

Cambridge International AS & A Level

CHEMISTRY 9701/11

Paper 1 Multiple Choice

May/June 2025

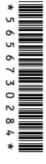
1 hour 15 minutes

You must answer on the multiple choice answer sheet.

You will need: Multiple choice answer sheet

Soft clean eraser

Soft pencil (type B or HB is recommended)


INSTRUCTIONS

There are forty questions on this paper. Answer all questions.

- For each question there are four possible answers A, B, C and D. Choose the one you consider correct
 and record your choice in soft pencil on the multiple choice answer sheet.
- Follow the instructions on the multiple choice answer sheet.
- Write in soft pencil.
- Write your name, centre number and candidate number on the multiple choice answer sheet in the spaces provided unless this has been done for you.
- Do not use correction fluid.
- Do not write on any bar codes.
- You may use a calculator.

INFORMATION

- The total mark for this paper is 40.
- Each correct answer will score one mark.
- Any rough working should be done on this question paper.
- The Periodic Table is printed in the question paper.
- Important values, constants and standards are printed in the question paper.

1 ICl_3 reacts with water in a redox reaction.

$$vICl_3 + wH_2O \rightarrow xHCl + yHI + zHIO_3 + zHClO_3$$

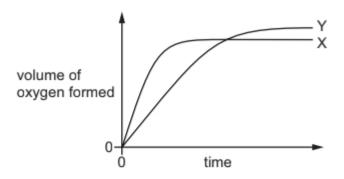
What are the numbers v, x and z in the correctly balanced equation?

	V	х	z
Α	2	8	1
В	2	5	1
С	3	8	1
D	3	5	1

2 The rate of the reaction between a reactive metal and an excess of a dilute acid is investigated.

The total volume of hydrogen gas produced is recorded every 30 seconds for 3 minutes.

time/s	total volume of hydrogen gas / cm ³
0	0
30	64
60	105
90	132
120	151
150	161
180	167


The average rate of reaction during the first 30 seconds is P.

The average rate of reaction during the last 30 seconds is Q.

What is the value of P – Q?

A $1.21 \, \text{cm}^3 \, \text{s}^{-1}$ **B** $1.93 \, \text{cm}^3 \, \text{s}^{-1}$ **C** $2.13 \, \text{cm}^3 \, \text{s}^{-1}$ **D** $3.43 \, \text{cm}^3 \, \text{s}^{-1}$

3 In the diagram, curve X was obtained by measuring the volume of oxygen produced during the decomposition of 100 cm³ of 1.0 mol dm⁻³ hydrogen peroxide. A catalyst of manganese(IV) oxide was used.

Which alteration to the original experimental conditions would produce curve Y?

- A adding more manganese(IV) oxide
- B adding some 0.1 mol dm⁻³ hydrogen peroxide
- C adding water
- D raising the temperature

4 The first seven ionisation energies of an element between lithium and neon in the Periodic Table are shown.

1310

3390

5320

7450

11000

13300

71 000 kJ mol-1

What is the outer electronic configuration of the element?

A 2s²

B 2s²2p¹

C 2s²2p⁴

D $2s^22p^6$

5 The reaction of hydrogen with oxygen is shown.

$$2H_2(g) + O_2(g) \rightarrow 2H_2O(I)$$

Which expression corresponds to the standard enthalpy change of this reaction?

- A $2 \times \Delta H_f^{\Theta}(H_2O)$
- **B** $\Delta H_c^{\bullet}(H_2O) \Delta H_c^{\bullet}(H_2)$
- C ∆H^o_c(H₂)
- D $2 \times \Delta H_f^{\bullet}(H_2O) + 2 \times \Delta H_c^{\bullet}(H_2)$

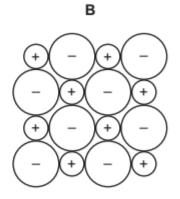
6 P is a compound that burns in an excess of oxygen to give carbon dioxide and water only.

2.20 g of P contains 1.20 g of carbon and 0.20 g of hydrogen.

When P is added to a solution of sodium carbonate, bubbles of gas are seen.

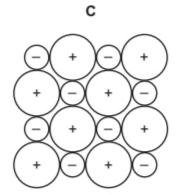
What is P?

