

Boost your performance and confidence with these topic-based exam questions

Practice questions created by actual examiners and assessment experts

Detailed mark scheme

Suitable for all boards

Designed to test your ability and thoroughly prepare you

8.3 Nuclear Instability &

PHYSICS

AQA A Level Revision Notes

A Level Physics AQA

8.3 Nuclear Instability & Radius

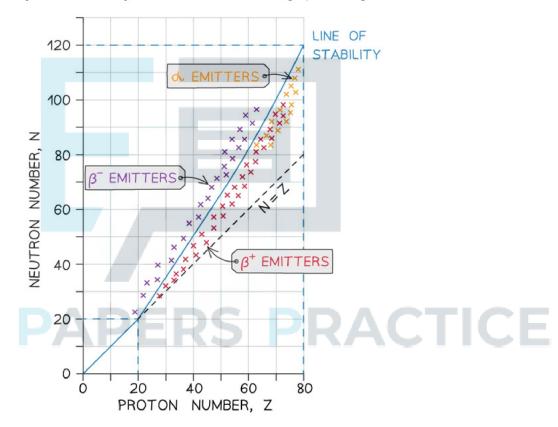
CONTENTS

- 8.3.1 Nuclear Instability
- 8.3.2 Decay Equations
- 8.3.3 Nuclear Excited States
- 8.3.4 Nuclear Radius
- 8.3.5 Closest Approach Estimate
- 8.3.6 Nuclear Radius Equation
- 8.3.7 Nuclear Density

8.3.1 Nuclear Instability

Nuclear Stability Graph

- The most common elements in the universe all tend to have values of N and Z less than 20 (plus iron which has Z = 26, N = 30)
- · Where:
 - N = number of neutrons
 - Z = number of protons / atomic number
- This is because lighter elements (with fewer protons) tend to be much **more stable** than heavier ones (with many protons)
- Nuclear stability becomes vastly clearer when viewed on a graph of N against Z



EXAM

This nuclear stability curve shows the line of stable isotopes and which unstable isotopes will emit alpha or beta particles

- · A nucleus will be unstable if it has:
 - Too many neutrons
 - Too many protons
 - o Too many nucleons ie. too heavy
 - o Too much energy
- An unstable atom wants to become neutral to become stable
- For light isotopes, Z < 20:

- All these nuclei tend to be very stable
- They follow the straight-line N = Z
- For heavy isotopes, Z > 20:
 - The neutron-proton ratio increases
 - Stable nuclei must have more neutrons than protons
- This imbalance in the neutron-proton ratio is very significant to the stability of nuclei
 - At a short range (around 1-4 fm), nucleons are bound by the **strong nuclear force**
 - Below 1 fm, the strong nuclear force is repulsive in order to prevent the nucleus from collapsing
 - At longer ranges, the electromagnetic force acts between protons, so more protons cause more instability
 - Therefore, as more protons are added to the nucleus, more neutrons are needed to add distance between protons to reduce the electrostatic repulsion
 - Also, the extra neutrons increase the amount of binding force which helps to bind the nucleons together

Alpha, Beta & Electron Capture

- The graph of N against Z is useful in determining which isotopes will decay via
 - Alpha emission
 - Beta-minus (β⁻) emission
 - Beta-plus (β+) emission
 - Electron capture

Alpha-emitters:

- Occur beneath the line of stability when Z > 60 where there are too many nucleons in the nucleus
- These nuclei have more protons than neutrons, but they are too large to be stable
- This is because the strong nuclear force between the nucleons is unable to overcome the electrostatic force of repulsion between the protons

Beta-minus (β⁻) emitters:

- Occur to the left of the stability line where the isotopes are neutron-rich compared to stable isotopes
- A neutron is converted to a proton and emits a β⁻ particle (and an anti-electron neutrino)

Beta-plus (β⁺) emitters:

- Occur to the right of the stability line where the isotopes are proton-rich compared to stable isotopes
- A proton is converted to a neutron and emits a β⁺ particle (and an electron neutrino)

Electron capture:

- When a nucleus captures one of its own orbiting electrons
- As with β⁺ decay, a proton in the nucleus is converted into a neutron, releasing a gamma-ray (and an electron neutrino)
- Hence, this also occurs to the right of the stability line where the isotopes are protonrich compared to stable isotopes

Exam Tip

To remember where the β^- and β^+ emitters are on the graph:

- Beta-minus is a negative particle where a neutron turns into a proton. Unstable atoms always want to go towards a roughly equal number of protons and neutrons
 - Therefore these emitters are on the neutron-rich side of isotopes
- Beta-plus is a **p**ositive particle where a **p**roton turns into a neutron
 - Therefore these emitters are on the proton-rich side of isotopes

