

Mark Scheme (Results)

June 2025

Pearson Edexcel GCE In Physics (8PH0) Paper 02 Core Physics II

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2025
Question Paper Log Number P78521A
Publications Code 8PH0_02_2506_MS
All the material in this publication is copyright
© Pearson Education Ltd 2025

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Mark scheme notes

Underlying principle

The mark scheme will clearly indicate the concept that is being rewarded, backed up by examples. **It is not a set of model answers.**

1. Mark scheme format

- 1.1 You will not see 'wtte' (words to that effect). Alternative correct wording should be credited in every answer unless the MS has specified specific words that must be present. Such words will be indicated by underlining e.g. 'resonance'
- 1.2 Bold lower case will be used for emphasis e.g. 'and' when two pieces of information are needed for 1 mark.
- 1.3 Round brackets () indicate words that are not essential e.g. "(hence) distance is increased".
- 1.4 Square brackets [] indicate advice to examiners or examples e.g. [Do not accept gravity] [ecf].

2. Unit error penalties

- 2.1 A separate mark is not usually given for a unit but a missing or incorrect unit will normally mean that the final calculation mark will not be awarded.
- 2.2 This does not apply in 'show that' questions or in any other question where the units to be used have been given, for example in a spreadsheet.
- 2.3 The mark will not be awarded for the same missing or incorrect unit only once within one clip in epen.
- 2.4 Occasionally, it may be decided not to insist on a unit e.g the candidate may be calculating the gradient of a graph, resulting in a unit that is not one that should be known and is complex.
- 2.5 The mark scheme will indicate if no unit error is to be applied by placing brackets around the unit.

3. Significant figures

- 3.1 Use of too many significant figures in the theory questions will not prevent a mark being awarded if the answer given rounds to the answer in the MS.
- 3.2 Too few significant figures will mean that the final mark cannot be awarded in 'show that' questions where one more significant figure than the value in the question is needed for the candidate to demonstrate the validity of the given answer.
- 3.3 The use of one significant figure might be inappropriate in the context of the question e.g. reading a value off a graph. If this is the case, there will be a clear indication in the MS.
- 3.4 The use of $g = 10 \text{ m s}^{-2}$ or 10 N kg⁻¹ instead of 9.81 m s⁻² or 9.81 N kg⁻¹ will be penalised by one mark (but not more than once per clip). Accept 9.8 m s⁻² or 9.8 N kg⁻¹
- 3.5 In questions assessing practical skills, a specific number of significant figures will be required e.g. determining a constant from the gradient of a graph or in uncertainty calculations. The MS will clearly identify the number of significant figures required.

4. Calculations

- 4.1 **use of** the formula means that the candidate demonstrates substitution of physically correct values, although there may be conversion errors e.g. power of 10 error.
- 4.2 If a 'show that' question is worth 2 marks, then both marks will be available for a reverse working. If the question is worth 3 marks then only 2 marks will be available.
- 4.3 The mark scheme will show a correctly worked answer for illustration only.

5. Quality of Written Expression

- 5.1 Questions that asses the ability to show a coherent and logically structured answer are marked with an asterisk.
- 5.2 Marks are awarded for indicative content and for how the answer is structured.
- 5.3 Linkage between ideas, and fully-sustained reasoning is expected.

Section A

Question Number	Answer	Mark
1	C Wm ⁻²	1
	Incorrect Answers:	
	A – Incorrect units	
	B – Incorrect units	
	D – Incorrect units	
2		1
	$\mathbf{D} \tan^{-1} \left(\frac{0.35}{2.00} \right)$	
	Incorrect Answers:	
	A – Incorrect use of trigonometry	
	B – Incorrect use of trigonometry	
	C – Values inverted	
3	$\mathbf{B} = 0.5x$	1
	Incorrect Answers:	
	A – Incorrect for parallel springs	
	C – Incorrect for parallel springs	
	D – Incorrect for parallel springs	
4	D. Th. and 1100	1
	B The path difference of the waves is λ .	4
	Incorrect Answers:	
	A – phase difference would be $2n\pi$ C – frequency of resultant wave is unchanged	
	D – displacement of the resultant would be sum of the two waves	
	D – displacement of the resultant would be sum of the two waves	
5	$\mathbf{D} \frac{3\pi}{2}$	1
	Incorrect Answers:	1
	A – Incorrect phase difference	
	B – Incorrect phase difference	
	C – Incorrect phase difference	