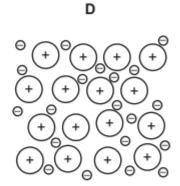
- A CH₃CHO
- B CH₃CO₂H
- C CH3COCH2CH2OH
- D CH₃CH₂CH₂CO₂H
- 7 Substance W has the physical properties shown.


m n /°C	h n /°C	electrical conductivity			
m.p./°C	b.p./°C	of solid	of liquid	in water	
2072	2980	poor	good	insoluble	

What is substance W?

- A aluminium oxide
- B iron
- C silicon dioxide
- D sodium fluoride


8 Which diagram represents the lattice structure of sodium chloride?


Na Cl Na

key

Cl = chlorine atom
Na = sodium atom
- = chloride ion
+ = sodium ion

9 An aqueous solution X contains substance HQ which behaves as a weak acid.

$$HQ(aq) \rightleftharpoons H^{+}(aq) + Q^{-}(aq)$$

The soluble salt NaQ is added to X.

What happens to the [H⁺(aq)] and the pH in X?

	[H⁺(aq)]	рН
Α	decreases	decreases
В	decreases	increases
С	increases	decreases
D	increases	increases

10 Dinitrogen tetroxide, N₂O₄, decomposes reversibly.

$$N_2O_4 \rightleftharpoons 2NO_2 \quad \Delta H = +58.0 \text{ kJ mol}^{-1}$$

An equilibrium mixture of N₂O₄ and NO₂ gases is placed in a closed container under standard conditions.

$$K_c = 1.15 \times 10^{-1} \, \text{mol dm}^{-3}$$

The conditions are changed.

Under the new conditions, $K_c = 1.70 \times 10^3 \,\mathrm{mol}\,\mathrm{dm}^{-3}$.

Which change in conditions occurs?

- A The pressure increases.
- B The pressure decreases.
- C The temperature increases.
- D The temperature decreases.
- 11 50 cm³ of 1.0 mol dm⁻³ H₂SO₄ is added to 100 cm³ of 1.0 mol dm⁻³ NaOH in an insulated vessel.

Both solutions are at a temperature of 20 °C before mixing. After mixing, the temperature rises and the highest temperature reached is 29 °C.

Assume that:

- all the energy released in the reaction goes into raising the temperature of the aqueous reaction mixture
- the specific heat capacity of the mixture is 4.2 J cm⁻³ K⁻¹.

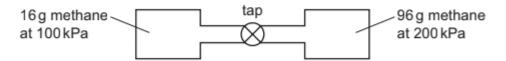
What is the value of the enthalpy of neutralisation determined from this experiment?

- A -113.4 kJ mol⁻¹
- B -56.7 kJ mol⁻¹
- C -37.8 kJ mol⁻¹
- D -18.9 kJ mol⁻¹

12 Barium dithionate, BaS₂O₆•2H₂O, is soluble in water.

S₂O₆²⁻ ions slowly decompose in acidic solution.

$$S_2O_6^{2-}(aq) \rightarrow SO_2(g) + SO_4^{2-}(aq)$$


 $3.513 \,\mathrm{g}$ of $\mathrm{BaS_2O_6} \cdot 2\mathrm{H_2O}$ is dissolved in water in a $100 \,\mathrm{cm^3}$ volumetric flask and the solution made up to the mark with $\mathrm{HC}\mathit{l}(\mathrm{aq})$.

At time x min, a white precipitate of mass 0.661 g is present in the flask.

What is the concentration of BaS₂O₆ in the volumetric flask at time x min?

- A 0.0077 mol dm⁻³
- **B** 0.0090 mol dm⁻³
- C 0.077 mol dm⁻³
- D 0.090 mol dm⁻³
- 13 The diagram shows two containers of methane connected by a closed tap.

Each container has a volume of 1.00 m3.

The tap is opened. The temperature of the system is changed to 800 K.

The system reaches constant pressure.

What is the pressure of methane within the system?

- A 23.3 kPa
- B 46.6 kPa
- C 186 kPa
- 372 kPa
- 14 Which statement about a 3p orbital is correct?
 - A It can hold a maximum of six electrons.
 - **B** It has the highest energy of the orbitals with principal quantum number 3.
 - C It is at a higher energy level than a 3s orbital but has the same shape.
 - **D** It is occupied by one electron in an isolated phosphorus atom.

