

Boost your performance and confidence with these topic-based exam questions

Practice questions created by actual examiners and assessment experts

Detailed mark scheme

Suitable for all boards

Designed to test your ability and thoroughly prepare you

8.2 Radioactive Decay

PHYSICS

AQA A Level Revision Notes

A Level Physics AQA

8.2 Radioactive Decay

CONTENTS

- 8.2.1 Radioactive Decay
- 8.2.2 Exponential Decay
- 8.2.3 Half-Life
- 8.2.4 Applications of Radioactivity

EXAM PAPERS PRACTICE

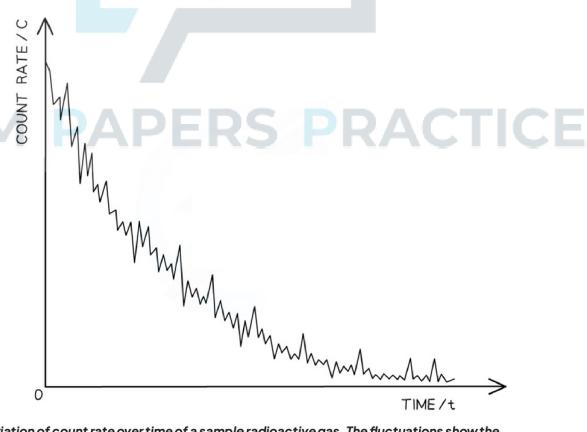
8.2.1 Radioactive Decay

Radioactive Decay

Radioactive decay is defined as:

The spontaneous disintegration of a nucleus to form a more stable nucleus, resulting in the emission of an alpha, beta or gamma particle

- Radioactive decay is a random process, this means that:
 - There is an equal probability of any nucleus decaying
 - o It cannot be known which particular nucleus will decay next
 - It cannot be known at what time a particular nucleus will decay
 - The rate of decay is **unaffected** by the surrounding conditions
 - It is only possible to estimate the **proportion** of nuclei decaying in a given time period
- The random nature of radioactive decay can be demonstrated by observing the count rate of a Geiger-Muller (GM) tube
 - When a GM tube is placed near a radioactive source, the counts are found to be irregular and cannot be predicted
 - Each count represents a decay of an unstable nucleus
 - These fluctuations in count rate on the GM tube **provide evidence for the** randomness of radioactive decay



The variation of count rate over time of a sample radioactive gas. The fluctuations show the randomness of radioactive decay

Activity & The Decay Constant

- Since radioactive decay is spontaneous and random, it is useful to consider the average number of nuclei that are expected to decay per unit time
 - o This is known as the average decay rate
- As a result, each radioactive element can be assigned a decay constant
- The decay constant λ is defined as:

The probability that an individual nucleus will decay per unit of time

- When a sample is highly radioactive, this means the number of decays per unit time is very high
 - o This suggests it has a high level of activity
- Activity, or the number of decays per unit time can be calculated using:

$$A = -\frac{\Delta N}{\Delta t} = \lambda N$$

- · Where:
 - A = activity of the sample (Bq)
 - \circ $\Delta N =$ number of decayed nuclei
 - \circ $\Delta t = time interval(s)$
 - $\lambda = \text{decay constant (s}^{-1})$
 - N = number of nuclei remaining in a sample
- The activity of a sample is measured in Becquerels (Bq)
 - An activity of 1 Bq is equal to one decay per second, or 1 s⁻¹
- This equation shows:
 - The greater the decay constant, the greater the activity of the sample
 - o The activity depends on the number of undecayed nuclei remaining in the sample
 - The minus sign indicates that the number of nuclei remaining decreases with time

Worked Example

Radium is a radioactive element first discovered by Marie and Pierre Curie. They used the radiation emitted from radium-226 to define a unit called the Curie (Ci) which they defined as the activity of 1 gram of radium. It was found that in a 1 g sample of radium, 2.22×10^{12} atoms decayed in 1 minute. Another sample containing 3.2×10^{22} radium-226 atoms had an activity of 12 Ci.

