

Please write clearly in block capitals.

Centre number

--	--	--	--	--

Candidate number

--	--	--	--

Surname

Forename(s)

Candidate signature

I declare this is my own work.

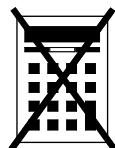
GCSE

COMPUTER SCIENCE

Paper 1 Computational thinking and programming skills – Python

Monday 12 May 2025

Afternoon


Time allowed: 2 hours

Materials

- There are no additional materials required for this paper.
- You must **not** use a calculator.

Instructions

- Use black ink or black ball-point pen. Use pencil only for drawing.
- Answer **all** questions.
- You must answer the questions in the spaces provided.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Do all rough work in this book. Cross through any work you do not want to be marked.
- Questions that require a coded solution must be answered in Python.
- You should assume that all indexing in code starts at 0 unless stated otherwise.

For Examiner's Use	
Question	Mark
1	
2	
3	
4	
5	
6	
7	
8–9	
10	
11	
TOTAL	

Information

The total number of marks available for this paper is 90.

Advice

For the multiple-choice questions, completely fill in the lozenge alongside the appropriate answer.

CORRECT METHOD

WRONG METHODS

If you want to change your answer you must cross out your original answer as shown.

If you wish to return to an answer previously crossed out, ring the answer you now wish to select as shown.

J U N 2 5 8 5 2 5 1 B 0 1

IB/G/Jun25/G4003/E11

for more: tyrionpapers.com

8525/1B

Answer **all** questions.

0 1

Figure 1 shows a program written in Python.

- Line numbers are included but are not part of the program.

Figure 1

```

1      # Python program
2      a = 1
3      b = 1
4      c = 5
5      while b < c:
6          a = a + a
7          b = b + 1
8      print(a)

```

0 1 . 1

Where is an arithmetic operation **first** used in the program in **Figure 1**?

Shade **one** lozenge.

[1 mark]

A Line number 1

B Line number 5

C Line number 6

D Line number 8

0 1 . 2

Which of the following is a **false** statement about the program in **Figure 1**?

Shade **one** lozenge.

[1 mark]

A This program contains a comment.

B This program uses assignment.

C This program uses concatenation.

D This program uses iteration.

0 2

0 1 . 3 State the relational operator used in the program in **Figure 1**.

[1 mark]

0 1 . 4 Complete the trace table for the program in **Figure 1**.

You may not need to use all the rows in the table.

[4 marks]

a	b	c	Output

—
7

Turn over for the next question

Turn over ►

0 3

0 2

A coffee shop has a loyalty scheme which rewards customers for buying drinks. The customer gets one stamp on their loyalty card for each individual drink they buy.

- Every 4th stamp on the card gets the customer a free biscuit.
- Every 5th stamp on the card gets the customer a free pastry.
- When the customer reaches 20 stamps, they get a free cake (but **no** biscuit or pastry).

The Python program shown in **Figure 2** should display whether the customer gets a free biscuit, pastry, cake or nothing free for their first 20 drinks.

For each drink purchased, the program **must** output either: "Free biscuit", "Free pastry", "Free cake" or "Nothing free".

Some parts of the program have been replaced with the labels **L1** to **L3**.

Figure 2

```
i = 1
while i <= 20:
    if i % 20 == 0:
        print("Free cake")
    elif L1:
        print("Free pastry")
    elif i % 4 == 0:
        L2
    else:
        L3
    i = i + 1
```

0 2.1 State the Python code that should be written in place of the labels in the program written in **Figure 2**.

[3 marks]

L1	_____
L2	_____
L3	_____

0 4

0 2 . 2 The coffee shop wants to work out the total value of the free biscuits, pastries and cakes given out each day.

- Each free biscuit is worth £1
- Each free pastry is worth £2.50
- Each free cake is worth £3

Write a Python program to get the number of free biscuits, pastries and cakes, and calculate the total value for the day.

Your program must:

- get the user to enter the number of free biscuits and store it in a variable
- get the user to enter the number of free pastries and store it in a variable
- get the user to enter the number of free cakes and store it in a variable
- calculate the total value of the free items
- output the total value of the free items.

You **should** use indentation as appropriate, meaningful variable name(s) and Python syntax in your answer.

The answer grid below contains vertical lines to help you indent your code.

[4 marks]

7

Turn over ►

0 | 3

Write a Python program that calculates the total cost of a netball coaching session for a group of students.

The total cost is calculated as follows:

- A booking fee of £20 plus:
 - £5 per student if there are 15 students or fewer
 - £3 per student if there are more than 15 students
- If there are more than 25 students, a booking fee of £100 and **no** other charges.