			8
15	In v	which pai	ir do both species:
		•	have the same shape
		•	have the same number of covalent bonds?
	Α	methan	ne and the ammonium ion
	В	carbon	dioxide and nitrogen
	С	boron to	rifluoride and ammonia
	D	water a	nd oxygen
16	A r	eaction in	nvolving ammonium ions is shown.
			$NH_4^+ + OH^- \rightleftharpoons NH_3 + H_2O$
	Fo	ur statem	nents about this reaction are listed.
		1	The ammonium ions are reduced.
		2	In the reverse reaction, ammonia acts as a Brønsted-Lowry base.
		3	The ammonium ion and the ammonia molecule have the same bond angle.
		4	This reaction is not a redox reaction.

Which statements are correct?

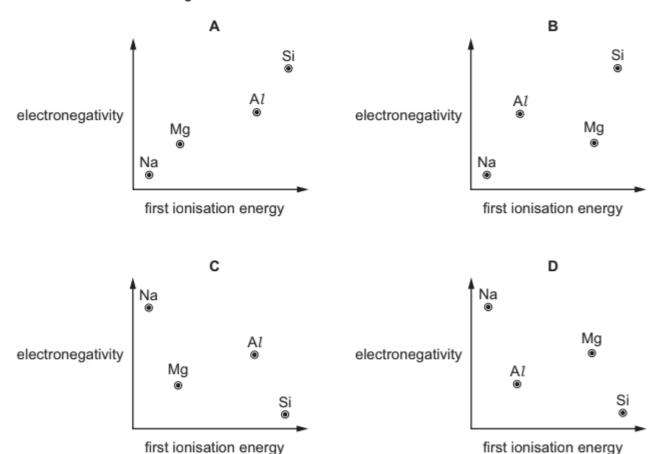
D reduction of carbon monoxide

A 1 and 2

Which reduction process occurs on the surface of a catalytic converter?
 A reduction of carbon dioxide and nitrogen oxides
 B reduction of carbon dioxide only
 C reduction of nitrogen oxides only

B 1 and 3 **C** 2 and 4

- 18 Three statements about the halogens, chlorine, bromine and iodine and their compounds are listed.
 - 1 The halogen with the highest boiling point has atoms which form the strongest bond to hydrogen.


D 3 and 4

- 2 The halogen with the strongest instantaneous dipole (id-id) attractions forms the most thermally stable hydrogen halide.
- 3 The most volatile element most rapidly oxidises hydrogen.

Which statements are correct?

A 1 and 2 **B** 1 only **C** 2 and 3 **D** 3 only

- **19** Which reagent or reagents and conditions will oxidise chlorine, Cl₂, into a compound containing chlorine in the +5 oxidation state?
 - A AgNO₃(aq) followed by NH₃(aq) at room temperature
 - B concentrated H₂SO₄ at room temperature
 - C cold dilute NaOH(aq)
 - D hot concentrated NaOH(aq)
- 20 Which diagram shows the electronegativity of the elements Na, Mg, Al and Si plotted against their first ionisation energies?

21 Radium is an element below barium in Group 2 of the Periodic Table.

Which equation shows what happens when solid radium nitrate, Ra(NO₃)₂, is heated strongly?

A
$$2Ra(NO_3)_2(s) \rightarrow 2RaO(s) + 4NO_2(g) + O_2(g)$$

B
$$2Ra(NO_3)_2(s) \rightarrow 2RaO(s) + 2N_2(g) + 5O_2(g)$$

$$\textbf{C} \quad \text{Ra}(\text{NO}_3)_2(\text{s}) \, \rightarrow \, \text{RaO}(\text{s}) \, + \, \text{N}_2\text{O}(\text{g}) \, + \, 2\text{O}_2(\text{g})$$

D
$$4Ra(NO_3)_2(s) \rightarrow 2Ra_2O(s) + 8NO_2(g) + 3O_2(g)$$

22 The table shows some data for the elements in Period 3 of the Periodic Table.

	melting point/K	electrical conductivity
sodium	371	good
magnesium	922	good
aluminium	933	good
silicon	1693	poor
phosphorus	317	does not conduct
sulfur	386	does not conduct
chlorine	172	does not conduct
argon	84	does not conduct

Which statements are correct?