- a) Determine the value of 1 Curie
- b) Determine the decay constant for radium-226

Part a)

Step 1: Write down the known quantities

- Number of atoms decayed, $\Delta N = 2.22 \times 10^{12}$
- Time, $\Delta t = 1$ minutes = 60 s

Step 2: Write down the activity equation

$$A = \frac{\Delta N}{\Delta t}$$

Step 3: Calculate the value of 1 Ci

$$A = \frac{2.22 \times 10^{12}}{60} = 3.7 \times 10^{10} \text{ decays s}^{-1}$$

Part b)

Step 1: Write down the known quantities

• Number of atoms, $N = 3.2 \times 10^{22}$

• Activity, $A = 12 \text{ Ci} = 12 \times (3.7 \times 10^{10}) = 4.44 \times 10^{11} \text{ Bq}$

Step 2: Write down the activity equation

$$A = \lambda N$$

Step 3: Calculate the decay constant of radium

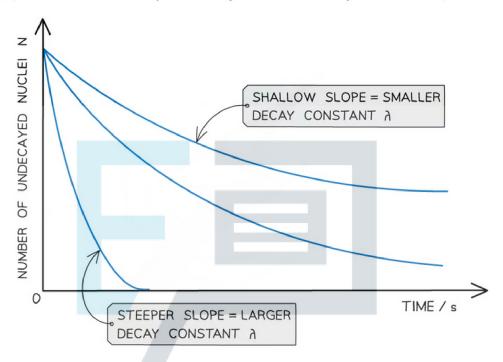
$$\lambda = \frac{A}{N} = \frac{4.44 \times 10^{11}}{3.2 \times 10^{22}} = 1.388 \times 10^{-11} \text{ s}^{-1}$$

• Therefore, the decay constant of radium-226 is $1.4 \times 10^{-11} \, \text{s}^{-1}$

8.2.2 Exponential Decay

Exponential Decay

- In radioactive decay, the number of undecayed nuclei falls very rapidly, without ever reaching zero
 - Such a model is known as exponential decay
- The graph of number of undecayed nuclei against time has a very distinctive shape:



Radioactive decay follows an exponential pattern. The graph shows three different isotopes each with a different rate of decay

- · The key features of this graph are:
 - The steeper the slope, the larger the decay constant λ (and vice versa)
 - $\circ~$ The decay curves always start on the y-axis at the initial number of undecayed nuclei (N0)

Equations for Radioactive Decay

• The number of undecayed nuclei N can be represented in exponential form by the equation:

$$N = N_0 e^{-\lambda t}$$

- · Where:
 - \circ N_0 = the initial number of undecayed nuclei (when t = 0)
 - N = number of undecayed nuclei at a certain time t
 - λ = decay constant (s⁻¹)
 - o t = time interval(s)
- The number of nuclei can be substituted for other quantities.

• For example, the activity A is directly proportional to N, so it can also be represented in exponential form by the equation:

$$A = A_0 e^{-\lambda t}$$

- · Where:
 - A = activity at a certain time t (Bq)
 - A₀ = initial activity (Bq)
- The received count rate C is related to the activity of the sample, hence it can also be represented in exponential form by the equation:

$$C = C_0 e^{-\lambda t}$$

- · Where:
 - C = count rate at a certain time t (counts per minute or cpm)
 - o C₀ = initial count rate (counts per minute or cpm)

The exponential function e

- The symbol e represents the exponential constant
 - It is approximately equal to e = 2.718
- On a calculatoritis shown by the button e^x
- The inverse function of exis ln(y), known as the natural logarithmic function
 - This is because, if $e^x = y$, then $x = \ln(y)$

Worked Example

Strontium-90 decays with the emission of a β -particle to form Yttrium-90. The decay constant of Strontium-90 is 0.025 year⁻¹. Determine the activity A of the sample after 5.0 years, expressing the answer as a fraction of the initial activity A₀.

Step 1: Write out the known quantities

- Decay constant, λ = 0.025 year⁻¹
- ∘ Time interval, t = 5.0 years
- Both quantities have the same unit, so there is no need for conversion

Step 2: Write the equation for activity in exponential form

$$A = A_0 e^{-\lambda t}$$

Step 3: Rearrange the equation for the ratio between A and A_0

$$\frac{A}{A_0} = \mathbf{e}^{-\lambda t}$$

Step 4: Calculate the ratio A/Ao

$$\frac{A}{A_0} = e^{-(0.025 \times 5)} = 0.88$$

Therefore, the activity of Strontium-90 decreases by a factor of 0.88, or 12%, after 5 years