6	C no change increases	1
	Incorrect Answers:	
	A – both incorrect	
	B – speed incorrect	
	D – number of photoelectrons incorrect	
7	D small slow	1
	Incorrect Answers:	
	A – both incorrect	
	B – diameter incorrect	
	C –speed incorrect	
8	A <i>Vρg</i>	1
	Incorrect Answers:	
	B-incorrect	
	C – incorrect	
	D – incorrect	

(Total for Multiple Choice Questions = 8 marks)

Question Number	Acceptable answers		Additional guidance	Mark
9(a)	An explanation that makes reference to the following points:			
	• (The plane that) contains the oscillations / vibrations (of the wave)	(1)		
	• (The plane) including the direction of propagation of the wave	(1)		2
9(b)(i)	An explanation that makes reference to the following points:			
	• (Planes of polarisation of filters are) at 90° or at right angles or perpendicular	(1)		
	Light transmitted by the first filter is absorbed by the second	(1)	[do not allow all light absorbed. Must refer to each filter absorbing different components of light]	2

		[Accept 73 – 80]	
EITHER • Calculates kl (0.75)	(1)		
• Compares their gradient to kl (0.75) with conclusion consistent with their gradient OR	(1)		
• Calculates <i>k</i> using their gradient	(1)		
• Compares their value for k with 0.050 (degrees cm ² g ⁻¹) with conclusion consistent with their calculated k	(1)		3
ORCalculates <i>l</i> using their gradient	(1)		
• Compares their value for <i>l</i> with 15 (cm) with conclusion consistent with their calculated <i>l</i>	(1)	Example of calculation $kl = 0.05 \text{ degrees cm}^2 \text{ g}^{-1} \times 15 \text{ cm} = 0.75 \text{ degrees cm}^3 \text{ g}^{-1}$	
	 Calculates kl (0.75) Compares their gradient to kl (0.75) with conclusion consistent with their gradient Calculates k using their gradient Compares their value for k with 0.050 (degrees cm² g ¬¹) with conclusion consistent with their calculated k Calculates l using their gradient Compares their value for l with 15 (cm) with conclusion consistent with their 	 Calculates kl (0.75) (1) Compares their gradient to kl (0.75) with conclusion consistent with their gradient (1) Calculates k using their gradient (1) Compares their value for k with 0.050 (degrees cm² g ¬¹) with conclusion consistent with their calculated k Calculates l using their gradient (1) Compares their value for l with 15 (cm) with conclusion consistent with their (1) 	 Calculates kl (0.75) (1) Compares their gradient to kl (0.75) with conclusion consistent with their gradient (1) Calculates k using their gradient (1) Compares their value for k with 0.050 (degrees cm² g⁻¹) with conclusion consistent with their calculated k Calculates l using their gradient (1) Compares their value for l with 15 (cm) with conclusion consistent with their calculated l Example of calculation

(Total for Question 9 = 7 marks)

Question Number		Acce	ptable answer	S	Additional guidance	Mark
*10	structured answe	r with linkages a rded is the sum o	nd fully-sustained of marks for indica	coherent and logical reasoning.	Marks are awarded for indicative content and for how the answer is structured and shows lines of reasoning. The following table shows how the marks should be awarded for indicative content.	I
	IC points	IC mark	Max linkage mark	Max final mark	Number of indicative points seen in answer for indicative points	
	6	4	2	6	6 4	
	5	3	2	5	5-4 3 3-2 2	
	4	3	1	4	1 1	
	3	2	1	3	0 0	
	2	2	0	2	N. 1. C. 1	٦
	0	0	0	0	Number of marks awarded for structure and lines of reasoning	
					logical structure with linkage and fully sustained lines of reasoning demonstrated throughout Answer is partially structured with some linkages and lines of reasoning	
	Indicative con	ntent:			Answer has no linkage between points and is unstructured 0	
	IC3 The reflection transductors IC4 The time pulse) is IC5 The distense speed of	lses) reflect frected pulses a cer at sea leve e between the s measured/recance travelled f sound (in wa	om the seabed are detected/rectl) emission and corded	detection (of the s) is calculated by	Accept a correct factor of 2	6

