Please write clearly in	i block capitals.
Centre number	Candidate number
Surname	
Forename(s)	
Candidate signature	
	I declare this is my own work.

GCSE CHEMISTRY

Foundation Tier Paper 1

Thursday 14 May 2020

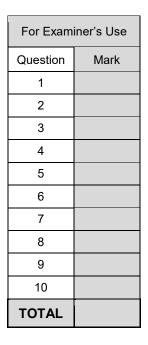
Morning

Time allowed: 1 hour 45 minutes

Materials

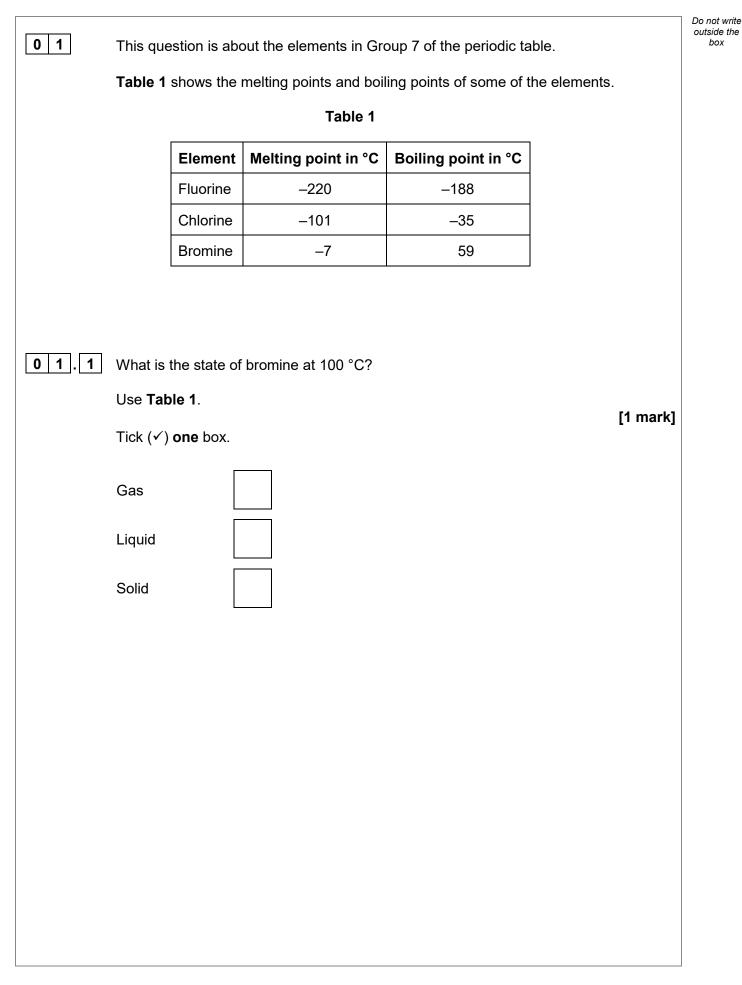
For this paper you must have:

- a ruler
- a scientific calculator
- the periodic table (enclosed).

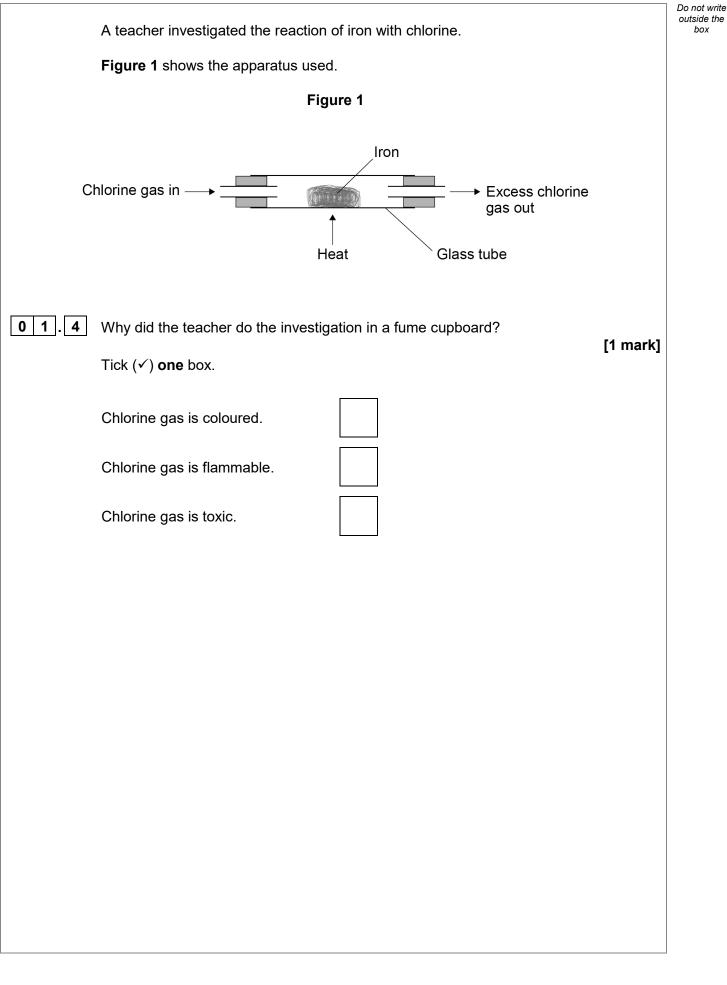

Instructions

- Use black ink or black ball-point pen.
- Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer **all** questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Do all rough work in this book. Cross through any work you do not want to be marked.
- In all calculations, show clearly how you work out your answer.

Information


- The maximum mark for this paper is 100.
- The marks for questions are shown in brackets.
- You are expected to use a calculator where appropriate.
- You are reminded of the need for good English and clear presentation in your answers.