The best way to remember the nuclear stability graph is to try to draw it from memory

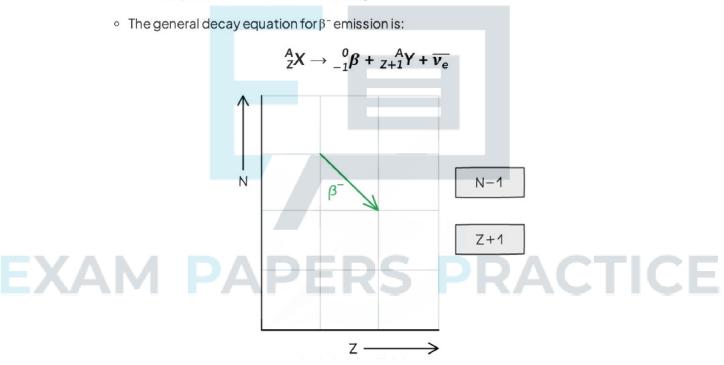
8.3.2 Decay Equations

Changes in N and Z by Radioactive Decay

• There are four reasons why a nucleus might become unstable, and these determine which decay mode will occur

· Too many neutrons

- Decays through beta-minus (β-) emission
- \circ One of the **neutrons** in the nucleus changes into a **proton** and a β^- particle (an electron) and antineutrino is released
- The nucleon number is constant
 - The neutron number (N) decreases by 1
 - The proton number (Z) increases by 1



· Too many protons

- Decays through **beta-plus** (β+) emission or electron capture
- In beta-plus decay, a **proton** changes into a **neutron** and a β^+ particle (a positron) and neutrino are released
- In electron capture, an orbiting electron is taken in by the nucleus and combined with a proton causing the formation of a neutron and neutrino
- In both types of decay, the nucleon number stays constant
 - The neutron number (N) increases by 1
 - The proton number (Z) decreases by 1
- The general decay equation for β+ emission is:

$${}^{A}_{Z}X \rightarrow {}^{0}_{+1}\beta + {}^{A}_{Z-1}Y + \nu_{e}$$

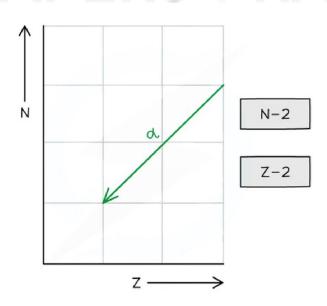
• The equation for electron capture is:

$$_{Z}^{A}X + _{-1}^{0}e \rightarrow _{Z-1}^{A}Y + \nu_{e}$$

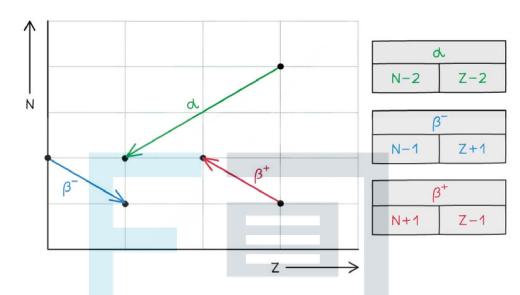


- Too many nucleons
 - Decays through alpha (α) emission
 - o An α particle is a helium nucleus
 - o The nucleon number decreases by 4 and the proton number decreases by 2
 - The neutron number (N) decreases by 2
 - The proton number (Z) decreases by 2
 - The general decay equation for α emission is:

EXAMPAP $_{zX \rightarrow \frac{4}{2}\alpha + \frac{A-4}{Z-2}Y}$ PRACTICE



- · Too much energy
 - Decays through gamma (γ) emission
 - o A gamma particle is a high-energy electromagnetic radiation
 - o This usually occurs after a different type of decay, such as alpha or beta decay
 - This is because the nucleus becomes excited and has excess energy
- In summary, alpha decay, beta decay and electron capture can be represented on an N-Z graph as follows:



Worked Example

Plutonium-239 is a radioactive isotope that contains 94 protons and emits α particles to form a radioactive isotope of uranium. This isotope of uranium emits α particles to form an isotope of thorium which is also radioactive.