(Total for Question 10 = 6 marks)

11(b)(i) •	 sine wave drawn from first dotted line Min 1 wavelength with zero displacement at lines 5,9,(13) V = πr² × L	(1)	[ignore their drawing between axis and first dotted line]	2
` ' ` '			[15hote then than ing octive in this tall institution inter-	1
•		(1)	$[V=1.5x10^{-7}]$	
•	Use of $\rho = \frac{m}{V}$	(1)	[No ue for show that]	
	Use of $\rho = \frac{m}{v}$ $\mu = 0.00054 \text{ (kg m}^{-1}\text{)}$		Example of calculation $m = \pi \left(\frac{7.6 \times 10^{-4} \text{ m}^2}{2}\right)^2 \times 0.33 \text{ m} \times 1200 \text{ kg m}^{-3} = 1.8 \times 10^{-4} \text{ kg}$ $\mu = \frac{1.8 \times 10^{-4} \text{ kg}}{0.33 \text{ m}} = 0.00054 \text{ kg m}^{-1}$	3
•	Use of $v = \sqrt{\frac{T}{\mu}}$ and $v = f\lambda$ Or Use of $f = \frac{1}{\lambda} \sqrt{\frac{T}{\mu}}$ Recognises $\lambda = 2L$ $\mu = 1.1 \times 10^{-3}$ (kg m ⁻¹) so string 3 used	(1)(1)(1)	[Allow $f = \frac{1}{2l} \sqrt{\frac{T}{\mu}}$ for MP1 and MP2] [No ue] Example of calculation $2 \times 0.33 \text{ m} \times 277 \text{ s}^{-1} = \sqrt{\frac{3.9 \text{ kg} \times 9.81 \text{ m s}^{-1}}{\mu}}$ $\mu = 1.1 \times 10^{-3} \text{ kg m}^{-1} \text{ string } 3$	3

(Total for Question 11 = 8 marks)

Question Number	Acceptable answers		Additional guidance	Mark
12(a)	• Use of $\sin C = \frac{1}{n}$ • $C = 38^{\circ}$	(1)	Example of calculation $\sin C = \frac{1}{1.63}$ $C = 37.84^{\circ}$ [No ue as given in diagram and in (b)]	2
12(b)	 Use of n = c/v Use of n₁ sinθ₁ = n₂ sinθ₂ with θ = 40° [r = 24°] Uses geometry to determine angle of incidence at the glass-air interface [θ = 36.52°] Recognises that n(glass to air) = 1/n(air to glass) θ = 68° 	(1) (1) (1) (1)	[1.58] e.g. Internal angles totalling 180° Accept answers using 1/(candidates value for n in MP1) [answer of 15° not MP4 and MP5 - has used 1.58 instead of 1/1.58 [accept answers written on diagram] [No ue] Example of calculation $n = \frac{3.0 \times 10^8}{1.9 \times 10^8} = 1.58$ At air-glass interface $\sin r = \frac{\sin 40}{1.58}$ $r = 24^\circ$ At glass-air interface $i = 90 - (180 - (90 - 24) - 60) = 36^\circ$ $\sin r = \frac{\sin 36}{(1/1.58)}$ $r = 68^\circ$	5

(Total for Question 12 = 7 marks)