Using Molar Mass & The Avogadro Constant

Molar Mass

- The molar mass, or molecular mass, of a substance is the mass of a substance, in grams, in one mole
 - ∘ Its unit is g mol⁻¹
- The number of moles from this can be calculated using the equation:

Number of moles =
$$\frac{mass(g)}{molar \ mass(g \ mol^{-1})}$$

Avogadro's Constant

• Avogadro's constant (N_A) is defined as:

The number of atoms in one mole of a substance; equal to 6.02×10^{23} mol⁻¹

- For example, 1 mole of sodium (Na) contains 6.02 x 10²³ atoms of sodium
- The number of atoms, N, can be determined using the equation:

Number of nuclei =
$$\frac{mass \times N_A}{molecular \ mass}$$

Worked Example

Americium-241 is an artificially produced radioactive element that emits α -particles. In a smoke detector, a sample of americium-241 of mass 5.1 μ g is found to have an activity of 5.9 \times 10⁵ Bq. The supplier's website says the americium-241 in their smoke detectors initially has an activity level of 6.1 \times 10⁵ Bq.

- a) Determine the number of nuclei in the sample of americium-241
- b) Determine the decay constant of americium-241
- c) Determine the age of the smoke detector in years

Part (a)

Step 1: Write down the known quantities

- Mass = $5.1 \mu g = 5.1 \times 10^{-6} g$
- o Molecular mass of americium = 241

Step 2: Write down the equation relating number of nuclei, mass and molecular mass

number of nuclei,
$$N = \frac{mass \times N_A}{molar \ mass}$$

 \circ where N_A is the Avogadro constant

Step 3: Calculate the number of nuclei

Number of nuclei =
$$\frac{(5.1 \times 10^{-6}) \times (6.02 \times 10^{23})}{241}$$
 = 1.27 × 10¹⁶

Part (b)

Step 1: Write down the known quantities

- Activity, $A = 5.9 \times 10^5$ Bq
- Number of nuclei, $N = 1.27 \times 10^{16}$

Step 2: Write the equation for activity

Activity, $A = \lambda N$

Step 3: Rearrange for decay constant λ and calculate the answer

$$\lambda = \frac{A}{N} = \frac{5.9 \times 10^5}{1.27 \times 10^{16}} = 4.65 \times 10^{-11} \text{ s}^{-1}$$

Part (c)

Step 1: Write down the known quantities

- Activity, $A = 5.9 \times 10^5$ Bq
- Initial activity, $A_0 = 6.1 \times 10^5 \,\text{Bg}$
- Decay constant, $\lambda = 4.65 \times 10^{-11} \text{ s}^{-1}$

Step 2: Write the equation for activity in exponential form

$$A = A_0 e^{-\lambda t}$$

Step 3: Rearrange for time t

EXAM PAPE PRACTICE

$$\ln\left(\frac{A}{A_0}\right) = -\lambda t$$

$$t = -\frac{1}{\lambda} \ln \left(\frac{A}{A_0} \right)$$

Step 4: Calculate the age of the smoke detector and convert to years

$$t = -\frac{1}{4.65 \times 10^{-11}} \ln \left(\frac{5.9 \times 10^5}{6.1 \times 10^5} \right) = 7.169 \times 10^8 \text{ s}$$

$$t = \frac{7.169 \times 10^8}{24 \times 60 \times 60 \times 365} = 22.7 \text{ years}$$

Therefore, the smoke detector is 22.7 years old

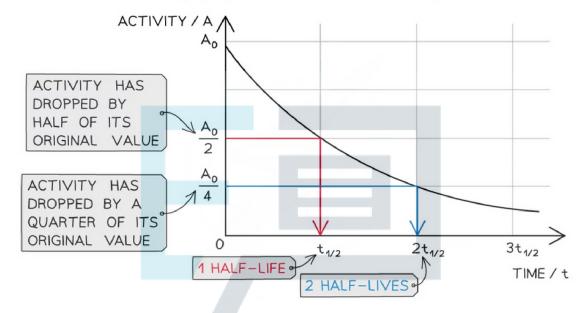
8.2.3 Half-Life

Half-Life

· Half-life is defined as:

The time taken for the initial number of nuclei to halve for a particular isotope

- This means when a time equal to the half-life has passed, the activity of the sample will also half
- This is because the activity is proportional to the number of undecayed nuclei, $A \propto N$



