awarded for structure of answer and sustained line of reasoning 1 2	Guidance on how the mark scheme should be applied: The mark for indicative content should be added to the mark for lines of reasoning. For example, an answer with five indicative marking points, which is partially structured with some linkages and lines of reasoning, scores 4 marks (3 marks for indicative content and 1 mark for partial structure and some linkages and lines of reasoning). If there are no linkages between points, the same five indicative marking points would yield an overall score of 3 marks (3 marks for indicative content and no marks for linkages). In general it would be expected that 5 or 6 indicative points would get 2 reasoning marks, and 3 or 4 indicative points would get 1 mark for reasoning, and 0, 1 or 2 indicative points would score zero marks for reasoning. If there is any incorrect chemistry, deduct mark(s) from the reasoning. If no reasoning mark(s) awarded do not deduct mark(s).	(6)

Question Number	Answer	Additional Guidance	Mark
*3	Indicative content:	Only listed reagents can be used.	(6)
contd		Ignore tests carried out to identify potassium	
		ions / flame tests	
		Ignore minor slips e.g. missing charges on ions,	
		wrong formulae of reagents, missing state	
		symbols that have been listed in the question.	
		Ignore flame tests Ignore equations even if incorrect	
		For all tests listed the reagent and the ion test and	
	IP1 Carbonate (test) linked to	the result must be dependent on the correct	
	Add HNO ₃ (aq) / HCl(aq) (to all 3 samples)	reaction except for the limited exceptions that	
	rea investady includy (to an 3 samples)	are listed in the additional guidance.	
	IP2 Carbonate result	Ignore just 'produce a gas'	
	Solutions that effervesce / bubble / fizz	Allow gas turns Ca(OH) _{2(aq)} cloudy	
	(must be a carbonate)	Ignore gas turns limewater cloudy	
	/ either (NH ₄) ₂ CO ₃ or K ₂ CO ₃	Do not award subsequent inappropriate gas tests	
		e.g. pop test	
	IP3 Ammonium ion test linked to		
	Add NaOH(aq) gently heat / warm / put in water bath	Do not award Bunsen burner for heating	
	IP4 Ammonium ion result	Do not award dip red litmus paper into the	
	(produces a gas) turns	solution	
	(damp) red litmus blue (when held over	Do not award bleaches litmus.	
	the mouth of the test tube) proves (NH ₄) ₂ CO ₃	Allow a near miss for IP4 if the ammonium	
		carbonate solution has been heated without	
		NaOH being added / adding sodium hydroxide	
	IP5 and IP6 on next page.	without heating	
		Ignore white smoke seen with a glass rod	
		dipped in HCl(aq) and held above the tube	

*3	Indicative content:		
contd	• IP5 Sulfate ion test (linked to) Add BaCl ₂ and HCl / HNO ₃ (in either order)	Do not award H ₂ SO ₄	
	• IP6 Sulfate ion result Formation of white ppt / solid confirms it is K ₂ SO ₄	Allow if acid is missing from IP5 Do not award if BaCl ₂ is missing Allow goes milky / cloudy	

(Total for Question 3 = 6 marks)

Question Number	Answer	Additional Guidance	Mark
4(a)	A description that makes reference to the following points:		(2)
	• (remove colourless solution by) rinsing with sulfuric acid (1) (of concentration 2.00 mol dm ⁻³)	Allow rinse with deionised / distilled water followed by (2.00 mol dm ⁻³) sulfuric acid	
	• in order to prevent dilution (of acid sample) / keep acid concentration the same (1)	Allow other substances left in the pipette might react (with any of the other reactants or products) M2 dependent on M1	

Question Number	Answer	Additional Guidance	Mark
4(b)(i)	An explanation that makes reference to the following points:		(2)
	• stopping the reaction (1)	Allow slowing down the reaction / freezing the reaction Ignore references to stopping / freezing an equilibrium	
	in order to ensure there is no (further) change in concentration (before the titration is carried out) /	Ignore to ensure the titration is accurate Ignore references to stopping an equilibrium	