Your program should:

- get the user to enter the number of students
- output the total cost of the session.

You **should** use indentation as appropriate, meaningful variable name(s) and Python syntax in your answer.

The answer grid below contains vertical lines to help you indent your code.

[8 marks]

Do not write outside the box

8

Turn over ►

0 7

0 4

A programmer is developing a system to register users for an app. The program needs to validate the first name of the user.

0 4 . 1

Identify the purpose of validation.

Shade **one** lozenge.

[1 mark]

A Checks that the user is human

B Checks that the user is who they say they are

C Checks that the input is a name

D Checks that the input is reasonable

0 4 . 2

Write a Python program to check the user's first name.

Your program should:

- get the user's first name
- check that the first name has more than one character and fewer than 15 characters:
 - if it has, output the message Name accepted
 - if it has not, output the message Name not accepted
- repeat until the name entered has a specified length.

You **should** use indentation as appropriate, meaningful variable name(s) and Python syntax in your answer.

The answer grid below contains vertical lines to help you indent your code.

[6 marks]

0 8

Do not write outside the box

Question 4 continues on the next page

Turn over ►

0 4 . 3 Which of the following statements best describes **boundary** test data?

Shade **one** lozenge.

[1 mark]

A Data that is not of the allowed data type

B Data that is at the limits of the allowed range

C Data that is expected by the program

D Data that will cause a syntax error

0 4 . 4 The programmer has started planning the tests that will be used to check the program is working correctly.

The program should:

- check that the first name has more than one character and fewer than 15 characters:
 - if it has, then output the message Name accepted
 - if it has not, then output the message Name not accepted

The start of the test plan is shown in **Figure 3**.

Figure 3

Test number	Test data	Type of test data	Expected result
1	Thomas	Normal	Name accepted
2		Boundary	Name not accepted

State the number of characters that a string used for test number 2 in **Figure 3** could contain.

[1 mark]

0 4 . 5 Normal and boundary are two types of test data.

State **one** type of test data that has **not** been used in **Figure 3**.

[1 mark]

1 0

Question 4 continues on the next page

*Do not write
outside the
box*

**DO NOT WRITE ON THIS PAGE
ANSWER IN THE SPACES PROVIDED**

Turn over ►

1 1

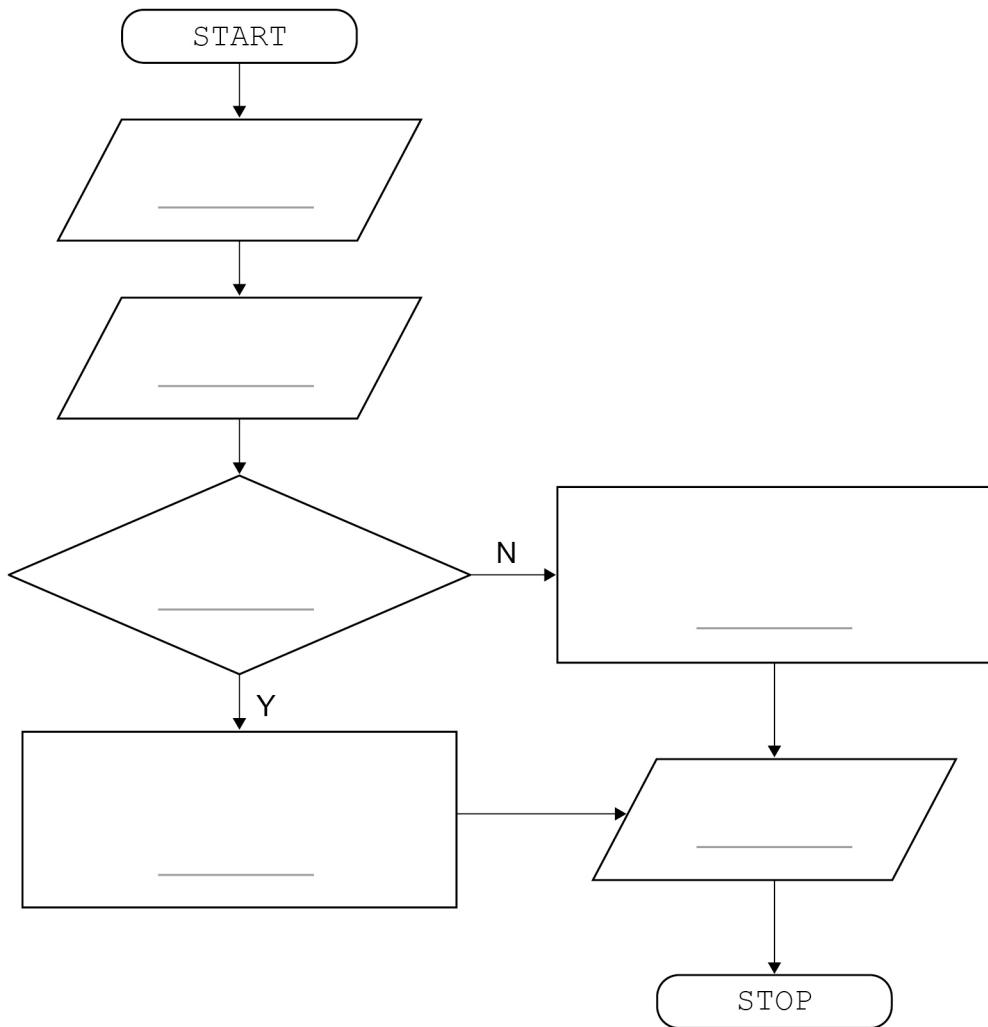
0 4 . 6 A programmer is designing an algorithm to generate usernames for users.

