

Boost your performance and confidence with these topic-based exam questions

Practice questions created by actual examiners and assessment experts

Detailed mark scheme

Suitable for all boards

Designed to test your ability and thoroughly prepare you

IB Chemistry: SL

9.1 Redox Processes

CHEMISTRY

SL

9.1 Redox Processes

Question Paper

Course	DP IB Chemistry
Section	9. Redox Processes
Topic	9.1 Redox Processes
Difficulty	Hard

EXAM PAPERS PRACTICE

Time allowed: 20

Score: /10

Percentage: /100

Question 1

If a solution contains both bromine and chlorine, BrO₃⁻ ions are produced. The reactions leading to the production of BrO₃⁻ ions are shown below:

Reaction 1: $Br_2 + H_2O \rightarrow HBr + HBrO$

Reaction 2: $3HBrO + Cl_2 \rightarrow 2Cl^- + BrO_3^- + Br_2 + 3H$

- 1 Chlorine is reduced in reaction 2
- 2 Bromine is reduced in both reaction 1 and reaction 2
- 3 Bromine is oxidised in both reaction 1 and reaction 2

Which statements about these reactions are correct?

- A. 1 only
- B. 1 and 2 only
- C. 2 and 3 only
- D. 1, 2 and 3

[1 mark]

Question 2

When heated ammonium nitrate, NH NO , can decompose explosively.

$$NH_4NO_3 \rightarrow N_2O + 2H_2O$$

The nitrogen atoms in NH₄NO₃ have different oxidation numbers.

What are the oxidation numbers for each of the N atoms when this reaction proceeds?

- A. +4, -4
- B. -2, -4
- C. +4, -6
- D. +2, +6

[1 mark]

Question 3

In winemaking, to prevent the oxidation of ethanol by air, sulfur dioxide (SO_2) is added. In order to calculate the amount of SO_2 a sample is titrated with iodine (I_2). The reaction is a one to one ratio for SO_2 and I to produce H_2SO_4 as well as another product.

- A. +2 to +6
- B. +4 to +6
- C. +2 to +4
- D. +4 to +5

[1 mark]

Question 4

20 cm³ of a 0.60 mol⁻³ dm solution of thallium nitrate (TINO₃) requires 40 cm³ of 0.20 mol⁻³ dm acidified ammonium metavanadate (NH₄VO₃) to produce $Tl^{3+}_{(a}q_1)$ ions.

Vanadium is the only element reduced in this reaction. What is the oxidation number of the reduced vanadium?

- A. +1
- B. +2
- C. +3
- D. +4

[1 mark]

Question 5

Below are four descriptions about the movements of electrons in voltaic cells.

Which is the correct statement?

- A. Electrons flow through the external wire from the cathode (positive electrode) to the anode (negative electrode)
- B. Electrons flow through the external wire from the anode (negative electrode) to the cathode (positive electrode)
- C. Electrons flow through the salt bridge from the oxidizing agent to the reducing agent
- D. Electrons flow through the salt bridge from the reducing agent to the oxidizing agent

[1 mark]

When molten magnesium chloride is electrolysed using graphite electrodes what are the products?

		Product at cathode (negative electrode)	Product at anode (positive electrode)
EX	A	magnesium	chlorine
	В	chlorine	magnesium
	С	magnesium ions	chloride ions
	D	chloride ions	magnesium ions

[1 mark]

Question 7

Use the information given about four reactions of metals to determine the order of reactivity from most reactive to least

reactive

$$W(s) + X^{2+}(aq) \rightarrow W^{2+}(aq) + X(s)$$

$$Y(s) + W^{2+}(aq) \rightarrow No Reaction$$

$$X(s) + Y^{2+}(aq) \rightarrow X^{2+}(aq) + Y(s)$$

$$Z(s) + Y^{2+}(aq) \rightarrow No Reaction$$

A.
$$W > Y > X > Z$$

B.
$$X > W > Z > Y$$

C.
$$Z > Y > W > X$$

D.
$$W > X > Y > Z$$

[1 mark]

Question 8

Below are three statements about voltaic cells.

- I. A redox reaction takes place which produces electrical energy
- II. At the cathode an oxidation reaction occurs
- III. Electrons move from the anode to the cathode

The correct statements are

- A. I and II only
- B. I and III only
- C. II and III only
- D. I, II and III

[1 mark]

Question 9

If a dilute acid is added to an aqueous solution containing nitrite ions, NO_2^- , two different nitrogen compounds are released as gases.

PAPERS PRACTICE

$$2H^+$$
 (aq) + $2NO_2^-$ (aq) $\rightarrow H_2O(I) + NO(g) + NO_2(g)$

Which of the three statements below correctly describe the process?

- 1 The H^+ (aq) ion is oxidised by NO_2^- (aq).
- 2 Some nitrogen atoms are oxidised, and some nitrogen atoms are reduced
- 3 The H⁺ (aq) ion acts as a catalyst
- A. 1 and 2 only
- B. 2 only
- C. 2 and 3 only
- D. 1, 2 and 3

[1 mark]

A voltaic cell consisting of zinc and silver is set up. The following overall reaction takes place:

$$Zn(s) + 2Ag^{+}(aq) \rightarrow Zn^{2+}(aq) + 2Ag(s)$$

What are the correct half-equations at each electrode?

X	AM	Anode (negative electrode)	Cathode (positive electrode)	TICE
	Α	$Ag(s) \rightarrow Ag^+ (aq) + e^-$	$Zn^{2+}(aq) + 2e^- \rightarrow Zn(s)$	
	В	Ag^+ (aq) + $e^- \rightarrow Ag(s)$	$Zn(s) \rightarrow Zn^2 (aq) + 2e^-$	
	С	$Zn(s) \rightarrow Zn^{2+} (aq) + 2e^{-}$	Ag^+ (aq) + $e^- \rightarrow Ag(s)$	
	D	$Zn^{2+}(aq) + 2e^- \rightarrow Zn(s)$	$Ag(s) \rightarrow Ag^+ (aq) + e^-$	

[1 mark]