- a) Write two equations to represent the decay of plutonium-239 and the subsequent decay of uranium
- b) Predict the decay mode of the thorium isotope
- c) Draw the decay chain from plutonium-239 to the daughter product of thorium decay on an N-Z graph

Part (a) Step 1: Write down the general equation of alpha decay

$${}_{7}^{A}X \rightarrow {}_{2}^{4}\alpha + {}_{7-2}^{A-4}Y$$

Step 2: Write down the decay equation of plutonium into uranium

$$^{239}_{94}$$
Pu $\rightarrow ^{4}_{2}\alpha + ^{235}_{92}$ U

Step 3: Write down the decay equation of uranium into thorium

$$^{235}_{92}U \rightarrow ^{4}_{2}\alpha + ^{231}_{90}Th$$

Part (b)

Plutonium, ²³⁹Pu

Number of neutrons: 239 - 94 = 145
 Neutron-nucleon ratio: 145 / 239 = 0.607

Uranium, ²³⁵U

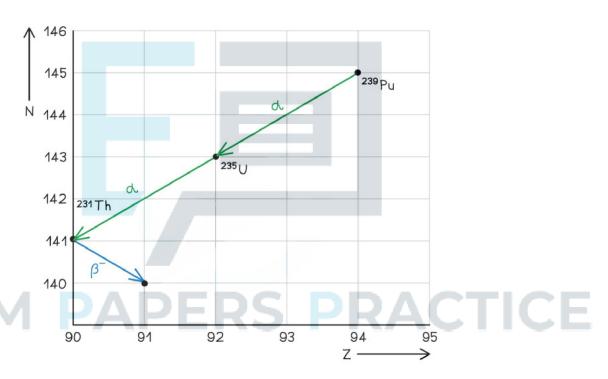
Number of neutrons: 235 - 92 = 143
 Neutron-nucleon ratio: 143 / 235 = 0.609

Thorium, ²³¹Th

Number of neutrons: 231 - 90 = 141
 Neutron-nucleon ratio: 141 / 231 = 0.610

- Thorium-231 is neutron-rich compared to uranium-235 and plutonium-239
- Therefore, it must be a β⁻ emitter

Part(c)



• The key features to draw on an N-Z graph are:

- Values for neutron number (N) on the vertical axis
- Values for proton number (Z) on the horizontal axis
- Labels for the isotopes eg. ²³⁹Pu, ²³⁵U, ²³¹Th
- o Arrows showing the direction of the decay
- Labels for the type of emission eg. α , β^-

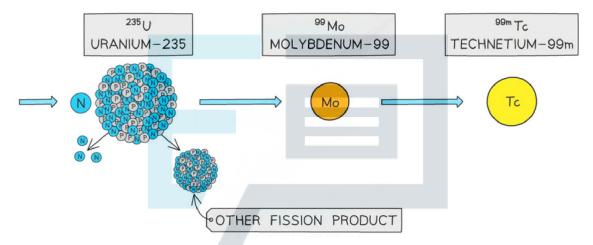
Exam Tip

Watch out for the vertical axis for the N-Z graph. Instead of N for number of neutrons this is sometimes labelled as N for **nucleon** number (total protons and neutrons) which means the decays will be represented slightly differently.

8.3.3 Nuclear Excited States

Nuclear Excited States

- In the same way that electrons can exist in excited states, nuclei can also exist in excited states
- After an unstable nucleus emits an alpha particle, beta particle or undergoes electron capture, it may emit any remaining energy in the form of a gamma photon (γ)
 - Emission of a γ photon does not change the number of protons or neutrons in the nucleus, it only allows the nucleus to lose energy
- This happens when a daughter nucleus is in an excited state after a decay
- This excited state is usually very **short-lived**, and the nucleus quickly moves to its **ground state**, either directly or via one or more lower-energy excited states



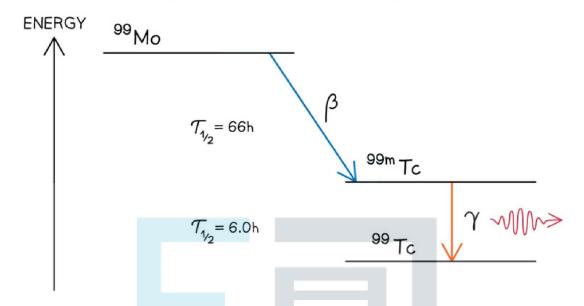
- One common application of this is the use of technetium-99m as a γ source in medical diagnosis
 - The 'm' stands for **metastable** which means the nucleus exists in a particularly stable excited state
- Technetium-99m is the decay product of molybdenum-99, which can be found as a product in nuclear reactors
- The decay of molybdenum-99 is shown below:

$$^{99}_{42} Mo
ightarrow \, ^{99m}_{43} Tc + ^{0}_{-1} \beta + \overline{\nu_e}$$
 $^{99m}_{43} Tc
ightarrow \, ^{99}_{43} Tc + \gamma$

- The half-life of molybdenum-99 is 66 hours
 - This is long enough for the sample to be transported to hospitals
 - Subsequently, the technetium-99m can be separated at the hospital
- Technetium-99m has a short half-life of 6 hours
 - o This is an adequate timeframe for examining a patient
 - o Plus, it is short enough to minimise damage to the patient