The algorithm should:

- ask the user to input their first name and their last name
- create a username:
 - if their first name has more than three characters, their username will consist of the first three characters of their first name followed by their last name
 - if their first name has three or fewer characters, their username will consist of their full first name followed by their last name
- output the username.

Figure 4 contains the statements required to implement a version of this algorithm.

Figure 4


- L1** `firstName ← USERINPUT`
- L2** `LEN(firstName) > 3`
- L3** `username ← firstName + lastName`
- L4** `OUTPUT username`
- L5** `username ← SUBSTRING(0, 2, firstName) + lastName`
- L6** `lastName ← USERINPUT`

Using the labels (L1) to (L6) shown in **Figure 4**, complete the flowchart to implement the algorithm.

[3 marks]

1 2

13

Turn over for the next question

Turn over ►

1 3

0 5

The Python program in **Figure 5** gets five numbers and outputs the sum of those numbers.

Figure 5

```
num1 = int(input())
num2 = int(input())
num3 = int(input())
num4 = int(input())
num5 = int(input())
total = num1 + num2 + num3 + num4 + num5
print(total)
```

0 5 . 1

An integer data type is used in the program in **Figure 5**.

Describe what is meant by a **data type**.

[1 mark]

The variables num1, num2, num3, num4 and num5 in **Figure 5** have an integer data type.

0 5 . 2

Explain why these variables do **not** have a string data type.

[1 mark]

0 5 . 3

The program in **Figure 5** needs to be changed to use numbers with a fractional part (a real number).

State a data type in Python that should be used.

[1 mark]

1 4

0 5 . 4 Rewrite the program in **Figure 5** so that it achieves the same result but uses an iteration structure that contains only **one** `input()` statement.

Your answer must be written in Python.

You **should** use indentation as appropriate, meaningful variable name(s) and Python syntax in your answer.

The answer grid below contains vertical lines to help you indent your code.

[5 marks]

8

Turn over ►

0 6

A series of numbers shown in **Figure 6** are to be sorted into ascending order (from smallest to largest).

Figure 6

45	23	78	55	49
----	----	----	----	----

0 6 . 1

A bubble sort algorithm has been developed to sort the numbers in **Figure 6**.

Fill in the table to show the steps involved in applying a bubble sort algorithm to sort the numbers shown in **Figure 6**.

You should show the new order every time the order has changed.

[3 marks]

45	23	78	55	49
23	45	49	55	78

1 6

0 6. 2 A programmer decides to use a merge sort algorithm to sort the same values shown in **Figure 6**.

Complete the diagram to show how the **merge** part of the merge sort algorithm is applied to **Figure 6**.

[3 marks]

45	23	78	55	49
23	45	49	55	78

Question 6 continues on the next page

Turn over ►

1 7

0 6 . 3

State **one** advantage and **one** disadvantage of a bubble sort compared to a merge sort.

[2 marks]

Advantage _____

Disadvantage _____

0 6 . 4

The programmer has an array of 2500 numbers, stored in ascending order (smallest to largest).

The programmer needs to write a program to search for a value in the array.

Explain why a binary search is better than a linear search for this array.

[2 marks]

10

1 8

Turn over for the next question

*Do not write
outside the
box*

**DO NOT WRITE ON THIS PAGE
ANSWER IN THE SPACES PROVIDED**

Turn over ►

1 9

0 7**Figure 7** shows a subroutine written in pseudo-code.**Figure 7**

```

SUBROUTINE testSub (number)
    OUTPUT number
    x ← number MOD 2
    OUTPUT x
    IF x = 0 THEN
        RETURN True
    ELSE
        RETURN False
    ENDIF
ENDSUBROUTINE

```

0 7 . 1Describe the purpose of the subroutine in **Figure 7**.**[1 mark]**

0 7 . 2The subroutine in **Figure 7** is called using `testSub(10)`

Complete the table to show the values output.