Question Number	Acceptable answers		Additional guidance	Mark
13(a)(i)	• Uses $\varepsilon = \frac{\Delta x}{x}$ • Strain = 0.07 or 7 %	(1)	[mean $\Delta x = 12.9 \text{ cm}$] Example of calculation	
	Uses uncertainty is half the range Or the difference between the mean and the furthest datum point	(1) (1) (1)	Mean extension = $\frac{(1.29 + 1.21 + 1.37) \times 10^{-1} \text{ m}}{3} = 1.29 \times 10^{-1} \text{ m}$ $\varepsilon = \frac{1.29 \times 10^{-1} \text{ m}}{1.960 \text{ m}} = 0.07$	4
	• Uncertainty = 0.008 m		$\frac{(1.37 - 1.21) \times 10^{-1} \text{m}}{2} = 0.008 \text{ m}$	
13(a)(ii)	• Use of $\Delta E_{el} = \frac{1}{2} F \Delta x$	(1)		
	• 6 J (ecf for mean Δx from (a)(i))	(1)	Example of calculation $\Delta E_{el} = \frac{1}{2} \times 90 \text{ N} \times 0.129 \text{ m} = 5.8 \text{ J}$	2
13(a)(iii)	Measure diameter with micrometer/screw gauge/ calipers	(1)		
	Take multiple readings at different locations / orientations	(1)		
	Calculate a mean	(1)		
	• Calculate cross-sectional area of the wire using $A = \frac{\pi d^2}{4}$	(1)	Accept $A = \pi r^2$ and $r = \frac{\text{diameter}}{2}$	4

13(b)	An explanation that makes reference to the following points: Max 4 from any two of:		[Accept answers wrt iron]	
	 (steel has a) greater Young Modulus Or (steel is) stiffer So less strain / deformation under a given stress/load 	(1) (1)	[do not accept any properties not shown on the graph eg less likely to rust]	
	 OR Elastic limit (for steel) is at a greater stress So can return to its original size / length up to a greater stress 	(1) (1)	[allow yield point is at a greater stress]]	4
	 OR Steel has a greater plastic region So can absorb more energy before fracture 	(1) (1)		
	 OR has a greater breaking stress more stress/force can be applied before it breaks 	(1) (1)		

(Total for Question 13 = 14 marks)

Question Number	Acceptable answers		Additional guidance	Mark
14(a)	 Any two of the following rays drawn [maximum 2 marks for ray drawing] Continuous straight line joining the top of the object and the centre of the lens and extended to the right hand side of the lens. Straight line joining the top of the object and F on the left hand side of lens, extended up to the lens. 	(1)	lens O F	3
	 Then continued parallel to the principal axis on the right hand side of the lens. Straight line drawn from the top of the object parallel to the principal axis up to the lens. Then continued through and beyond F on the right hand side of the lens. 	(1)		
	Correct image drawn in position consistent with their rays and within range 11-13 cm	(1)		
14(b)	• Use of $m = \frac{v}{u}$ • Use of $\frac{1}{f} = \frac{1}{u} + \frac{1}{v}$	(1)	Example of calculation	
	• Use of $P = \frac{1}{f}$ • Use of $P = P_1 + P_2$	(1)(1)	$v = 0.71 \times 20 \text{ cm} = 14.2 \text{ cm}$ $P = \frac{1}{0.20 \text{ m}} + \frac{1}{0.142 \text{ m}} = 12.04 \text{ D}$	5
	• Power of lens = 5.3 D so the student used lens X	(1)	$P_2 = P - P_1 = 12.0 \text{ D} - 6.7 \text{ D} = 5.34 \text{ D}$ (Total for Question 14 –	

(Total for Question 14 = 8 marks) (Total for Section A = 58 marks)