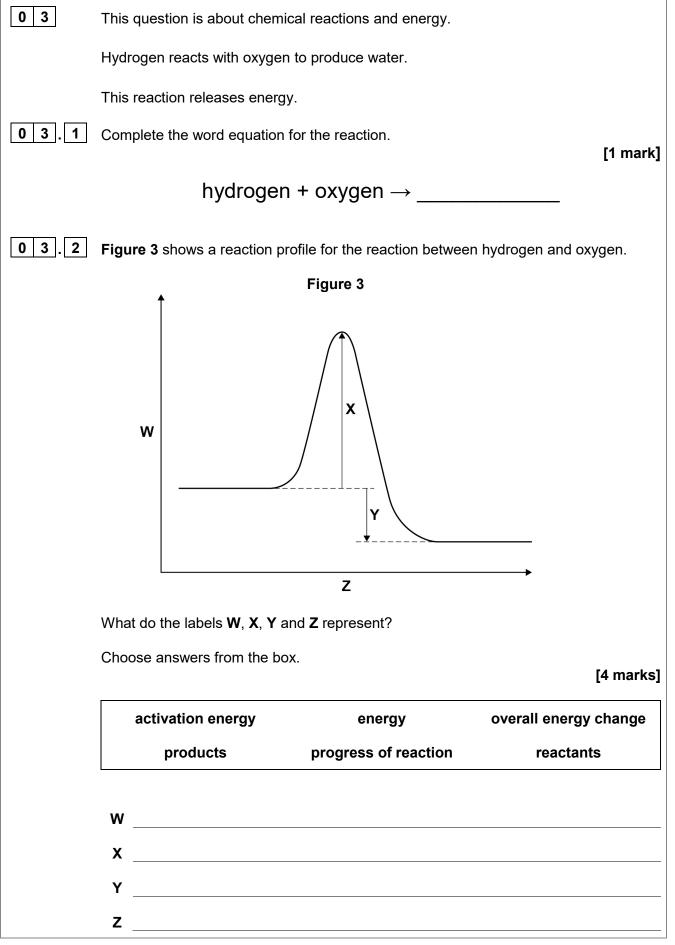
IB/M/Jun20/E13



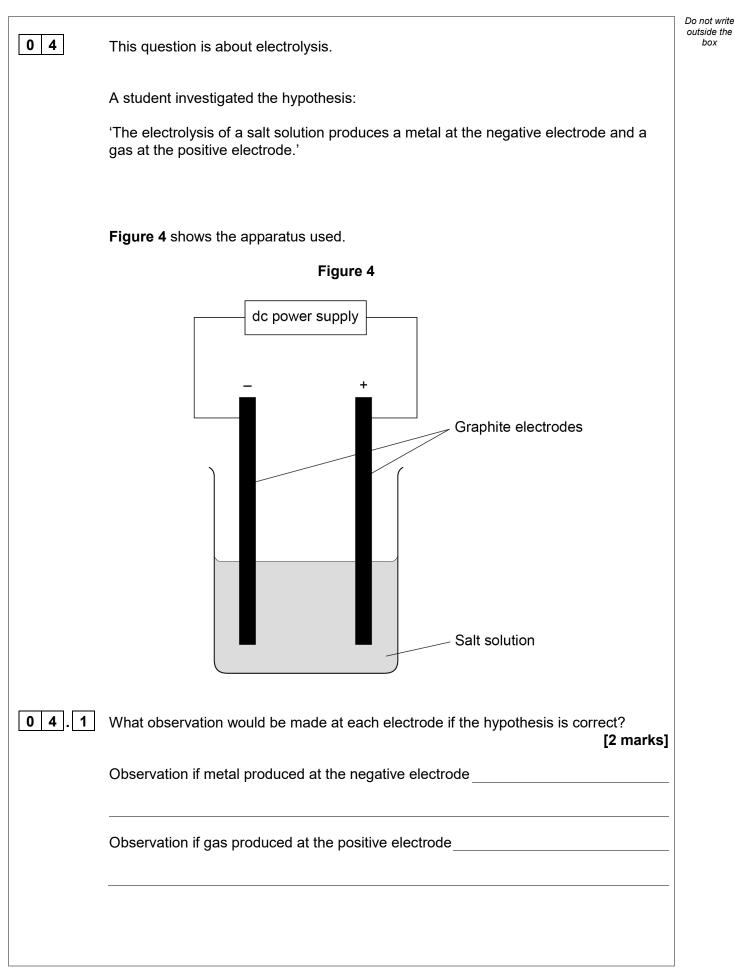
What temperature does chlorine gas condense at to form a liquid?		Do not write outside the box
Use Table 1.	[4. maank]	
Temperature = °C	[1 mark]	
Complete the sentences.		
	_·	
intermolecular forces		
Question 1 continues on the next page		
	Use Table 1. Temperature =°C Complete the sentences.	Use Table 1. [1 mark] Temperature =°C ^C Complete the sentences. [2 marks] Going down Group 7 the melting points This is because the size of the molecules increases so the intermolecular forces

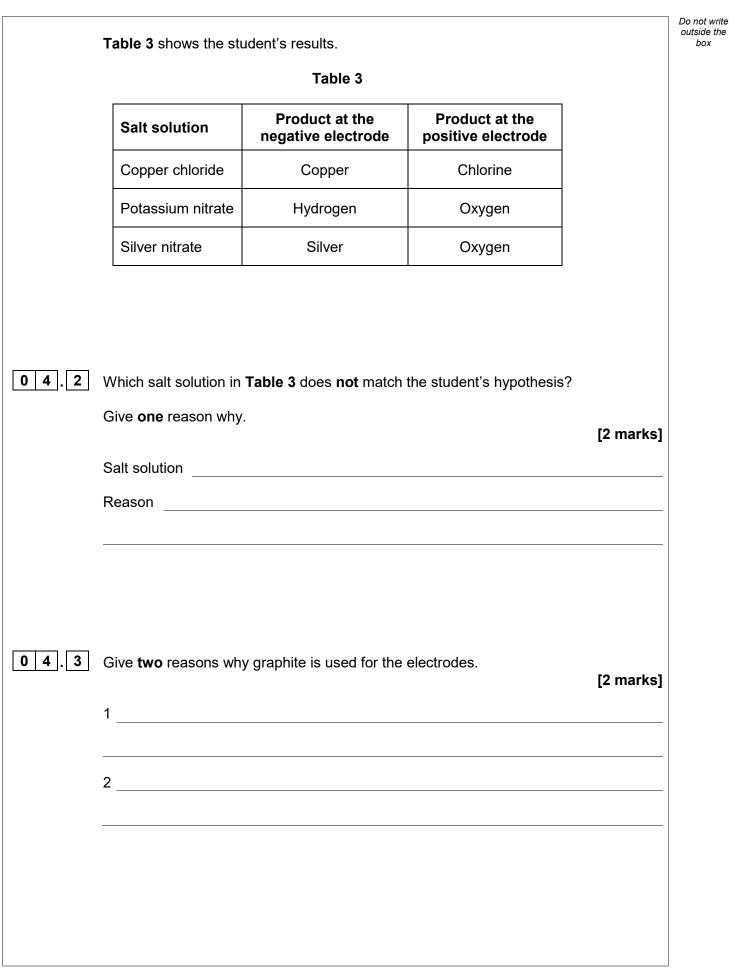
		7 0
0 1.5	The word equation for the reaction is:	Do n outs
	iron + chlorine \rightarrow iron chloride	
	Iron chloride is a solid.	
	The teacher weighed the glass tube and contents:	
	before the reaction	
	after the reaction.	
	What happened to the mass of the glass tube and contents during the reaction?	
	Give one reason for your answer.	
	[2 marks]	
	The mass of the glass tube and contents	
	Reason	
	Question 1 continues on the next page	