[2 marks]

Program Code	Output
OUTPUT number	
OUTPUT x	

0 7 . 3The subroutine in **Figure 7** is called using `testSub(8)`

State the value returned.

[1 mark]

2 0

0 7 . 4 State the identifier for the parameter in **Figure 7**.

[1 mark]

0 7 . 5 State **two** characteristics of the structured approach to programming.

[2 marks]

1 _____

2 _____

—
7

Turn over for the next question

Turn over ►

2 1

0 8**Figure 8** shows an algorithm represented using pseudo-code.

- Line numbers are included but are not part of the algorithm.

Figure 8

```

1  b1 ← '0010'
2  b2 ← '0111'
3  new ← ''
4  FOR i ← 0 TO LEN(b1) - 1
5      IF b1[i] = '1' OR b2[i] = '1' THEN
6          IF NOT (b1[i] = '1' AND b2[i] = '1') THEN
7              new ← new + '1'
8          ELSE
9              new ← new + '0'
10         ENDIF
11     ELSE
12         new ← new + '0'
13     ENDIF
14 ENDFOR
15 OUTPUT new

```

0 8.1Complete the trace table for the algorithm shown in **Figure 8**.

You may not need to use all the rows in the table.

[5 marks]

b1	b2	new	i

2 2

0 8 . 2

Explain why **line 4** in **Figure 8** uses $\text{LEN}(\text{b1}) - 1$ instead of $\text{LEN}(\text{b1})$

[1 mark]

*Do not write
outside the
box*

Turn over for the next question

Turn over ►

2 3

0 9

Figure 9 shows five algorithms, represented using pseudo-code.

Do not write
outside the
box

Figure 9

A	<pre> numbers ← [44, 1, 2, 14, 68] counter ← 0 total ← 0 WHILE counter < 5 index ← counter total ← total + numbers[index] counter ← counter + 1 ENDWHILE OUTPUT total </pre>
B	<pre> numbers ← [44, 1, 2, 14, 68] total ← 0 FOR a ← 0 TO LEN(numbers) - 1 total ← total + numbers[a] ENDFOR OUTPUT total </pre>
C	<pre> numbers ← [44, 1, 2, 14, 68] total ← 0 FOR a ← 1 TO 7 total ← total + numbers[a] ENDFOR OUTPUT total </pre>
D	<pre> numbers ← [44, 1, 2, 14, 68] total ← 0 WHILE total > 0 total ← total + numbers[total] ENDWHILE OUTPUT total </pre>
E	<pre> numbers ← [44, 1, 2, 14, 68] total ← 0 x ← 1 REPEAT total ← total + numbers[x] UNTIL x = 5 OUTPUT total </pre>

2 4

The algorithms in **Figure 9** have been written to calculate the total of the five values in the array numbers. Not all of the algorithms work.

Complete the table by ticking (✓) **one** box in **each** column (**A–E**).

[2 marks]

Algorithm				
A	B	C	D	E
Algorithm totals the five values				
Algorithm does not total the five values				

—
8

Turn over for the next question

Turn over ►

2 5

1 0

A programmer is writing an algorithm, using pseudo-code, to store the results of running events.

The programmer uses a record data structure.

Each record stores:

- the name of the running event
- the runner's number
- the time in seconds for that runner in that event.

Figure 10 shows the record structure.

Figure 10

```
RECORD Runner
    event : String
    runnerNumber : Integer
    time : Real
ENDRECORD
```

1 0 . 1

Figure 11 shows pseudo-code used to create two records using the structure in **Figure 10**.

Figure 11

```
race1 ← Runner ('400 m', 23, 51.35)
race2 ← Runner ('400 m', 14, 63.26)
```

Complete the line of pseudo-code to create a new record that contains the following data:

event	runnerNumber	time
200 m	10	32.59

[1 mark]

race3 ← _____

1 0 . 2

Complete the line of pseudo-code needed to output the time of race2

[1 mark]

OUTPUT race2 _____

2 6

1 0 . 3 The programmer wants to find the fastest time for a particular running event.

The times for all the runners in the event are stored in an array of real numbers called `times`

Write a Python program to find the fastest time.

Your program must:

- find the smallest value in the array (ie the fastest time)
- output the smallest value
- work with any size of array.