Question Number	Answer		Additional Guidance	Mark
4(b)(ii)	An answer that makes reference to the following points:			(2)
	 sodium hydrogencarbonate (solution) / NaHCO₃ / potassium hydrogen carbonate / KHCO₃ 	(1)	Accept sodium / potassium carbonate (solution) / Na ₂ CO ₃ / K ₂ CO ₃	
	correct equation to match compound	(1)	Ignore state symbols even if incorrect If both name and formula are given, they must match	
			e.g. $2NaHCO_3 + H_2SO_4 \rightarrow Na_2SO_4 + 2CO_2 + 2H_2O$	
			$/ 2KHCO_3 + H_2SO_4 \rightarrow Na_2SO_4 + 2CO_2 + 2H_2O$	
			$/ \text{ NaHCO}_3 + \text{H}^+ \rightarrow \text{CO}_2 + \text{H}_2\text{O} + \text{Na}^+$	
			$/ \text{ KHCO}_3 + \text{H}^+ \rightarrow \text{CO}_2 + \text{H}_2\text{O} + \text{K}^+$	
			$/ \text{ KHCO}_3 + \text{H}^+ \rightarrow \text{CO}_2 + \text{H}_2\text{O} + \text{K}^+$	
			$/ HCO_3^- + H^+ \rightarrow CO_2 + H_2O$	
			$/ HCO_3^- + H^+ \rightarrow H_2CO_3$	
			$/ Na_2CO_3 + H_2SO_4 \rightarrow Na_2SO_4 + CO_2 + H_2O$	
			$/ K_2CO_3 + H_2SO_4 \rightarrow K_2SO_4 + CO_2 + H_2O$	
			$/ \text{CO}_3^{2-} + 2\text{H}^+ \rightarrow \text{CO}_2 + \text{H}_2\text{O}$	
			$/ H_2SO_4 + CO_3^{2-} \rightarrow SO_4^{2-} + H_2O + CO_2$	

Question Number	Answer		Additional Guidance	Mark
4(c)	An explanation that makes reference to two of the following points:			(2)
	• risk depends on both hazard and amount of a substance	(1)		
	• (only a) small amount of it / iodopropanone is formed	(1)	Allow as reaction runs for only a short amount of time	
	• (most of) it / iodopropanone remains in solution	(1)	Allow it / iodopropanone is not a gas / is a liquid / has a high boiling point / not volatile Ignore harmful fumes Ignore iodopropanone is a solid	

Question Number	Answer		Additional Guidance	Mark
4(d)	An answer that makes reference to the following points:		Example of calculation	(4)
	• calculation of moles of iodine	(1)	(Moles of I_2) = $(0.0500 \times 0.0200) = 1.00 \times 10^{-3}$ Ignore SF	
	• calculation of moles of propanone	(1)	(Moles of propanone) = $0.0250 \times 2.00 = 0.0500$ (mol) Ignore SF	
	show moles propanone are much greater than iodine / propanone is in great excess and so there is a negligible / very small change in the concentration of propanone	(1)	$0.0500 \gg 1.00 \times 10^{-3}$ (so order is wrt I ₂) Ignore just propanone is in excess	
	 change in rate is due only to the changing concentration of iodine 	(1)	Allow iodine is a limiting factor Ignore the sulfuric acid throughout	

Question Number	Answer	Additional Guidance	Mark
	An answer that makes reference to the following points: • axes labelled including units and suitable scale, where points cover at least half the available space (1) • points plotted correctly (allow ± a square) and straight line of best fit (1)	Additional Guidance Allow volume or vol for titre Example of graph	Mark (2)
		TIME/MIN	

Question Number	Answer	Additional Guidance	Mark
4(e)(ii)	An answer that makes reference to the following point: • as the titre / volume (of sodium thiosulfate solution) is (directly) proportional to the concentration (of iodine)		(1)

Question Number	Answer		Additional Guidance	Mark
4(e)(iii)	An answer that makes reference to the following points:			(2)
	• order with respect iodine = 0	(1)		
	• gradient remains constant	(1)	Allow straight line / linear (with a negative gradient) / the gradient is independent of the concentration M2 dependent on M1	

(Total for Question 4 = 17 marks)