	The teacher repe	eated the investigation with bromine gas and with iodir	ne gas.
	Table 2 shows the	ne results.	
		Table 2	
	Element	Observation	
	Chlorine	Iron burns vigorously with an orange glow	
	Bromine	Iron burns with an orange glow	
	lodine	Iron slowly turns darker	
1.6	Fluorine is above	e chlorine in Group 7.	
	Predict what you	would observe when fluorine gas reacts with iron.	
	Use Table 2 .		
			[1 mark]
) 1.7	Balance the equ	ation for the reaction between iron and bromine.	
	Dalarice the equ		[1 mark]
	2	Fe + $Br_2 \rightarrow 2FeBr_3$	
0 1.8	Calculate the rel	ative formula mass (M_r) of FeBr ₃	
		masses (A_r): Fe = 56 Br = 80	
		100000 (mp0.0 - 0.0	[2 marks]

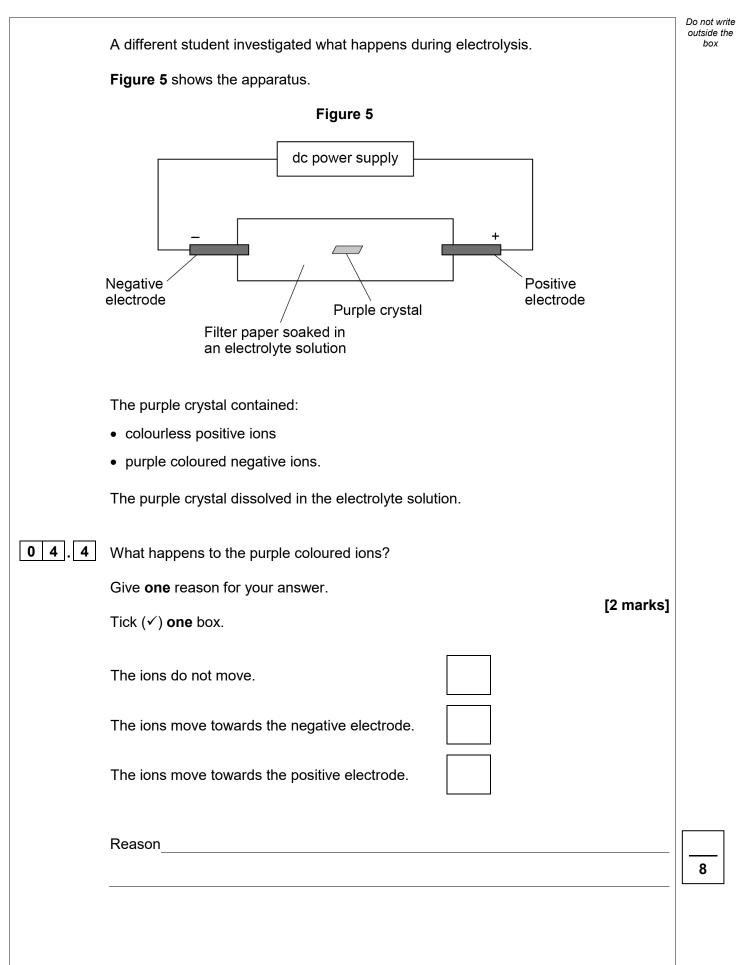

02	This question is about models of the atom.	Do not write outside the box
02.1	Atoms were first thought to be tiny spheres that could not be divided. Which particle was discovered to change this model of the atom? Tick (✓) one box.	
	Electron	
	Neutron	
	Proton	
02.2	Figure 2 shows another model of the atom.	
	Figure 2	
	What is the name of this model of the atom? [1 mark]	

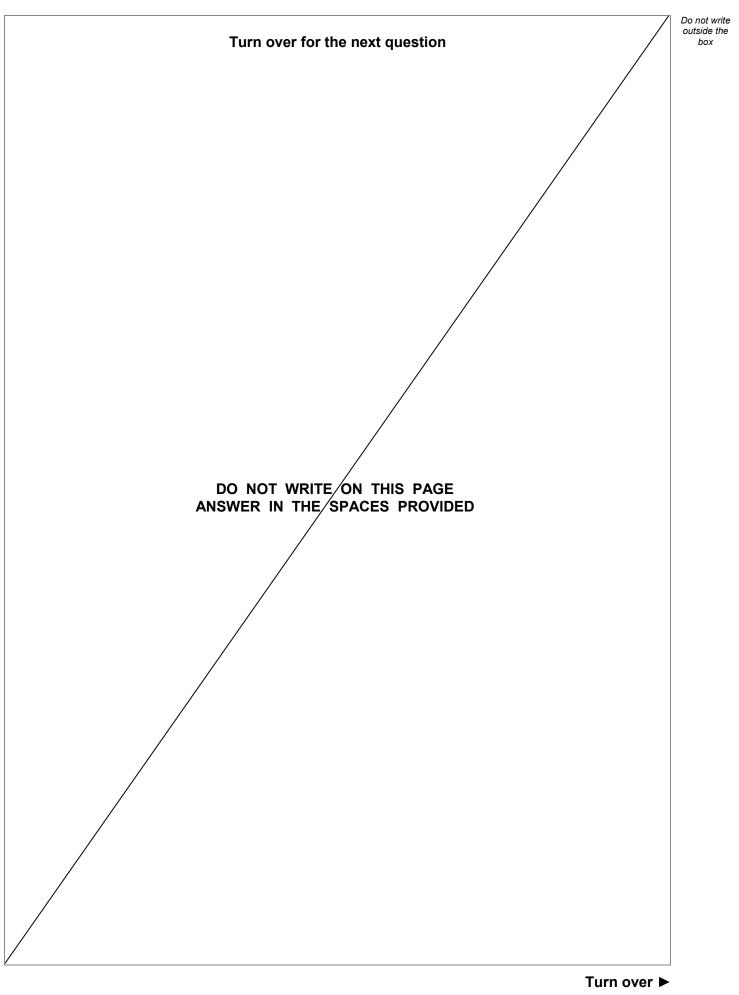
0 2 3	A scientist fired particles at gold atoms.	Do not write outside the box
	Some of these particles were scattered.	
	The results led to a different model of the atom.	
	Which type of particle was fired at the gold atoms?	
	[1 mark] Tick (✓) one box.	
	AlphaElectronNeutronProton	
02.4	Which scientist first suggested that electrons orbit the nucleus at specific distances? [1 mark] Tick (✓) one box.	
	Bohr	
	Chadwick	
	Mendeleev	