- All the elements in the table with a giant structure have a higher melting point than each of the elements in the table with a simple molecular structure.
- 2 Magnesium has a higher melting point than sodium because it has more delocalised electrons and stronger electrostatic attraction between the delocalised electrons and the metal ions.
- 3 Phosphorus and sulfur do **not** conduct electricity because they are simple molecular solids at room conditions.
- **A** 1, 2 and 3 **B** 1 and 2 only **C** 1 and 3 only **D** 2 and 3 only
- 23 Each mineral listed behaves as a mixture of two carbonate compounds. They can be used as fire retardants because they decompose in the heat, producing CO₂. This gas smothers the fire.

barytocite, BaCa(CO₃)₂ dolomite, CaMg(CO₃)₂ huntite, Mg₃Ca(CO₃)₄

What is the order of effectiveness as fire retardants, from best to worst?

	best		worst
Α	dolomite	barytocite	huntite
В	dolomite	huntite	barytocite
С	huntite	barytocite	dolomite
D	huntite	dolomite	barytocite

24 Compound X contains two Period 3 elements, Y and Z.

Compound X reacts with water to form only two products: a slightly soluble hydroxide and compound Q.

Q is a compound of element Z and hydrogen.

Compound Q burns in moist air to produce an oxide and water. The oxidation number of element Z in the oxide is +5.

Which row identifies element Y and element Z?

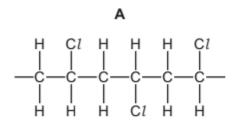
	element Y	element Z
Α	Mg	Р
В	Na	S
С	Na	Р
D	Mg	S

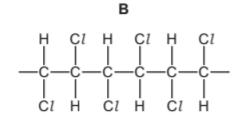
- 25 Three reagents are listed.
 - 1 aqueous sodium carbonate
 - 2 LiAlH₄
 - 3 water

Which reagents react with pure ethanoic acid to give a solution containing ethanoate ions?

- **A** 1 and 2 **B** 1 and 3 **C** 1 only **D** 2 and 3
- 26 Complete combustion of compound T produces carbon dioxide and water only. Compound T produces steamy fumes with PC1₅. Compound T does not give any visible product with 2,4-dinitrophenylhydrazine reagent.

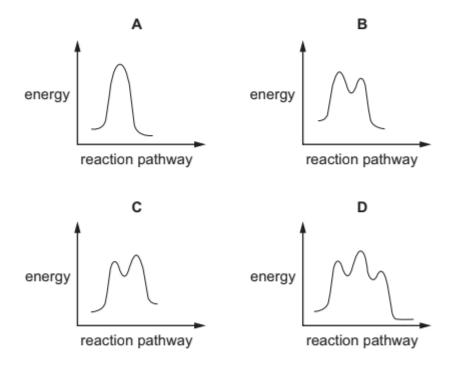
What can be deduced with certainty from this information?


- A Compound T is a carboxylic acid.
- **B** Compound T is a hydrocarbon.
- C Compound T is an alcohol.
- D Compound T is not an aldehyde.


27	Info	ormation abo	ut carbo	nyl compo	ound X is	given.						
		• Co	mpound	X reacts	with LiA <i>l</i>	H₄ to p	roduce a	secon	dary alc	ohol.		
		• Co	mpound	X reacts	with alka	line I ₂ (aq) to gi	ve a ye	llow pred	ipitate.		
	Wh	nat is compou	ınd X?									
	Α	butanal										
	В	butanone										
	С	ethanal										
	D	pentan-3-o	ne									
28		organic com -3. J reacts v										
	Wh	at is the stru	ctural fo	rmula of J	?							
	Α	HOCH ₂ CH(OH)CH ₂	CO₂H								
	В	HO₂CCH(C	H)CH₂C	НО								
	С	HO₂CCH(C	H)CH₂C	O ₂ H								
	D	HOCH ₂ CO	CH ₂ CHC)								
29		nich formula thanol in the								n of pro	panoic a	cid with
	Α	CH ₃ CH ₂ CO	CH ₃									
	В	CH ₃ CH ₂ CO	₂ CH ₃									
	С	CH ₃ CO ₂ CH	₂ CH ₃									
	D	CH₃CH₂CH	₂ CO ₂ CH	3								
30	Str	uctural isome	erism an	d stereois	omerism	should	be cons	sidered	when ar	nswering	g this que	stion.
	2,5	-dibromohex	ane is h	eated und	er reflux	with et	hanolic k	OH.				
	Ho	w many isom	eric con	npounds a	re forme	d with i	molecula	r formu	ıla C ₆ H₁₀	?		
	Α	3	В	5	С	6		D	7			