Question Number	Answer			Ad	ditional Gu	ıidance		Mark
5(a)(i)	An answer that makes reference to the following			_				(2)
	points:			Co	N	Н	C1	
			mol	1.26 ÷	1.20 ÷	0.257 ÷	2.28 ÷	
	 calculate moles of each element 	(1)		58.9	14.0	1.0	35.5	
				= 0.0214	=0.0857	=0.257	= 0.0642	
	 show ratio by division by smallest number 	(1)	ratio	0.0214 /	0.0857 /	0.257 /	0.0642 /	
	and			0.0214	0.0214	0.0214	0.0214	
	show RFM of CoN ₄ H ₁₂ Cl ₃ is 233.4			= 1	= 4	= 12	= 3	
i.			`	$(4 \times 14) + 1$ lar formula =	`	/	(so	
				of each elem of each elem				

Question Number	Answer		Additional Guidance	Mark
5(a)(ii)	EITHER		Example of calculation	(2)
	• calculation of moles of AgCl / Cl ⁻	(1)	moles of AgCl = $0.614 \div 143.4 = 4.2817 \times 10^{-3}$ mol	
	• calculation of moles of R	(1)	moles of R = $1.00 \div 233.4 = 4.2845 \times 10^{-3}$ mol	
	show ratio is 1:1 (so one mole of R releases 1 mol of chloride ions)		$4.2845 \times 10^{-3} \text{ mol} : 4.2817 \times 10^{-3} \text{ mol} \approx 1:1$, (so 1 mol of R releases 1 mol of chloride ions) Do not award 3Cl ⁻ ions	
	OR		Do not award Ser Tons	
	• calculation of moles of R	(1)	moles of R = $1.00 \div 233.4 = 4.2845 \times 10^{-3}$ mol	
	calculation of moles of AgCl /Cl- and show ratio is 1:1 (so one mole of R releases 1 mol of chloride ions)	(1)	moles of AgCl = $0.614 \div 143.4 = 4.2817 \times 10^{-3}$ mol 4.2845×10^{-3} mol : 4.2817×10^{-3} mol $\approx 1:1$, (so 1 mol of R releases 1 mol of chloride ions) Do not award 3Cl ⁻ ions Ignore SF except 1 SF	

Question Number	Answer	Additional Guidance	Mark
5(a)(iii)	An answer that makes reference to the following points:		(3)
	 octahedral shape (around cobalt) using wedges correct number and type of ligand correct overall charge) H ₃ N M ₁ NH ₃ NH ₃	
		Allow dashed line for dashed wedges Allow '+' on cobalt Allow correct calculation of charge from incorrect ligands Ignore position of Cl ligands relative to NH ₃ ligands Ignore connectivity Ignore omission of square brackets Ignore additional chloride ion (to form R) Arrows if drawn must be pointing towards the cobalt	

Question Number	Answer		Additional Guidance	Mark
5(b)(i)	An answer that makes reference to the following points:			(2)
	forward and backward reactions proceed at the same rate	(1)	Do not award rates of forward and backward reactions are constant	
	• concentration of reactants and products remain constant / remain the same	(1)	Accept resulting in no observable change in the system	

Question Number	Answer		Additional Guidance	Mark
5(b)(ii)	An explanation that makes reference to the following points:			(3)
	• (The most stable is) $[Co(EDTA)]^{2-}(aq)$ as it has the larger (log) K_c / eqm lies furthest to RHS	(1)	Ignore calculated K_c values	
	• 2 moles (of ions) forms 7 moles (of product in EDTA equation)	(1)	Allow more moles of product than reactant Allow species Do not award 'molecules'	
	• (greater) increase in entropy (change of the system) / ΔS_{sys} is positive	(1)	Do not award increase in entropy if clear that it is referring to the EDTA (complex) and not the reaction	

(Total for Question 5 = 12 marks)