0 2 5	The model of the atom used today has three subatomic particles:	Do not write outside the box
	 electrons 	
	neutrons	
	protons.	
	Complete the sentences. [3 marks]	
	Atoms of the same element have the same atomic number because they have the	
	same number of	
	Atoms of the same element can have different mass numbers because they have	
	different numbers of	
	Atoms have no overall charge because they have	
	the same number of and	
02.6	The radius of a nucleus is approximately 1×10^{-14} m	
	The radius of an atom is approximately 1×10^{-10} m	
	A teacher uses a ball of radius 1 cm to represent the nucleus.	
	What could represent the atom on the same scale?	
	Tick (✓) one box. [1 mark]	
	A ball of radius 10 cm	
	A sports arena of radius 100 m	
	An island of radius 10 km	
	A planet of radius 1000 km	8



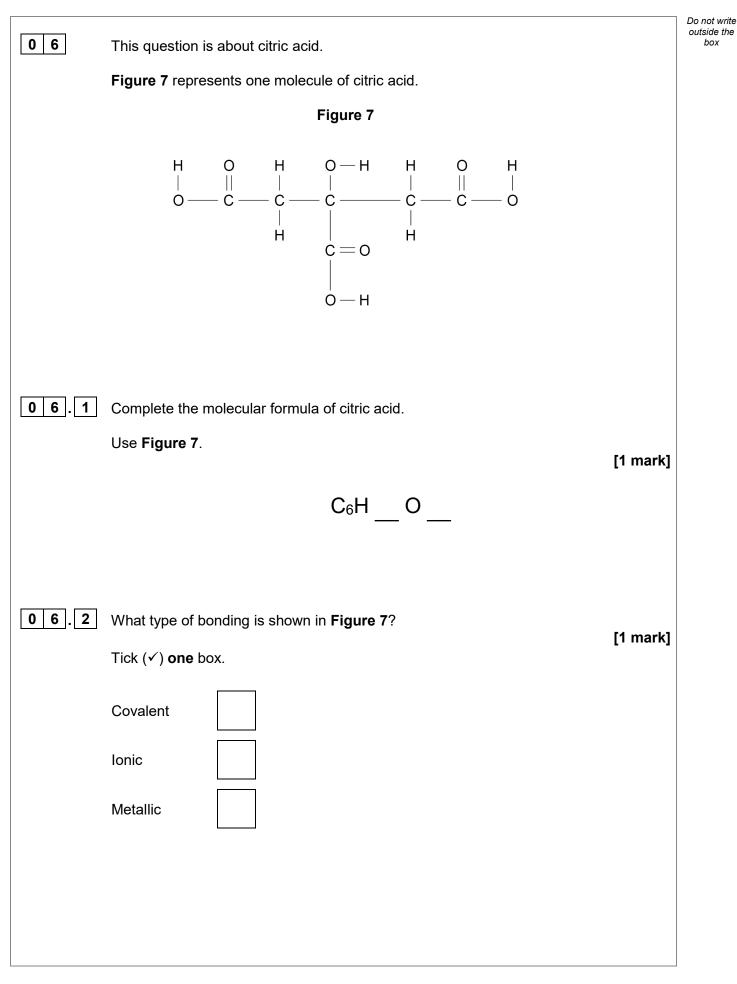
03.3	The reaction between hydrogen and oxygen is used in a hydrogen fuel cell.	Do not write outside the box
	What is the reason for using this reaction in a fuel cell?	
	[1 mark] Tick (✓) one box.	
	To produce a change of state	
	To produce a potential difference	
	To produce a temperature change	
0 3.4	A student investigated the voltage produced by a chemical cell.	
	The student used different metals as the electrodes in the cell.	
	The metals used were:	
	• copper	
	• iron	
	• magnesium.	
	Which two metal electrodes would produce the greatest voltage when used in the chemical cell?	
	Give one reason for your answer.	
	[2 marks]	
	Metals and	
	Reason	
		8

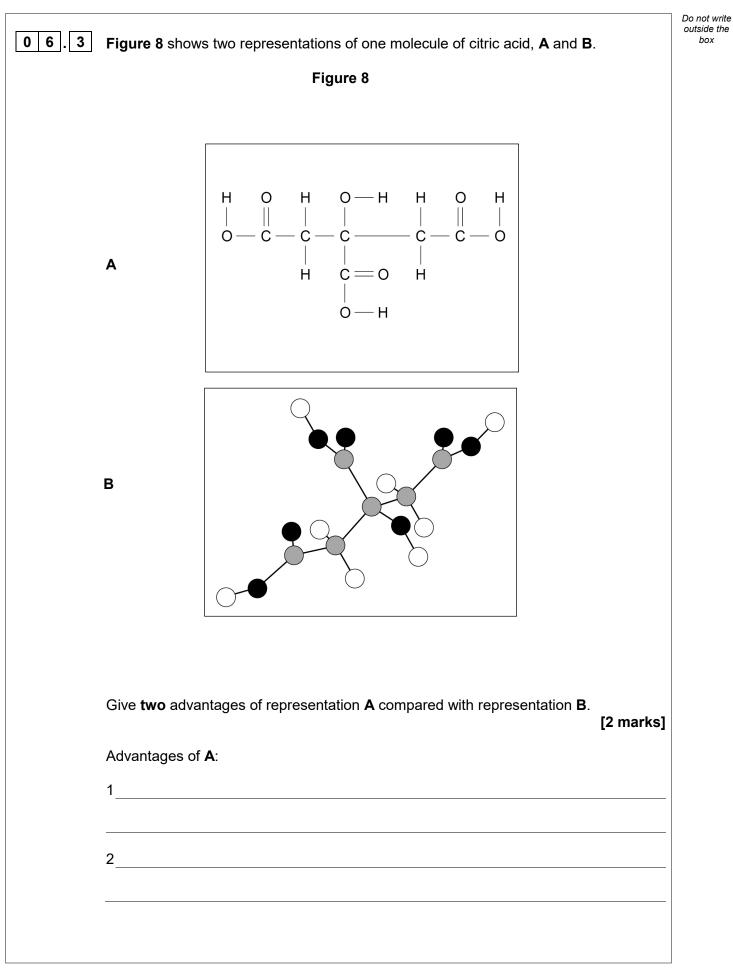




0 5	This question is ab	out aluminium.	
0 5.	1 Aluminium is a met	al.	
	Draw one line from	each property of aluminium to the correct reason for that pro [2 r	operty. marks]
	Property	Reason	
		Aluminium has delocalised electrons	
	Conducts electricity	Aluminium has layers of atoms which can slide	
		Aluminium has strong metallic bonds	
	High melting point	Aluminium has weak intermolecular forces	
		Aluminium has a random arrangement of atoms	
0 5.		used to make alloys.	
	What is meant by a		mark]