Nuclear Energy Level Diagrams

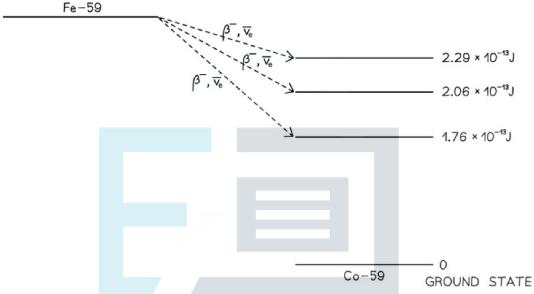
- Nuclear energy levels are similar to electron energy levels
- The nuclear energy level diagram of molybdenum-99 can be represented as follows:



- The decay mode (usually alpha or beta) is represented by a diagonal line
- The excited state, or states, are generally stacked in descending energy order to the right of the decay

Worked Example

A nucleus of iron Fe-59 decays into a stable nucleus of cobalt Co-59. It decays by β^- emission followed by the emission of γ -radiation as the Co-59 nucleus deexcites into its ground state. The total energy released when the Fe-59 nucleus decays is 2.52×10^{-13} J. The Fe-59 nucleus can decay to one of three excited states of the cobalt-59 nucleus as shown below. The energies of the excited states are shown relative to the ground state.

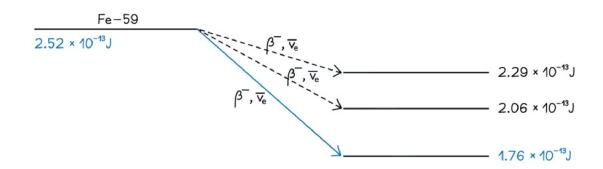


Following the production of excited states of Co-59, γ -radiation of discrete wavelengths is emitted.

- (a) Calculate the maximum possible kinetic energy of the $\beta-$ particle emitted in MeV
- (b) State the maximum number of discrete wavelengths that could be emitted
- (c) Calculate the longest wavelength of the emitted γ -radiation

Part (a)

Step 1: Identify the beta emission with the largest energy gap



Co-59 GROUND STATE

Step 2: Calculate the energy difference

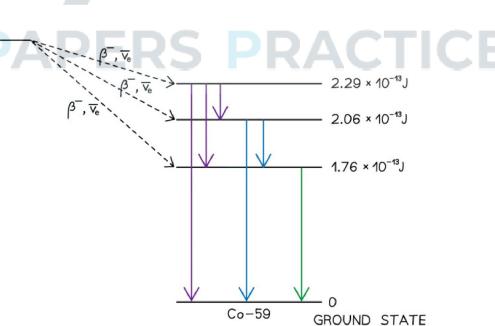
$$\Delta E = (2.52 - 1.76) \times 10^{-13} = 7.6 \times 10^{-14} \text{ J}$$

Step 3: Convert from J to MeV

$$\Delta E = \frac{7.6 \times 10^{-14}}{1.6 \times 10^{-13}} = 0.475 = 0.48 \text{ MeV}$$

 \circ 1MeV = 1.6 × 10⁻¹³ J

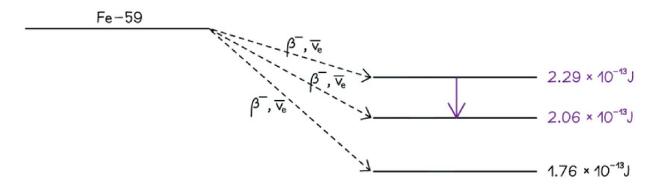
Part (b)

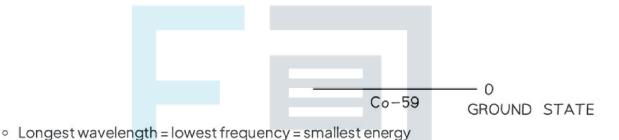


o There are 6 possible transitions, hence 6 discrete wavelengths could be emitted

Part (c)

Step 1: Identify the emission with the longest wavelength / smallest energy gap





Step 2: Calculate the energy difference

$$\Delta E = (2.29 - 2.06) \times 10^{-13} = 2.3 \times 10^{-14} \text{ J}$$

Step 3: Write down de Broglie's wavelength equation

EXAM PAPERS PRACTICE

Where:

- ∘ h = Planck's constant
- o c=speed of light

Step 4: Calculate the wavelength associated with the energy change

$$\lambda = \frac{hc}{E} = \frac{\left(6.63 \times 10^{-34}\right) \times \left(3.0 \times 10^{8}\right)}{2.3 \times 10^{-14}} = 8.6 \times 10^{-12} \text{ m}$$

8.3.4 Nuclear Radius

Estimating Nuclear Radius

Closest Approach Method

- In the Rutherford scattering experiment, alpha particles are fired at a thin gold foil
- · Some of the alpha particles are found to come straight back from the gold foil
- This indicates that there is **electrostatic repulsion** between the alpha particles and the gold nucleus