Question Number	Answer		Additional Guidance	Mark
6(a)	An answer that makes reference to the following points:		ОН	(4)
	structure of compound A	(1)	50% concentrated H ₂ SO ₄ and KBr	
	structure of compound B	(1)	Br Mgin o MgBr	
	structure of compound C	(1)		
	identify reagent D	(1)	structure of compound A structure of compound B	
			OH reagent D HCl(aq) structure of compound C	
			Allow Kekulé structures	
			Allow O ⁻ for OMgBr	
			Allow any dilute (aq) strong acid for reagent D Ignore H ⁺ , H ₃ O ⁺	
			Ignore partial charges on Mg and Br even if incorrect Penalise missing delocalised ring once only. Do not award full charges on Mg and Br	
			Do not award full charges on wig and Di	

Question Number	Answer	Additional Guidance	Mark
6(b)	An answer that makes reference to the following points:	See table below	(5)
	• all 12 correct scores 5 marks		
	• 10-11 correct scores 4 marks		
	• 7-9 correct scores 3 marks		
	• 4-6 correct scores 2 marks		
	• 2-3 correct scores 1 mark		
	• 0-1 correct scores 0		

	Chemical shift / ppm	Area under curve	Splitting pattern
Environment J	6.8 - 8.2	5	complex
Environment K	1.6-3(.0)	2	singlet
Environment L	-0.2 - 2(.0)	6	singlet
Environment M	2.8 – 4.4	2	quartet / quadruplet
Environment N	-0.2 - 2(.0)	3	triplet

For chemical shifts allow any single value or range within the stated range

Allow ranges reversed (e.g. 1.9-0.0)

Do not award quaternary

Ignore splitting patterns even if incorrect (e.g. 1,2,1)

Penalise numbers for the splitting pattern (e.g. for K, 1, for L, 1, for M, 4 and for N, 3) up to a maximum of 2 points Ignore 'no splitting' for singlet

(Total for Question 6 = 9 marks)

Question Number	Answer		Additional Guidance	Mark
7(a)	An explanation that makes reference to two of the following points:			(2)
	• (warmth) to allow for (all) the ethanol to evaporate	(1)	Ignore to speed the reaction up Ignore activation energy Do not award to evaporate the acidified dichromate(VI)	
	• (24 hr) to allow (time for) the ethanol to fully react / fully oxidise	(1)	Allow the reaction goes to completion Allow all of ethanol reacts	
	• (To allow full oxidation of the ethanol) to ethanoic acid	(1)	Allow to ensure there is no ethanol / ethanal left	
			'To allow time for all the ethanol to react to form ethanoic acid', scores P2 and P3	

Question Number	Answer		Additional Guidance	Mark
7(b)(i)			Example of calculation	(5)
	 calculation of moles of thiosulfate 	(1)	$(32.70 \div 1000) \times 0.0220 = 7.194 \times 10^{-4} \text{ (mol)}$	
	• deduction of moles of iodine	(1)	$7.194 \times 10^{-4} \div 2 = 3.597 \times 10^{-4}$	
	• deduction of moles of acidified dichromate(VI) that reacted to form iodine	(1)	$3.597 \times 10^{-4} \div 3 = 1.199 \times 10^{-4} $ (mol)	
	• calculation of moles of acidified dichromate(VI) that reacted with ethanol	(1)	$[(10.0 \div 1000) \times 0.078] = 7.80 \times 10^{-4}$ $7.80 \times 10^{-4} - 1.199 \times 10^{-4} = 6.601 \times 10^{-4} \text{ (mol)}$	
	• deduction of moles of ethanol in 5 cm ³ sample	(1)	$6.601 \times 10^{-4} \times (3 \div 2)$ = 9.9015 × 10 ⁻⁴ / 9.90 × 10 ⁻⁴ (mol)	
			Allow TE throughout Ignore SF except 1SF Correct answer without working scores 5	

Question Number	Answer		Additional Guidance	Mark
7(b)(ii)	 calculation of moles of ethanol in 250 cm³ of diluted drink 	(1)	Example of calculation $9.9015 \times 10^{-4} \times (250 \div 5) = 0.049508 \text{ (mol)}$	(3)
	• calculation of concentration of alcoholic drink in mol dm ⁻³	(1)	$0.049508 \div (20 \div 1000) = 2.4754 \text{ (mol dm}^{-3}\text{)}$	
	• calculation of concentration of alcoholic drink in g dm ⁻³	(1)	$2.4754 \times 46 = 113.87 / 114 \text{ (g dm}^{-3}\text{)}$ Allow TE throughout including from part bi Ignore SF except 1SF Correct answer without working scores 3	