		Do not write
	Aluminium is extracted from bauxite.	outside the box
	Bauxite is a mixture which contains aluminium oxide.	
0 5.3	Bauxite contains between 15% and 25% aluminium.	
	Aluminium oxide always contains 53% aluminium.	
	How does this show that bauxite is a mixture and not a compound?	
	[1 mark]	
0 5.4	The waste material from the bauxite is stored in lakes of mud.	
	The lakes of mud are held in place by dams.	
	Figure 6 shows one of these lakes.	
	Figure 6	
	Lake of mud	
	Suggest two possible problems with storing the waste material in lakes of mud. [2 marks]	
	1	
	2	


	Aluminium is extracted by electrolysis.
	The aluminium oxide is mixed with cryolite and melted.
	The mixture is then electrolysed.
0 5.5	The formula of cryolite is Na_3AlF_6
	Give the total number of atoms in the formula. [1 mark]
	Number of atoms =
0 5.6	What is the reason for adding cryolite to the aluminium oxide? [1 mark]
	Tick (✓) one box.
	To increase the amount of aluminium extracted
	To lower the melting point of the mixture
	To reduce the amount of aluminium oxide needed


Do not write outside the box

0 5.7	Complete the sentences.
	Choose answers from the box. [2 marks
	aluminium carbon fluorine
	oxygen sodium
	When the molten aluminium oxide and cryolite mixture is electrolysed the product at the positive electrode is This product reacts with the positive electrode because the positive electrode is made of
0 5.8	A sample of bauxite contains 25% aluminium.
	Calculate the maximum mass of aluminium that can be extracted from 300 000 kg of the sample of bauxite.
	the sample of bauxite. Give your answer in standard form.
	the sample of bauxite. Give your answer in standard form.

A student investigated the temperature change during the reaction between citric acid and sodium hydrogencarbonate solution.

Citric acid is a solid.

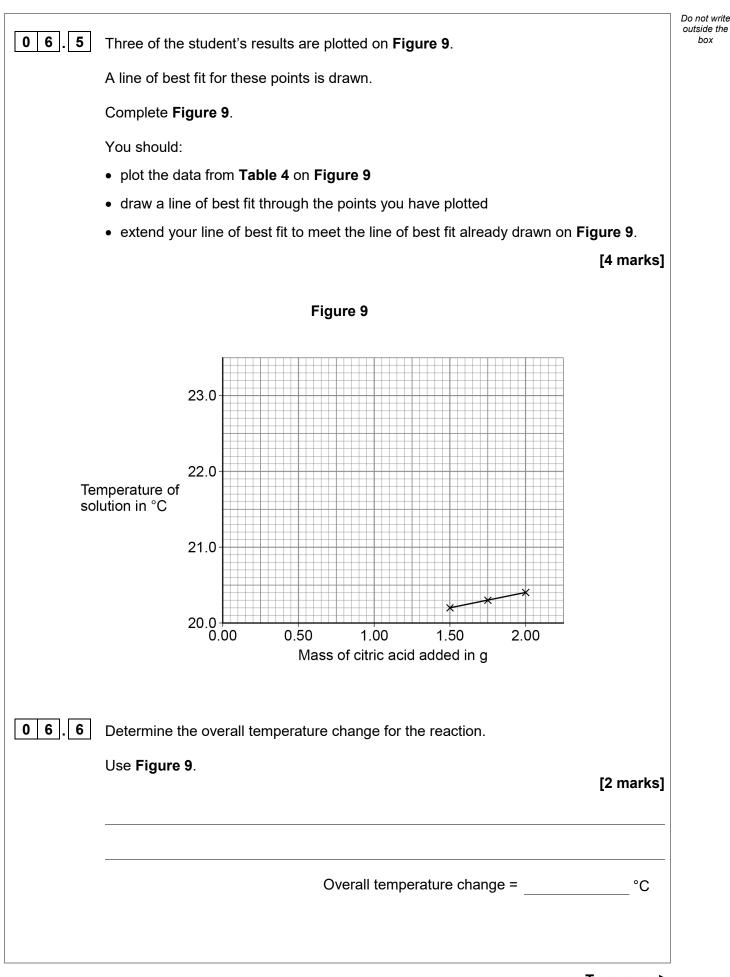
This is the method used.

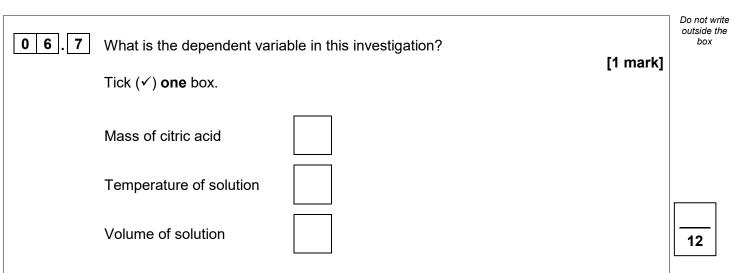
- 1. Pour 25 cm³ of sodium hydrogencarbonate solution into a polystyrene cup.
- 2. Measure the temperature of the sodium hydrogencarbonate solution.
- 3. Add 0.25 g of citric acid to the cup.
- 4. Stir the solution.
- 5. Measure the temperature of the solution.

6. Repeat steps 3 to 5 until a total of 2.00 g of citric acid has been added.

Table 4 shows some of the student's results.

Mass of citric acid added in g	Temperature of solution in °C
0.00	22.6
0.25	22.2
0.50	21.8
0.75	21.4
1.00	21.0
1.25	20.6


Table 4


How do the results in **Table 4** show that the reaction is endothermic?

[1 mark]

0 7	This question is about acids, bases and salts.	Do not writ outside the box
	Zinc nitrate is a salt. A student produces zinc nitrate using an acid and a base.	
0 7.1	Which acid should the student use to produce zinc nitrate? [1 mark] Tick (✓) one box.	
	Hydrochloric acid	
	Nitric acid	
	Sulfuric acid	
07.2	Which is a base the student could use to produce zinc nitrate? [1 mark] Tick (✓) one box. Zinc chloride Zinc oxide Zinc sulfate	
07.3	Name the salt with the formula MgBr ₂ [1 mark]	

A student investigated how pH changes during a titration.