31 Considering **only** structural isomers, what is the number of alcohols of each type with the formula C₅H₁₂O?

	primary	secondary	tertiary
Α	3	3	2
В	4	2	2
С	4	3	1
D	5	2	1


32 Which structure represents part of the polymer chain of PVC?

33 A possible mechanism for the exothermic hydrolysis of 2-chloro-2-methylpropane is shown.

Which diagram represents the reaction pathway diagram for this mechanism?

34 Compound W contains atoms of carbon, nitrogen and hydrogen.

Compound W reacts with HCl(aq) to produce propanoic acid.

Which row is correct?

	functional group in compound W	name of compound W
Α	amine	ethylamine
В	nitrile	ethanenitrile
С	amine	propylamine
D	nitrile	propanenitrile

- 35 Two reactions are described.
 - 1 2-bromo-2-methylbutane heated with NaOH(aq)
 - 2 2-chloro-2-methylbutane heated with NaOH(aq)

In both reactions, the conditions are the same and NaOH(aq) is in excess.

30.18 g of 2-bromo-2-methylbutane forms 12.32 g of product X.

[M_r: 2-bromo-2-methylbutane, 150.9; 2-chloro-2-methylbutane, 106.5]

Which row is correct?

	percentage yield of product X/%	relative rate of reaction
Α	41	1 is faster than 2
В	41	2 is faster than 1
С	70	1 is faster than 2
D	70	2 is faster than 1

36 An alkene P reacts with an excess of hot concentrated acidified KMnO₄(aq).

Methylpropanoic acid is the only organic product.

What is alkene P?

- A 2,5-dimethylhex-3-ene
- B 2-methylbut-2-ene
- C methylpropene
- D oct-4-ene, C₈H₁₆
- 37 Three substances are listed.
 - 1 butane
 - 2 hydrogen
 - 3 hydrogen bromide

Which substances are possible products of the free-radical substitution reaction between ethane and bromine?

A 1, 2 and 3 **B** 1 and 2 only **C** 1 and 3 only **D** 2 and 3 only

38 The structure of the testosterone molecule is shown.

Which statements are correct?

- 1 Carbon atoms C1 and C2 can be oxidised with acidified K₂Cr₂O₇.
- 2 There are fewer than 27 hydrogen atoms in one testosterone molecule.
- 3 There are six chiral carbon atoms in one testosterone molecule.
- A 1 only
- **B** 2 and 3
- C 2 only
- D 3 only

39 The structural formula of hept-1,4,5-triene is shown.

CH2CHCH2CHCCHCH3

How many of the carbon atoms in one molecule of hept-1,4,5-triene are sp2 hybridised?

- **A** 4
- **B** 5
- **C** 6
- **D** 7

40 Hydrocarbon X is saturated. Each molecule contains one ring of carbon atoms.

The mass spectrum of hydrocarbon X is measured.

The peak representing the M+ ion is 14 mm high.

The peak representing the [M+1]⁺ ion is 0.77 mm high.

What is the m/e value for the M+ ion of X?

- A 56
- **B** 58
- C 70
- **D** 72

BLANK PAGE

BLANK PAGE

Important values, constants and standards

molar gas constant	$R = 8.31 \mathrm{J} \mathrm{K}^{-1} \mathrm{mol}^{-1}$
Faraday constant	$F = 9.65 \times 10^4 \mathrm{C} \mathrm{mol}^{-1}$
Avogadro constant	$L = 6.022 \times 10^{23} \text{mol}^{-1}$
electronic charge	$e = -1.60 \times 10^{-19} \mathrm{C}$
molar volume of gas	$V_{\rm m} = 22.4 {\rm dm^3 mol^{-1}}$ at s.t.p. (101 kPa and 273 K) $V_{\rm m} = 24.0 {\rm dm^3 mol^{-1}}$ at room conditions
ionic product of water	$K_{\rm w}$ = 1.00 × 10 ⁻¹⁴ mol ² dm ⁻⁶ (at 298 K (25 °C))
specific heat capacity of water	$c = 4.18 \mathrm{kJ kg^{-1} K^{-1}} (4.18 \mathrm{J g^{-1} K^{-1}})$

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.