Question Number	Answer	Additional Guidance	Mark
7(c)	 An answer that makes reference to the following points: repeat the whole experiment / set up more than one version of the experiment and run concurrently 	Do not allow just repeat the titration	(2)
	take more than one sample / smaller samples (so more than one titration can be carried out) (1)	If no other mark is scored allow repeat the titration and calculate a mean / repeat the titration until concordant results are obtained Ignore starch / indicator	

Question Number	Answer		Additional Guidance	Mark
7(d)	An answer that makes reference to the following points: M1 reason to support change • heating under reflux will speed up the reaction or • less chance of incomplete reaction with heating under reflux	(1)		(2)
	 M2 reason to remain unchanged might be other (less volatile substances) that could also be oxidised by the dichromate(VI) or greater risk of uncontrolled reaction associated with heating under reflux or greater risk of some of the ethanol evaporating with reflux 	(1)	Ignore the ethanol and the ethanoic acid produced might react to form an ester Ignore greater risk of flammability Allow some ethanol may escape from the reflux condenser before it is oxidised	

(Total for Question 7 = 14 marks)

Question Number	Answer		Additional Guidance	Mark
8(a)	 calculation of concentration of hydrogen ions calculation of K_a 	(1) (1)	Example of calculation $([H^+] =) \ 10^{-3.25} = 5.6234 \times 10^{-4} \ (\text{mol dm}^{-3})$ $(5.6234 \times 10^{-4})^2 \div 0.0712 = 4.4414 \times 10^{-6} \ (\text{mol dm}^{-3})$ Allow TE from M1 Final answer with no working scores 2 Ignore SF except 1SF If they round their answer to M1 to 5.6×10^{-4} they get an answer of $4.4045 \times 10^{-6} \ (\text{mol dm}^{-3})$	(2)
			Final answer with no working scores 2 Ignore SF except 1SF If they round their answer to M1 to 5.6×10^{-4} they get an	

Question Number	Answer	Additional Guidance	Mark
8(b)(i)	• calculation of pH	Example of calculation $[H^{+}] = 1.00 \times 10^{-14} \div [OH^{-}]$ $= 1.00 \times 10^{-14} \div 0.05$ $= 2.00 \times 10^{-13} \text{ (mol dm}^{-3})$ $-\log (2.00 \times 10^{-13}) = 12.7$	(1)
		Do not award answers with more than 1 decimal place (e.g. 12:70 scores 0) Correct answer with no or incorrect working scores 1	

Question Number	Answer	Additional Guidance	Mark
8(b)(ii)	An answer that makes reference to the following points: • starting pH between 2.8 and 3.4 and pH at 40 cm³ between 12 and 12.8 no TE on answer to bi • vertical section at 20 cm³ and range of vertical section between 6-11, but must include 7-10 • curved shape including steep rise at the start (as example) between 0 and approx. 5 cm³	Example of graph PH Output Description: Description:	(3)

An answer that makes reference to the following points: • working shown, and value of pH at 10 cm³ consistent with graph in 8b(ii) Allow tolerance of ± 0.5 square Example of working on graph 14 12 12 12 13 14 12 14 12 14 12 15 14 12 15 15 15 15 15 15 15	Question Number	Answer	Additional Guidance	Mark
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Number	An answer that makes reference to the following points: • working shown, and value of pH at 10 cm ³ consistent with graph in 8b(ii)	Example of working on graph 14 12 10 8 4 4 2 10 10 10 10 10 10 10 10 10 10 10 10 10	Mark (1)