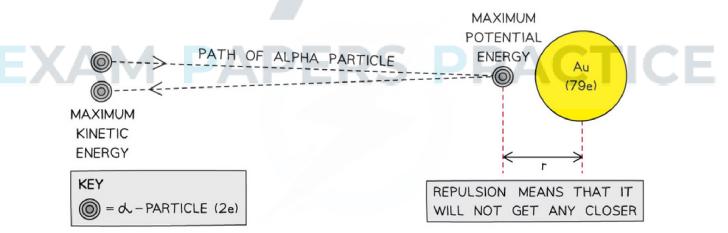
$$E_k = eV = \frac{1}{2} mv^2$$

- At the point of closest approach, r, the repulsive force reduces the speed of the alpha particles to zero momentarily
- At this point, the initial kinetic energy of an alpha particle, E_k , is **equal** to electric potential energy, E_D
- The radius of the closest approach can be found be equating the initial kinetic energy to the electric potential energy

$$E_p = \frac{Qq}{4\pi\varepsilon_0 r}$$

Equating the two equations gives:

$$E_k = E_p = \frac{1}{2} m v^2 = \frac{Qq}{4\pi\epsilon_0 r}$$



Pros & Cons of Closest Approach Method

Advantages

- Alpha scattering gives a good estimate of the upper limit for a nuclear radius
- The mathematics behind this approach are very simple
- The alpha particles are scattered only by the protons and not all the nucleons that make up the nucleus

Disadvantages

- This method does not give an accurate value for nuclear radius as it will always be an overestimate
 - This is because it measures the nearest distance the alpha particle can get to the gold nucleus, not the radius of it
- Alpha particles are hadrons, therefore, when they get close to the nucleus they are affected by the strong nuclear force and the mathematics do not account for this
- The gold nucleus will recoil as the alpha particle approaches
- Alpha particles have a finite size whereas electrons can be treated as a point mass
- It is difficult to obtain alpha particles which rebound at exactly 180°
 - o In order to do this, a small collision region is required
- The alpha particles in the beam must all have the exact same initial kinetic energy
- The sample must be extremely thin to prevent multiple scattering

Electron Diffraction Method

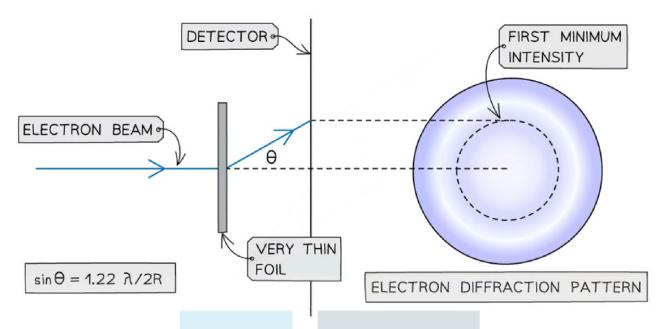
• Electrons accelerated to close to the speed of light have wave-like properties such as the ability to diffract and have a de Broglie wavelength equal to:

$$\lambda = \frac{h}{mv}$$

- · Where:
 - h = Planck's constant
 - m = mass of an electron (kg)
 - $v = \text{speed of the electrons (m s}^{-1})$
- The diffraction pattern forms a central bright spot with dimmer concentric circles around it
- From this pattern, a graph of intensity against diffraction angle can be used to find the diffraction angle of the first minimum
- Using this, the size of the atomic nucleus, R, can be determined from:

$$\sin \theta = \frac{1.22\lambda}{2R}$$

- Where:
 - \circ θ = angle of the first minimum (degrees)
 - $\lambda = \text{de Broglie wavelength (m)}$
 - R = radius of the nucleus (m)



Pros & Cons of Electron Diffraction Method

Advantages

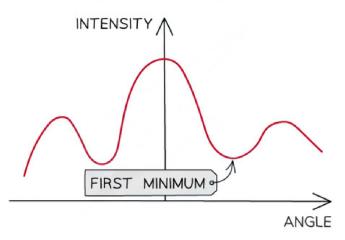
- Electron diffraction is much more accurate than the closest approach method
- This method gives a direct measurement of the radius of a nucleus
- Electrons are leptons; therefore, they will not interact with nucleons in the nucleus through the strong nuclear force as an alpha particle would

Disadvantages

- Electrons must be accelerated to very high speeds to minimise the de Broglie wavelength and increase resolution
 - This is because significant diffraction takes place when the electron wavelength is similar in size to the nuclear diameter
- Electrons can be scattered by both protons and neutrons
 - If there is an excessive amount of scattering, then the first minimum of the electron diffraction can be difficult to determine