This is the method used.

- 1. Pour 25.0 cm³ of hydrochloric acid into a beaker.
- 2. Measure the pH of the hydrochloric acid with a pH probe.
- 3. Add 1.0 cm³ of sodium hydroxide solution from a burette.
- 4. Swirl the mixture.
- 5. Measure the pH of the mixture.
- 6. Repeat steps 3 to 5 until a total of 30.0 cm³ of sodium hydroxide solution has been added.

Figure 10 shows the student's results.

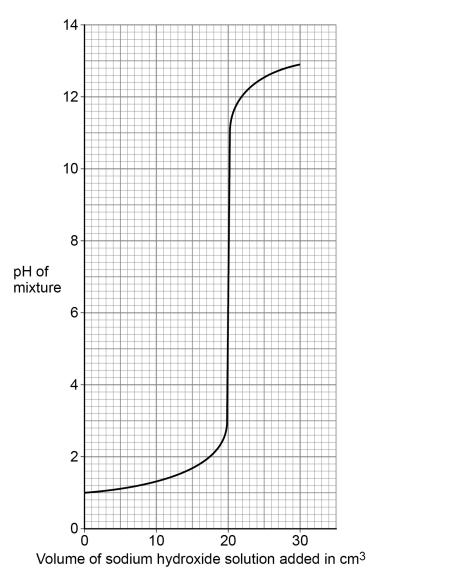
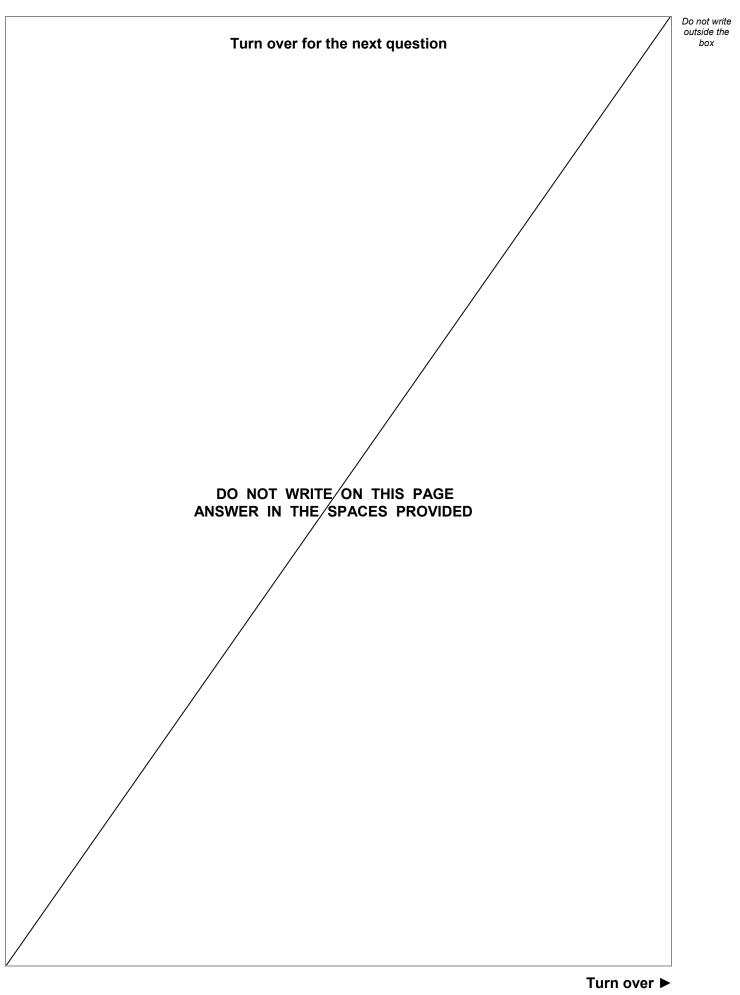
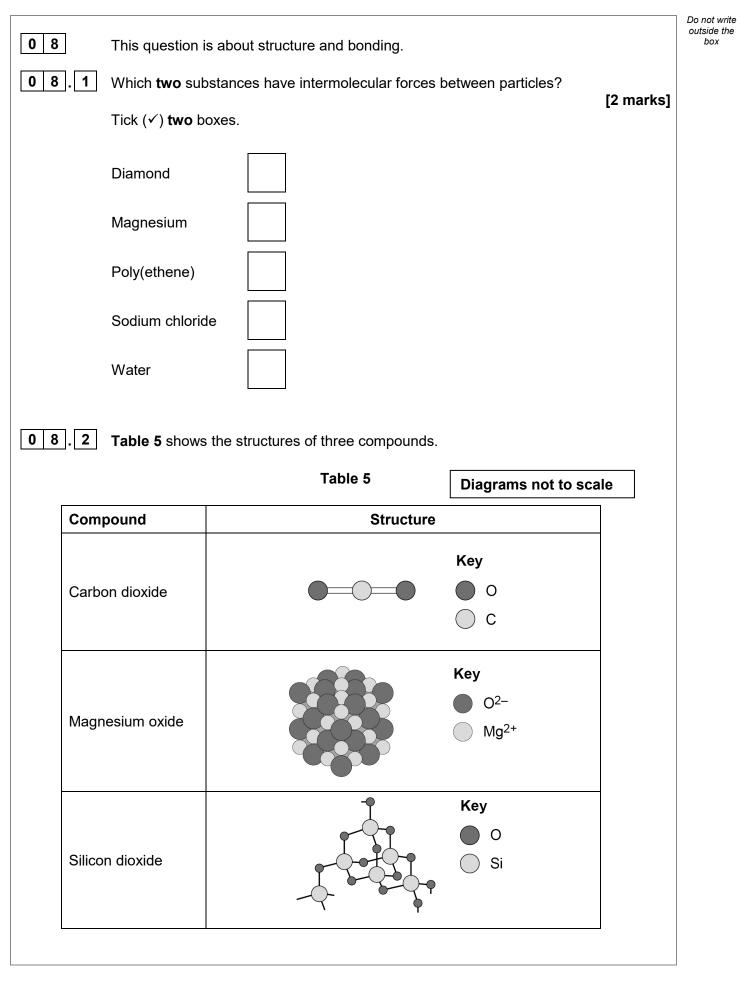