Question Number	Answer		Additional Guidance	Mark
8(b)(iv)	An answer that makes reference to the following points:	(4)		(3)
	• Ka expression for ethanoic acid or at half-neutralisation [CH ₃ COOH] = [CH ₃ COO ⁻] / [HA] = [A ⁻]	(1)	$K_{\rm a} = {\rm [CH_3COO^-][H^+]} \text{ or } K_{\rm a} = {\rm [A^-][H^+]}$ [CH ₃ COOH] [HA]	
	• $[H^+] = K_a$ or $pH = pK_a$	(1)		
	• Value of K_a	(1)	e.g. $K_a = 10^{-4.8} = 1.585 \times 10^{-5}$ (mol dm ⁻³) Allow TE from 8biii	

Question Number	Answer		Additional Guidance	Mark
8(c)	An answer that makes reference to three of the following points:			(3)
	Data logger likely to give most valid outcomes as • time period / volume between readings is (much) smaller / greater resolution / more data points / more frequent data-points	(1)		
	• (percentage) errors in using measuring equipment reduced /	(1)		
	data collection is faster	(1)		
	produces continuous data / graph / processed data can be seen in real time	(1)		
	automatic collection of data means less chance of human error / parallax error reduced	(1)		
	data can be transferred (easily) to other software (e.g. spreadsheets) / stored	(1)	Allow reverse arguments Ignore a general comment about accuracy e.g. more accurate	

Question Number	Answer		Additional Guidance	Mark
8(d)(i)			Example of calculation	(4)
	• calculation of [H ⁺]	(1)	$10^{-4.2} = 6.3096 \times 10^{-5} \text{ (mol dm}^{-3}\text{)}$	
	calculation of concentration of salt	(1)	$(2.30 \div 96) \times 10 = 0.23958 \text{ (mol dm}^{-3})$	
	• rearrangement of K_a to find [CH ₃ CH ₂ COOH]	(1)	$[CH3CH2COOH] = ([H+] \times [CH3CH2COONa]) \div K_a$	
	• calculation of [CH ₃ CH ₂ COOH]	(1)	$(6.3096 \times 10^{-5} \times 0.23958) \div 1.34 \times 10^{-5}$ = 1.128 / 1.13 / 1.1 (mol dm ⁻³)	
			Ignore SF except 1 SF Allow TE throughout Correct answer without working scores 4 Do not award 1.12 (incorrectly rounded) Allow use of Henderson-Hasselbalch equation $pH = pK_a + log_{10} [A-]$ $[HA]$ M1: Rearrangement of HH equation $log_{10} [A-] = 4.2 - 4.873 = -0.673$ $[HA]$ M2: Calculation of $[CH_3CH_2CO_2Na] = 10^{-0.673} = 0.2123$ $[CH_3CH_2COOH]$ M3: $[CH_3CH_2COOH]$ M3: $[CH_3CH_2COONa] = (2.3 \div 96) \div 0.1 = 0.2396$ $(mol dm^{-3})$	
			M4: $[CH_3CH_2COOH] = 0.2396 \div 0.2123 =$ $1.128 / = 1.128 / 1.13 / 1.1 \text{ (mol dm}^{-3})$ TE at all stages	

Question Number	Answer		Additional Guidance	Mark
8(d)(ii)	 An explanation that makes reference to the following points: (large) reservoir of sodium propanoate / propanoate ions (and propanoic acid) 	(1)	Allow a large amount / high concentration	(3)
	• (large reservoir of) propanoate ions accept protons from / react with HCl	(1)	Accept (acid) eqm moves to left (forming CH ₃ CH ₂ COOH) CH ₃ CH ₂ CO ₂ ⁻ + H ⁺ → CH ₃ CH ₂ COOH NaCH ₃ CH ₂ CO ₂ + HCl → CH ₃ CH ₂ COOH + NaCl Do not award the H ⁺ ions neutralise the propanoate	
	• (small changes in [acid] and [salt] are negligible) so ratio of acid: salt remains (nearly) constant (and pH depends on this ratio)	(1)		

(Total for Question 8 = 20 marks)