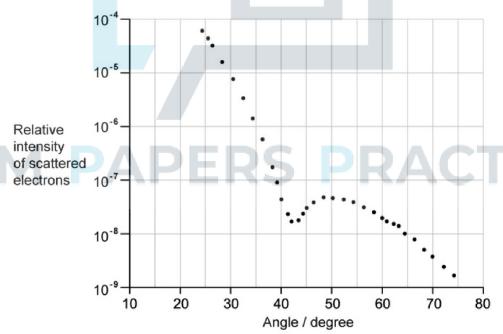
Electron Diffraction by a Nucleus

• The graph of intensity against angle obtained through electron diffraction is as follows:



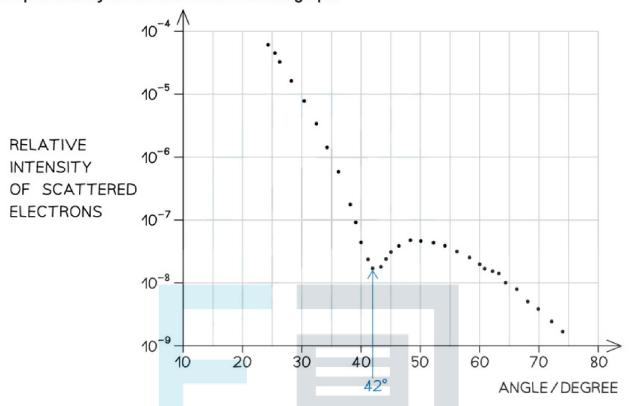
Worked Example

The graph shows how the relative intensity of the scattered electrons varies with angle due to diffraction by the oxygen-16 nuclei. The angle is measured from the original direction of the beam.



The de Broglie wavelength λ of each electron in the beam is 3.35×10^{-15} m. Calculate the radius of an oxygen-16 nucleus using information from the graph.

Step 1: Identify the first minimum from the graph



• Angle of first minimum, $\theta = 42^{\circ}$

Step 2: Write out the equation relating the angle, wavelength, and nuclear radius

$$\sin \theta = \frac{0.61\lambda}{R}$$

Step 3: Calculate the nuclear radius, R

$$R = \frac{0.61\lambda}{\sin \theta} = \frac{0.61 \times (3.35 \times 10^{-15})}{\sin 42^{\circ}} = 3.1 \times 10^{-15} \,\mathrm{m}$$

8.3.5 Closest Approach Estimate

Closest Approach Estimate

- The Coulomb equation can be used to give an estimate for the radius of a nucleus
- When the alpha particle reaches its closest approach (to the nucleus), all of its kinetic energy has been converted to electric potential energy
- Initially, the alpha particles have kinetic energy equal to:

$$E_k = eV = \frac{1}{2} \, mv^2$$

• The electric potential energy between the two charges is equal to:

$$E_p = \frac{Qq}{4\pi\varepsilon_0 r}$$

• At this point, the kinetic energy E_k lost by the α particle approaching the nucleus is **equal** to the potential energy gain E_p , so:

$$E_k = E_p = \frac{1}{2} m v^2 = \frac{Qq}{4\pi\varepsilon_0 r}$$

- · Where:
 - o m = mass of an α particle (kg)
 - $v = initial speed of the \alpha particles (m s^{-1})$
 - q = charge of an α particle (C)
 - Q = charge of the nucleus being investigated (C)
 - r = the radius of closest approach (m)
 - ε₀ = permittivity of free space

Worked Example

The first artificially produced isotope, phosphorus-30 ($_{15}$ P) was formed by bombarding an aluminium-27 isotope ($_{13}$ Al) with an α particle.

For the reaction to take place, the α particle must come within a distance, r, from the centre of the aluminium nucleus.

Calculate the distance, r, if the nuclear reaction occurs when the α particle is accelerated to a speed of at least 2.55×10^7 m s⁻¹.

Step 1: List the known quantities

- Mass of an α particle, $m = 4u = 4 \times (1.66 \times 10^{-27})$ kg
- Speed of the α particle, $v = 2.55 \times 10^7$ m s⁻¹
- Charge of an α particle, $q = 2e = 2 \times (1.6 \times 10^{-19})$ C
- Charge of an aluminium nucleus, $Q = 13e = 13 \times (1.6 \times 10^{-19}) C$
- Permittivity of free space, $\varepsilon_0 = 8.85 \times 10^{-12} \, \text{F m}^{-1}$