The Periodic Table of Elements

	18	2	He	helium 4.0	10	Ne	20.2	18	Ar	argon 39.9	36	눟	krypton 83.8	54	×e	xenon 131.3	86	몺	radon	118	og	oganesion
	17				6	ш	fluorine 19.0	17	č	charine 35.5	35	ā	bramine 79.9	53	п	126.9	85	¥	astatina	117	Ľ.	bannassina
	16				00	0	16.0	16	S	32.1	34	å	79.0	52	<u>e</u>	talurium 127.6	84	8	polonium	116		ivermorium
	15				7	z	ntrogen 14.0	15	۵	phosphorus 31.0	33	As	arseric 74.9	51	S	antmory 121.8	83	洒	209.0	115	Mc	mascovium
	14				9	O	carbon 12.0	27	ï	stioon 28.1	32	ge	germanium 72.6	99	ű	th 118.7	29	윤	lead 207.2	114	F?	flarovium -
	13				2	ш	10.8	13	Αl	aluminium 27.0	31	Ga	galfum 69.7	69	딥	indum 114.8	81	Ľ	thalfum 204.4	113	£	nhanum -
										12	30	Zu	anc 65.4	48	8	andmium 112.4	90	윤	mercury 200.6	112	ວົ	mpiemiden –
										11	62	3	copper 63.5	29	Ag	silver 107.9	6/	Αn	gold 197.0	111	Rg	roentgenium
Group										10	28	Z	nickel 58.7	46	Pd	paladium 106.4	78	₹	platnum 195.1	110	SQ	darms ladi um -
Ģ										6	22	රි	oobalt 58.9	45	듄	102.9	11	ı	iidum 1922	109	ž	matherium
		-	I	hydrogen 1.0						8	98	æ	10n 55.8	44	R	101.1	32	SO	190.2	108	£	hassium
										7	52	Mn	manganese 54.9	43	ပ	badmatium	7.5	æ	menum 1862	107	В	pohrium -
						pol	988			9	54	ဝံ	dromium 52.0	42	Mo	mdybdenum 95.9	74	>	bungsten 183.8	106	Sg	seaborgium -
				Key	atomic number	atomic symbo	name ne lative atomic mass			2	23	>	wanadum 50.9	41	g	nidbium 92.9	73	ъ	tantalum 180.9	105	පි	dubnium -
						atc	92			4	22	F	ttanium 47.9	40	Zr	arconium 91.2	7.2	Ξ	hafnium 178.5	104	꿆	nutherfordium -
								_		3	21	Sc	scandium 45.0	39	>	munthy 88.9	57-71	lanthanoids		89-103	actinoids	
	2				4	æ	milyind 9.0	12	Mg	magnesium 24.3	20	Ca	dound 40.1	38	Š	strontum 87.6	99	Ba	137.3	88	Ra	magram -
	-				60	=	E99	Ξ	Na	23.0	19	¥	39.1	37	В	nbdum 85.5	99	S	132.9	87	<u>ن</u>	francium

		_		
71 Lu	175.0	103	۲	lawrendum
v _o AY	yterbium 173.1	102	å	mobelium
mT Tm	thulum 168.9	101	ΡW	mandelevium
≋ங்	erbium 167.3	100	Fm	fermium
29 우	hdmlum 164.9	96	Ë	einsteinium —
® O	dysprosium 162.5	86	ŏ	californium
⁸⁸ dT	terblum 158.9	26	益	berkelium
g G	gadolinium 157.3	8	S	anium
es En	152.0	38	Am	americium
Sm	samanum 150.4	8	Pu	mulantum
Pm H	promethium	93	g	meptunium —
8 P	neodymium 144.2	35	⊃	uranium 238.0
® Ł	praseodymium 140.9	91	Ра	protectinium 231.0
Se Ce	08rlum 140.1	06	노	232.0
57 La	lanthanum 138.9	88	Ac	actrium

lanthanoids

actinoids

© UCLES 2025