Question Number	Answer	Additional Guidance	Mark
9(a)	 An answer that makes reference to the following points: arrow from inside the hexagon to sulfur atom partial charges on S and O basic structure of intermediate, including both methyl groups, and broken circle covering at least three carbons, facing the tetrahedral carbon, and containing (some part of) positive charge lone pair and negative charge on O of intermediate 	$\begin{array}{c} \circ \\ \circ $	(3)
	 arrow from (lone pair on) oxygen to H on ring return of C-H bond pair towards/ inside (broken) ring 	In point 2 allow δ– on all O atoms In point 5 allow arrow from lone pair on O to H ⁺ , or hydrogen on H ₂ O, H ₃ O ⁺ , or H ₂ SO ₄ 6 points scores 3 marks 4 or 5 points scores 2 marks 2 or 3 points scores 1 mark 0 or 1 point scores 0 marks	

Question Number	Answer		Additional Guidance	Mark
9(b)(i)	 impurities are soluble in cold solvent or 	(1)	Allow impurities are present in small amounts (and so do not crystallise in cold solvent) Do not award the ice-cold water (in step 4) dissolves the soluble impurities	(3)
	 so impurities remain in solution (as the solvent cools) / impurities remain in the filtrate and 2,5-dimethylbenzenesulfonic acid recrystallises / solid remains (on filter paper) 	(1)	Allow the ice-cold water washes off any surface impurities	

Question Number	Answer		Additional Guidance	Mark
9(b)(ii)	A description that makes reference to the following points:			(2)
	• filter when still hot / filter funnel and / or paper are heated	(1)		
	• (filtration) carried out after step 1 / before s tep 2 (to remove insoluble impurities)	(1)	Allow redissolve in a different solvent	
			If no other credit awarded, allow 1 mark for decant (off from the impurities) whilst still hot	

Question Number	Answer		Additional Guidance	Mark
9(c)(i)	A description that makes reference to the following points:			(4)
	• (add the solution formed) to a 100 cm ³ volumetric flask	(1)	Ignore starting with just the acid and omitting the alkali	
	(rinse remaining solution from conical flask) with distilled / deionised water and add washings to volumetric flask	(1)		
	add distilled / deionised water	(1)		
	make up to the line / mark and	(1)		
	(add stopper) then invert / mix (to ensure solution is homogenous)		Do not award shake	

Question Number	Answer		Additional Guidance	Mark
9(c)(ii)			Example of calculation	(5)
	• calculation of moles of HCl(aq)	(1)	$(22.4/1000) \times 0.0250 = 5.6 \times 10^{-4} \text{ (mol)}$	
	calculation of moles of NaOH in in small conical flask	(1)	$5.6 \times 10^{-4} \times 5 = 2.8 \times 10^{-3} \text{ (mol)}$	
	• calculation of moles of 2,5-dimethylbenzenesulfonic acid	(1)	$(10/1000) - 2.8 \times 10^{-3} = 7.2 \times 10^{-3}$	
	• calculation of M_r of 2,5-dimethylbenzenesulfonic acid	(1)	$1.60 / 7.2 \times 10^{-3} = 222.2 \text{ (g mol}^{-1})$	
	• deduction of value for n (must be an integer)	(1)	222.2 - 186.1 = 36.1 so $n = 2$	
			Allow TE throughout Correct answer with no working scores M5 only If you see 222.2 for the M_r this will score M1-M4 as the other steps will have been carried out correctly. Do not award negative value of n	

Question Number	Answer	Additional Guidance	Mark
9(d)(i)	An answer that makes reference to the following point:		(1)
	lower burette so pouring in acid below eye-level / place stand in sink / on (stable) stool / on floor	Allow alternative methods of height reduction Ignore just an observation that the top of the burette is too high Ignore just lower the burette / stand Do not award student raises themselves e.g. standing on a stool	

Question Number	Answer		Additional Guidance	Mark
9(d)(ii)	An explanation that makes reference to the following points:			(3)
	• reduce the value of the titre	(1)		
	 smaller (calculated) value of excess NaOH / greater (calculated) moles of 2,5-dimethylsulfonic acid that reacted 	(1)	M3 dependent on M2 Allow smaller M_r but negligible effect on (calculated value) of n If M1 is answered as 'increase the value of the	
	• so smaller M_r , hence smaller (calculated value of) n	(1)	titre' then allow reverse arguments for M2 and M3	

(Total for Question 9 = 21 marks)

TOTAL FOR PAPER = 120 MARKS