When a time equal to the half-life passes, the activity falls by half, when two half-lives pass, the activity falls by another half (which is a quarter of the initial value)

• To find an expression for half-life, start with the equation for exponential decay:

$$N = N_0 e^{-\lambda t}$$

- · Where:
 - \circ N = number of nuclei remaining in a sample
 - N_0 = the initial number of undecayed nuclei (when t = 0)
 - $\lambda = \text{decay constant } (s^{-1})$
 - t = time interval(s)
- When time t is equal to the half-life $t_{1/2}$, the activity N of the sample will be half of its original value, so $N = \frac{1}{2} N_0$

$$\frac{1}{2} N_0 = N_0 e^{-\lambda t}$$

• The formula can then be derived as follows:

Divide both sides by
$$N_0$$
: $\frac{1}{2} = e^{-\lambda t}$ /₂

Take the natural log of both sides: $\ln \left(\frac{1}{2}\right) = -\lambda t_{1/2}$

Apply properties of logarithms: $\lambda t_{\frac{1}{2}} = \ln(2)$

• Therefore, half-life $t_{1/2}$ can be calculated using the equation:

$$t_{1/2} = \frac{\ln 2}{\lambda} \simeq \frac{0.693}{\lambda}$$

- This equation shows that half-life $t_{1/2}$ and the radioactive decay rate constant λ are inversely proportional
 - Therefore, the **shorter** the half-life, the **larger** the decay constant and the **faster** the decay

Worked Example

Strontium-90 is a radioactive isotope with a half-life of 28.0 years. A sample of Strontium-90 has an activity of 6.4×10^9 Bq. Calculate the decay constant λ , in s⁻¹, of Strontium-90.

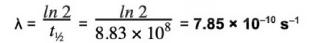
Step 1: Convert the half-life into seconds

• $t_{1/2} = 28 \text{ years} = 28 \times 365 \times 24 \times 60 \times 60 = 8.83 \times 10^8 \text{ s}$

Step 2: Write the equation for half-life

$$t_{1/2} = \frac{\ln 2}{\lambda}$$

Step 3: Rearrange for λ and calculate



RACI

Exam Tip

Although you may not be expected to derive the half-life equation, make sure you're comfortable with how to use it in calculations such as that in the worked example.

Half-Life from Decay Curves

- The half-life of a radioactive substance can be determined from decay curves and log graphs
- Since half-life is the **time taken for the initial number of nuclei**, **or activity**, **to reduce by half**, it can be found by
 - Drawing a line to the curve at the point where the activity has dropped to half of its original value
 - o Drawing a line from the curve to the time axis, this is the half-life

Log Graphs

- Straight-line graphs tend to be more useful than curves for interpreting data
 - Nuclei decay exponentially, therefore, to achieve a straight line plot, logarithms can be used
- Take the exponential decay equation for the number of nuclei