Figure 10


Do not write outside the box

0 7.4	Describe how the pH of the mixture changes as sodium hydroxide solution is added to hydrochloric acid.
	Use data from Figure 10 in your answer. [3 marks]
7 6	What volume of sodium hydroxide solution is needed to neutralise 25.0 cm ³ of
7.5	hydrochloric acid?
<u> </u> , <u>5</u>	
7.3	hydrochloric acid? Use Figure 10 .
	hydrochloric acid? Use Figure 10. [1 mark] Volume =cm ³
7.6	hydrochloric acid? Use Figure 10. [1 mark]
7.6	hydrochloric acid? Use Figure 10. [1 mark] Volume =cm ³ Figure 11 shows the colour of universal indicator at different pH values.
7.6	hydrochloric acid? Use Figure 10. $[1 mark]$ $Volume = ___cm^3$ Figure 11 shows the colour of universal indicator at different pH values. Figure 11 Red — ><-Orange ->< Yellow -><-Green -> <blue -=""><purple></purple></blue>
7.6	hydrochloric acid? Use Figure 10. [1 mark] Volume = cm ³ Figure 11 shows the colour of universal indicator at different pH values. Figure 11 Red \rightarrow \leftarrow Orange \rightarrow \leftarrow Yellow \rightarrow \leftarrow Green \rightarrow \leftarrow Blue \rightarrow \leftarrow Purple \rightarrow \rightarrow
7.6	hydrochloric acid? Use Figure 10. $I mark]$ $Volume = _ cm^{3}$ Figure 11 shows the colour of universal indicator at different pH values. Figure 11 Red \longrightarrow Orange \rightarrow Yellow \rightarrow Green \rightarrow Blue \longrightarrow Purple \longrightarrow 2 3 4 5 6 7 8 9 10 11 12 13 14
7.6	hydrochloric acid? Use Figure 10. [1 mark] Volume = cm ³ Figure 11 shows the colour of universal indicator at different pH values. Figure 11 Red \longrightarrow Orange \implies Yellow \implies Green \implies Blue \implies Purple \implies Purple \implies 2 3 4 5 6 7 8 9 10 11 12 13 14 The student could have used universal indicator instead of a pH probe. Determine the colour of universal indicator when 10.0 cm ³ of



0 7.7	The student used a pipette to measure 25.0 cm ³ of hydrochloric acid.	Do not write outside the box
	Figure 12 shows a pipette.	
	Figure 12	
	Pipette /	
	The pipette is labelled 25.0 \pm 0.06 cm ³	
	Calculate the percentage uncertainty in the volume measured using this pipette.	
	Use the equation:	
	percentage uncertainty =uncertainty × 100	
	volume measured [2 marks]	
	Percentage uncertainty =%	
07.8	Give one advantage of using a pipette rather than using a measuring cylinder to	
	measure the volume of hydrochloric acid. [1 mark]	
		11

	Do not write
Compare the structure and bonding of the three compounds:	outside the
carbon dioxide	
magnesium oxide	
• silicon dioxide.	
[6 marks]	
	8
Turn over for the next question	

09	This question is about metals and the reactivity series.	Do not write outside the box
09.1	Which two statements are properties of most transition metals? [2 marks] Tick (✓) two boxes.	
	They are soft metals. They form colourless compounds. They form ions with different charges. They have high melting points.	
09.2	They have low densities. A student added copper metal to colourless silver nitrate solution. The student observed: • pale grey crystals forming	
	 the solution turning blue. Explain how these observations show that silver is less reactive than copper. [3 marks] 	

		Do not write outside the box
09.3	A student is given three metals, X , Y and Z to identify.	DOX
	The metals are magnesium, iron and copper.	
	Plan an investigation to identify the three metals by comparing their reactions with dilute hydrochloric acid.	
	Your plan should give valid results. [4 marks]	
	Question 9 continues on the next page	
	Turn over ▶	•

IB/M/Jun20/8462/1F

[2 marks]

Do not write outside the

box

Table 6

Table 6 shows the mass numbers and percentage abundances of the isotopes.

Percentage abundance (%)

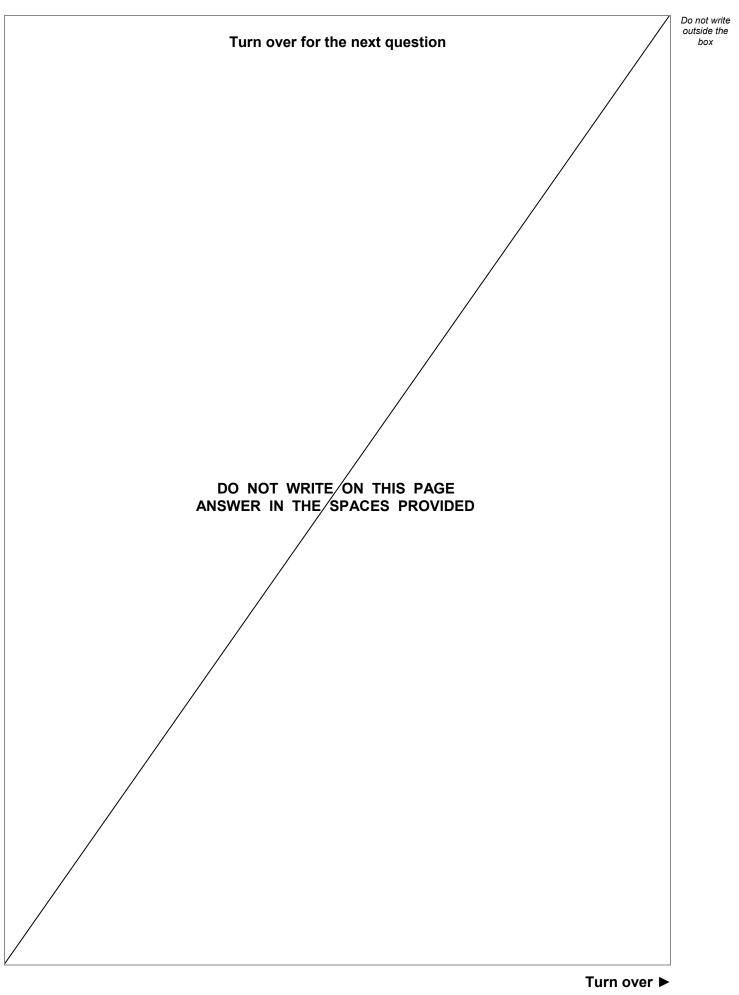
30

 205
 70

 Calculate the relative atomic mass (A_r) of metal M.

 Give your answer to 1 decimal place.

Relative atomic mass (1 decimal place) =


09.4

Metal **M** has two isotopes.