For example, if `times` contains 28.5, 26.3 and 30.0, the output should be 26.3

The program you write **must not** use any built-in routines to find the smallest value in an array or to sort the array into an order.

You do not need to write code to create the array `times`

You **should** use indentation as appropriate, meaningful variable name(s) and Python syntax in your answer.

The answer grid below contains vertical lines to help you indent your code accurately.

[6 marks]

Turn over ►

Do not write outside the box

8

Turn over for the next question

*Do not write
outside the
box*

**DO NOT WRITE ON THIS PAGE
ANSWER IN THE SPACES PROVIDED**

Turn over ►

2 9

1 1

A word game is being developed using Python.

A word is displayed as a series of asterisks (*) equal to the number of letters in the word.

For example, the word `apple` would be displayed as `*****`

The player guesses one letter at a time. If the letter is in the word, the letter will replace the asterisk(s) wherever the letter occurs.

For example, if the player enters `p` then the word `apple` will be displayed as `*pp**`

Only lower-case letters are used in the word game.

Figure 12 shows a subroutine used in the program for this word game.

- Line numbers are included but are not part of the subroutine.

Figure 12

```

1  def findLetter(word, letter, hidden):
2      newHidden = ""
3      for i in range(len(word)):
4          if word[i] == letter:
5              newHidden = newHidden + letter
6          else:
7              newHidden = newHidden + hidden[i]
8      return newHidden

```

1 1.1

The subroutine call `findLetter("system", "s", "*y**em")` is made.

What is the value of the variable `letter` when **line 4** is first executed?

Shade **one** lozenge.

[1 mark]

A *y**em

B s

C sys**m

D system

3 0

1 | 1 . 2 The subroutine call `findLetter("system", "s", "*y**em")` is made.

What is the value of the variable `newHidden` when **line 6** is first executed?

Shade **one** lozenge.

[1 mark]

- A** s
- B** sys
- C** sys**m
- D** system

1 | 1 . 3 The subroutine call `findLetter("system", "s", "*y**em")` is made.

Identify how many times the loop would iterate.

Shade **one** lozenge.

[1 mark]

- A** 1
- B** 2
- C** 6
- D** 7

1 | 1 . 4 The subroutine call `findLetter("system", "s", "*y**em")` is made.

What value is returned?

Shade **one** lozenge.

[1 mark]

- A** s
- B** sy**tem
- C** sys**em
- D** system

Question 11 continues on the next page

Turn over ►

1 | 1 | . 5

A Python program is being written to determine if a player wins or loses the word game.

- The player wins if they correctly guess all of the letters in the word within eight guesses or fewer.
- The player loses if they have had eight guesses and there are still letters remaining that they have not guessed correctly.

Figure 13 shows the beginning of the program.

Figure 13

```
word = input()
hidden = ""
for i in range(len(word)):
    hidden = hidden + "*"
```

Extend the program in **Figure 13**.

Your program must:

- keep repeating the following until the user has had eight guesses or there are no asterisks left in hidden
 - get the user to enter a letter
 - call the `findLetter` subroutine (from **Figure 12**)
 - update the value of `hidden` using the value returned from `findLetter`
 - display the new value of `hidden`
- check if the new value of `hidden` contains any asterisks
 - if there are any asterisks in `hidden` display the message `You lost`
 - if there are no asterisks in `hidden` display the message `You won`

The program you write **must not** use any built-in routines to check if a string contains another string/character or to count the number of asterisks.

You **should** use indentation as appropriate, meaningful variable name(s) and Python syntax in your answer.

The answer grid below contains vertical lines to help you indent your code accurately.

[10 marks]

```
word = input()

hidden = ""

for i in range(len(word)):

    hidden = hidden + "*"
```


Do not write outside the box

Turn over ►

Do not write outside the box

14

END OF QUESTIONS

There are no questions printed on this page

*Do not write
outside the
box*

**DO NOT WRITE ON THIS PAGE
ANSWER IN THE SPACES PROVIDED**

3 5

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	<p style="text-align: center;">Additional page, if required. Write the question numbers in the left-hand margin.</p>

Question number	<p style="text-align: center;">Additional page, if required. Write the question numbers in the left-hand margin.</p>

Question number	<p style="text-align: center;">Additional page, if required. Write the question numbers in the left-hand margin.</p>

There are no questions printed on this page

*Do not write
outside the
box*

**DO NOT WRITE ON THIS PAGE
ANSWER IN THE SPACES PROVIDED**

Copyright information

For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet is published after each live examination series and is available for free download from www.aqa.org.uk.

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team.

Copyright © 2025 AQA and its licensors. All rights reserved.

4 0