$$N = N_0 e^{-\lambda t}$$

· Taking the natural logs of both sides

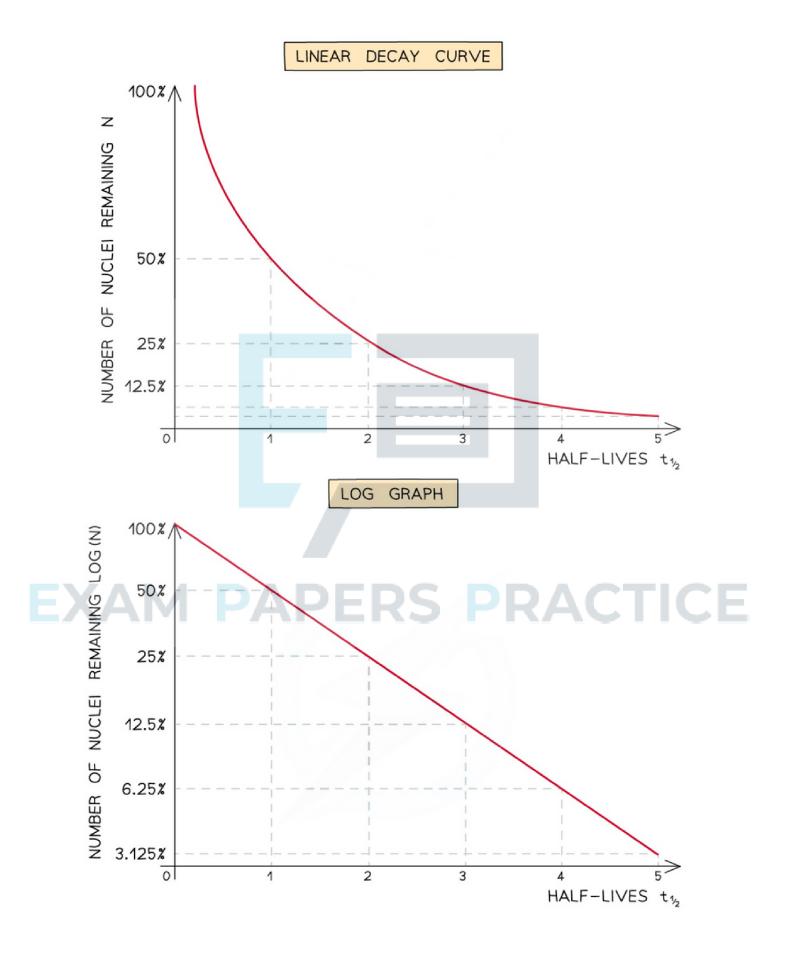
$$\ln N = \ln (N_0) - \lambda t$$

• In this form, this equation can be compared to the equation of a straight line

$$y = mx + c$$

- · Where:
 - o ln (N) is plotted on the y-axis
 - tis plotted on the x-axis
 - ∘ gradient = −λ
 - \circ y-intercept = ln (N_0)
- Half-lives can be found in a similar way to the decay curve but the intervals will be regular as shown below:

RS PRACTICE

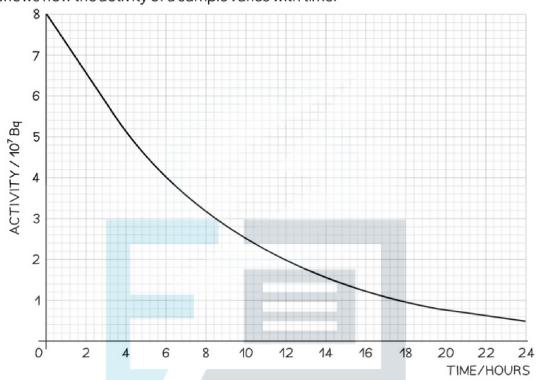


Page 11 of 18

For more help, please visit www.exampaperspractice.co.uk

Worked Example

The radioisotope technetium is used extensively in medicine. The graph below shows how the activity of a sample varies with time.

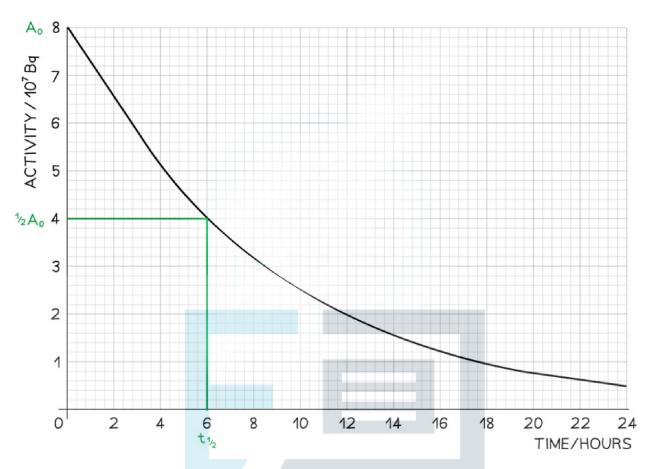


Determine:

- a) The decay constant for technetium
- b) The number of technetium atoms remaining in the sample after 24 hours

Part(a)

Step 1: Draw lines on the graph to determine the time it takes for technetium to drop to half of its original activity