Section B

Question Number	Acceptable answers		Additional guidance	Mark
15(a)(i)	 An explanation that makes reference to the following points: The electron in the hydrogen atom is excited Or the electron is promoted to a higher energy level (After a short time) the electron returns to its normal/ground state emitting a photon The energy of the photon is equal to the difference in the (discrete) energy levels of the atom Wavelength (of emitted photon) is inversely proportional to the change in energy Or Frequency (of emitted photon) is proportional to the change in energy Or Reference to E = hf/E = hc/λ 	(1) (1) (1)	[not promoted alone] [accept falls back down] [not de-excites alone] [must be a change in energy, allow ΔE]	4
15(a)(ii)	 Use of E = hf and v = fλ ΔE = (-)3.01 × 10⁻¹⁵ J Conversion between eV and J (so) ΔE = (-)1.9 (eV) means a transition of (-)1.51 eV to (-)3.39 eV 	(1) (1) (1) (1)	Example of calculation $\Delta E = \frac{6.63 \times 10^{-34} \text{ m}^2 \text{ kg s}^{-1} \times 3.00 \times 10^8 \text{ m s}^{-1}}{6.6 \times 10^{-7} \text{ kg}}$ $\Delta E = -3.01 \times 10^{-15} \text{ J} = \frac{-3.01 \times 10^{-19} \text{ J}}{1.6 \times 10^{-19} \text{ J C}^{-1}} = -1.88 \text{ eV}$ Transition -1.51 eV to -3.39 eV	4

15(a)(iii)	An explanation that makes reference to the following points:			
	One electron absorbs and re-emits one <u>photon</u>	(1)		
	A greater rate of emitted <u>photons</u> means a higher intensity radiation	(1)	[Accept more photons means higher intensity]	2
15(b)	 Use of p = mv Equates the total momentum before collision to total momentum after collision v of hydrogen = 5400 (m s⁻¹) 	(1) (1) (1)	Accept reverse calculations using $v = 5000 \text{ m s}^{-1}$ to calculate a minimum initial velocity of H and compare to 2210 m s ⁻¹	
	• Compares their calculated value with 5000 (m s ⁻¹) with conclusion consistent with their calculated value	(1)	Example of calculation $2.66 \times 10^{-26} \text{ kg} \times 2210 \text{ m s}^{-1} = (2.66 \times 10^{-26} \text{ kg} \times 1870 \text{ m s}^{-1}) + (1.67 \times 10^{-27} \text{ kg} \times \text{v})$ $v = 5416 \text{ m s}^{-1} > 5000 \text{ m s}^{-1} \text{ so can escape}$	4

(Total for Question 15 = 14 marks)

Question Number	Acceptable answers		Additional guidance	Mark
16(a)(i)	• Use of $\lambda = 2\pi r$ • 3.3×10^{-10} m	(1) (1)	Example of calculation $\lambda = 2\pi \times 5.3 \times 10^{-11} \text{ m}$ $\lambda = 3.3 \times 10^{-10} \text{ m}$	2
16(a)(ii)	An explanation that makes reference to the following points:		$\lambda = 3.3 \times 10^{-3} \text{ m}$	
	The wavelength of the standing wave is determined by the energy of the electron	(1)	[Accept reference to $E_k = \frac{h^2}{2m\lambda^2}$ to link wavelength to discrete energy levels]	
	The wavelengths are discrete and (to fit the circumference of the orbit) only certain orbits are possible	(1)		2
16(b)(i)	• Use of $\lambda = \frac{h}{p}$ and $p = mv$	(1)	$ \lambda = \frac{\text{Example of calculation}}{6.63 \times 10^{-34} \text{ m}^2 \text{ kg s}^{-1}} = 1.23 \times 10^{-10} \text{ m} $	
	• 1.2×10^{-10} (m)	(1)	[no ue]	2

16(b)(ii)	An explanation that makes reference to the following points: The (de Broglie) wavelength of an electron decreases (with increasing speed)	(1)	[Accept $\lambda \propto \frac{1}{v}$ with terms defined]	
	Smaller wavelength means a smaller path difference for waves to be in phase (so smaller rings/pattern) Or The diffraction angle is smaller for shorter wavelengths (and the rings become smaller)	(1)	[Allow there is less diffraction]	2

(Total for Question 16 = 8 marks)

(Total for Section B = 22 marks) TOTAL FOR PAPER = 80 MARKS