Step 2: Write down the equations for kinetic energy and electric potential energy

$$\frac{1}{2}mv^2 = \frac{Qq}{4\pi\varepsilon_0 r}$$

Step 3: Rearrange for distance, r

$$r = \frac{2Qq}{4\pi\varepsilon_0 m v^2}$$

Step 4: Calculate the distance, r

$$r = \frac{2 \times 13 \times \left(1.6 \times 10^{-19}\right) \times 2 \times \left(1.6 \times 10^{-19}\right)}{4\pi \times (8.85 \times 10^{-12}) \times 4 \times (1.66 \times 10^{-27}) \times (2.55 \times 10^{7})^{2}}$$

$$r = 2.77 \times 10^{-15} \text{ m}$$

Exam Tip

Make sure you're comfortable with the calculations involved with the alpha particle closest approach method, as this is a common exam question. You will be expected to remember that the charge of an α is the charge of 2 protons (2 x the charge of an electron)

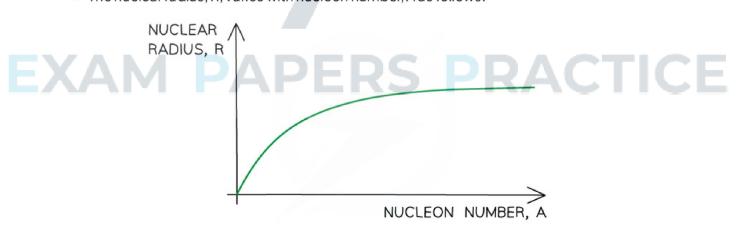
8.3.6 Nuclear Radius Equation

Nuclear Radius Values

• The radius of some nuclei are shown in the table below:

Element	Nuclear radius R / 10 ⁻¹⁵ m	Mass number A
Carbon	2.66	12
Silicon	3.43	28
Iron	4.35	56
Tin	5.49	120
Lead	6.66	208

- In general, nuclear radii are of the order 10⁻¹⁵ m or 1 fm
- The nuclear radius, R, varies with nucleon number, A as follows:



• The key features of this graph are:

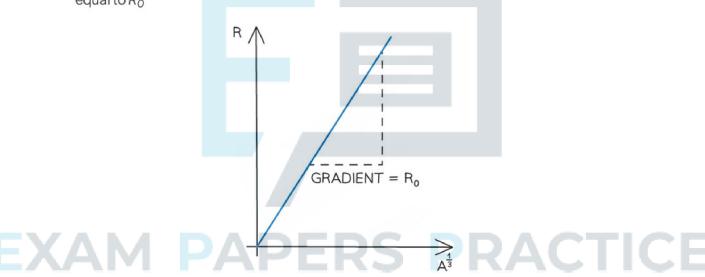
- o The graph starts with a steep gradient at the origin
- Then the gradient gradually decreases to almost horizontal
- · This means that
 - o As more nucleons are added to a nucleus, the nucleus gets bigger
 - However, the number of nucleons A is **not** proportional to its size r

Radius v Nucleon Number

- The radius of nuclei depends on the nucleon number, A of the atom
- This makes sense because as more nucleons are added to a nucleus, more space is occupied by the nucleus, hence giving it a larger radius
- The exact relationship between the radius and nucleon number can be determined from experimental data
- By doing this, physicists were able to deduce the following relationship:

$$R = R_0 A^{\frac{1}{3}}$$

- · Where:
 - R = nuclearradius (m)
 - A = nucleon / mass number
 - \circ R₀ = constant of proportionality = 1.05 fm
- Plotting a graph of R against $A^{1/3}$ gives a straight line through the origin with the gradient equal to R_0



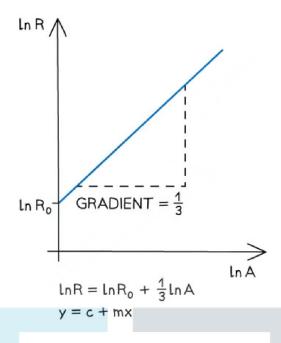
• It is also possible to plot a logarithmic graph of the relationship which can be derived as follows:

$$\ln R = \ln \left(R_0 A^{1/3} \right)$$

$$\ln R = \ln R_0 + \ln (A^{1/3})$$

$$\ln R = \ln R_0 + 1/3 \ln A$$

- Therefore, a graph of ln R against ln A yields a straight line
- Comparing this to the straight-line equation: y = mx + c
 - \circ y = lnR
 - \circ x = InA
 - o m (the gradient) = 1/3
 - \circ c (y-intercept) = $\ln R_0$



?