Mass number

203

11

10	This question is about silver iodide. Silver iodide is produced in the reaction between silver nitrate solution and	Do not write outside the box
	sodium iodide solution.	
	The equation for the reaction is:	
	$AgNO_3(aq) + Nal(aq) \rightarrow Agl(s) + NaNO_3(aq)$	
10.1	A student investigated the law of conservation of mass.	
	This is the method used.	
	1. Pour silver nitrate solution into a beaker labelled A .	
	2. Pour sodium iodide solution into a beaker labelled B .	
	3. Measure the masses of both beakers and their contents.	
	4. Pour the solution from beaker B into beaker A .	
	5. Measure the masses of both beakers and their contents again.	
	Table 7 shows the student's results.	
	Table 7	

	Mass before mixing in g	Mass after mixing in g
Beaker A and contents	78.26	108.22
Beaker B and contents	78.50	48.54

Explain how the results demonstrate the law of conservation of mass.

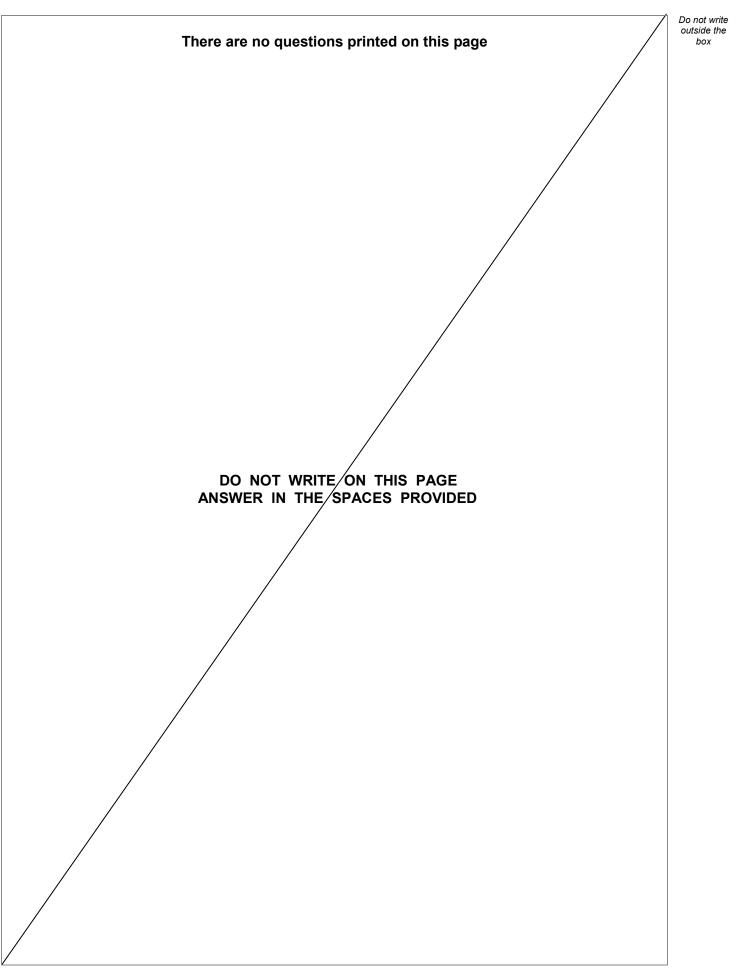
You should use data from Table 7 in your answer.

[2 marks]

Suggest how the student could separate the insoluble silver iodide from the mixture a the end of the reaction.	
[1 mark]
	_
The student purified the separated silver iodide.	
This is the method used.	
1. Rinse the silver iodide with distilled water.	
2. Warm the silver iodide.	
Suggest one impurity that was removed by rinsing with water. [1 mark]
	-
Suggest why the student warmed the silver iodide. [1 mark]

Question 10 continues on the next page

1 0.2


10.

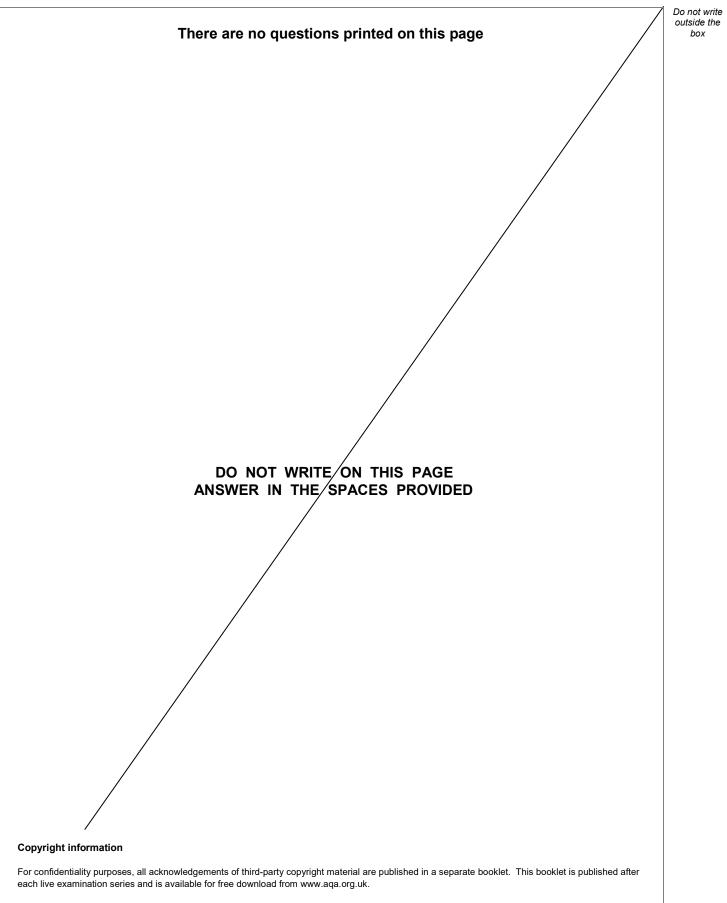
1 0.4

3

		Do not write
1 0.5	Calculate the percentage atom economy for the production of silver iodide in this reaction.	outside the box
	The equation for the reaction is:	
	AgNO ₃ (aq) + Nal(aq) \rightarrow AgI(s) + NaNO ₃ (aq)	
	Give your answer to 3 significant figures.	
	Relative formula masses (M_r): AgNO ₃ = 170 NaI = 150 AgI = 235 NaNO ₃ = 85	
	[4 marks]	
	Percentage atom economy (3 significant figures) =%	
1 0 . 6	Give one reason why reactions with a high atom economy are used in industry. [1 mark]	
		10
	END OF QUESTIONS	
		1

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.



Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team.

Copyright © 2020 AQA and its licensors. All rights reserved.