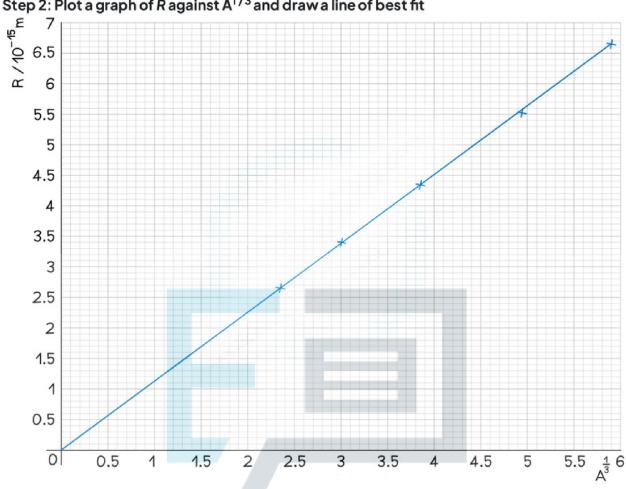
Worked Example

Verify the experimental relationship between R and A using the data from the table above and estimate a value of R_0 .

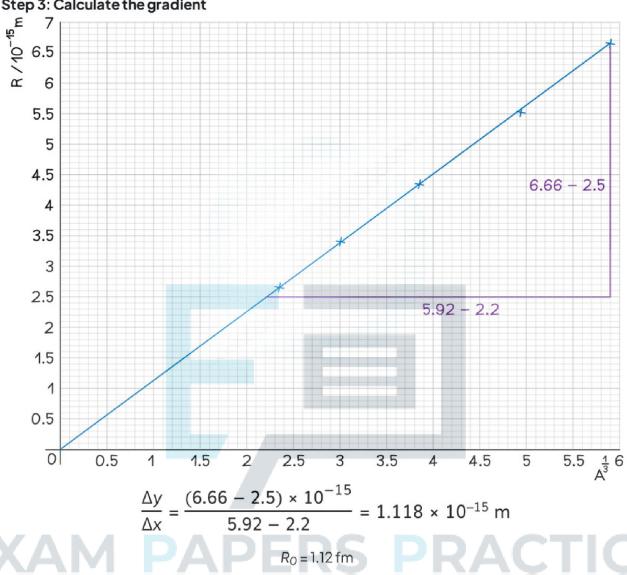
Step 1: Add a column to the table to determine the values for $A^{1/3}$

Element	Nuclear radius R / 10 ⁻¹⁵ m	Mass number A	Mass number A ^{1/3}
Carbon	2.66	12	2.29
Silicon	3.43	28	3.04
Iron	4.35	56	3.83
Tin	5.49	120	4.93
Lead	6.66	208	5.92

Step 2: Plot a graph of R against $A^{1/3}$ and draw a line of best fit



Step 3: Calculate the gradient



8.3.7 Nuclear Density

Constant Density of Nuclear Material

• Assuming that the nucleus is spherical, its volume is equal to:

$$V = \frac{4}{3} \pi R^3$$

• Where R is the nuclear radius, which is related to mass number, A, by the equation:

$$R = R_0 A^{\frac{1}{3}}$$

- Where R₀ is a constant of proportionality
- · Combining these equations gives:

$$V = \frac{4}{3} \pi \left(R_0 A^{\frac{1}{3}} \right)^3 = \frac{4}{3} \pi R_0^3 A$$

- Therefore, the nuclear volume, V, is proportional to the mass of the nucleus, A
- Mass (m), volume (V), and density (ρ) are related by the equation:

$$\rho = \frac{m}{V}$$

• The mass, m, of a nucleus is equal to:

$$m = Au$$

- · Where:
 - A = the mass number
 - ∘ u = atomic mass unit
- Using the equations for mass and volume, nuclear density is equal to:

$$\rho = \frac{Au}{\frac{4}{3}\pi R_0^3 A} = \frac{3u}{4\pi R_0^3}$$

- Since the mass number A cancels out, the remaining quantities in the equation are all constant
- Therefore, this shows the density of the nucleus is:
 - Constant
 - Independent of the radius
- The fact that nuclear density is constant shows that nucleons are evenly separated throughout the nucleus regardless of their size

Nuclear Density

• Using the equation derived above, the density of the nucleus can be calculated:

$$\rho = \frac{3u}{4\pi R_0^3}$$

- · Where:
 - Atomic mass unit, $u = 1.661 \times 10^{-27}$ kg
 - Constant of proportionality, $R_0 = 1.05 \times 10^{-15}$ m
- · Substituting the values gives a density of:

$$\rho = \frac{3 \times (1.661 \times 10^{-27})}{4\pi (1.05 \times 10^{-15})^3} = 3.4 \times 10^{17} \text{ kg m}^{-3}$$

- The accuracy of nuclear density depends on the accuracy of the constant R_0 , as a guide nuclear density should always be of the order 10^{17} kg m⁻³
- Nuclear density is significantly larger than atomic density, this suggests:
 - o The majority of the atom's mass is contained in the nucleus
 - The nucleus is very small compared to the atom
 - · Atoms must be predominantly empty space