Step 2: Read the half-life from the graph and convert to seconds

• $t_{\frac{1}{2}} = 6 \text{ hours} = 6 \times 60 \times 60 = 21600 \text{ s}$

Step 3: Write out the half life equation

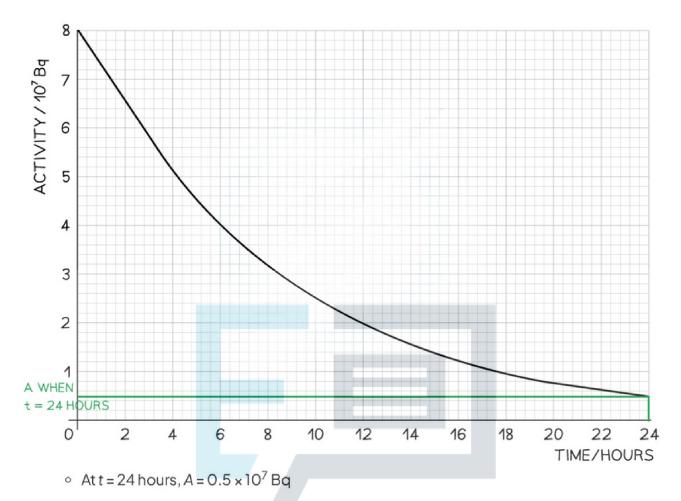
EXAM PAPE PRACTICE

Step 4: Calculate the decay constant

$$\lambda = \frac{\ln 2}{t_{1/2}} = \frac{\ln 2}{21\ 600} = 3.2 \times 10^{-5}\ s^{-1}$$

Part (b)

Step 1: Draw lines on the graph to determine the activity after 24 hours



Step 2: Write out the activity equation

top I till to out the destrict, oquation

$$A = \lambda N$$

Step 3: Calculate the number of atoms remaining in the sample

$$N = \frac{A}{\lambda} = \frac{0.5 \times 10^7}{3.2 \times 10^{-5}} = 1.56 \times 10^{11}$$

8.2.4 Applications of Radioactivity

Radioactive Dating

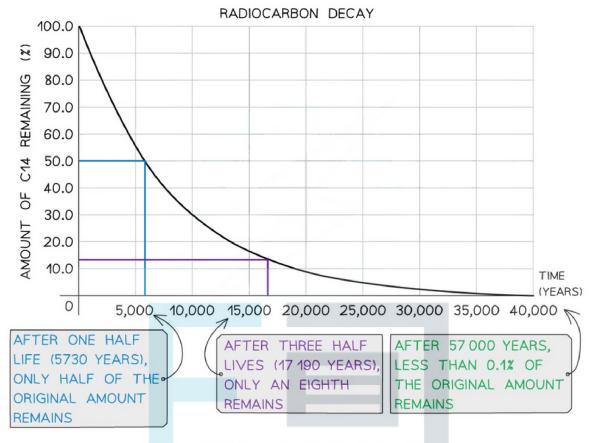
- The isotope carbon-14 is commonly used in radioactive dating
- It forms as a result of cosmic rays knocking out neutrons from nuclei, which then collide with nitrogen nuclei in the air:

$$^{1}n + {}^{14}N \rightarrow {}^{14}C + {}^{1}p$$

- Plants take in carbon dioxide from the atmosphere for photosynthesis, including the radioactive isotope carbon-14
- Animals and humans take in carbon-14 by eating the plants
 - Therefore, all living organisms absorb carbon-14, but after they die they do not absorb any more
- The proportion of carbon-14 is constant in living organisms as carbon is constantly being replaced during the period they are alive
- When they die, the activity of carbon-14 in the organic matter starts to fall, with a half-life of around 5730 years
- Samples of living material can be tested by comparing the current amount of carbon-14 in them and compared to the initial amount (which is based on the current ratio of carbon-14 to carbon-12), and hence they can be dated

Reliability of Carbon Dating

- Carbon dating is a highly reliable ageing method for samples ranging from around 1000 years old up to a limit of around 40 000 years old
 - Therefore, for very young, or very old samples, carbon dating is not the most reliable method to use
- This can be explained by looking at the decay curve of carbon-14:



Carbon-14 decay curve used for carbon dating

- If the sample is less than 1000 years old:
 - The activity of the sample will be too high
 - o So, it is difficult to accurately measure the small change in activity
 - Therefore, the ratio of carbon-14 to carbon-12 will be too high to determine an accurate age
- If the sample is more than 40 000 years old:
 - The activity will be too small and have a count rate similar to that of background radiation
 - So, there will be very few carbon-14 atoms remaining, hence very few decays will occur
 - Therefore, the ratio of carbon-14 to carbon-12 will be too small to determine an accurate age
- Carbon dating uses the currently known ratio of carbon-14 to carbon-12, however, scientists cannot know the level of carbon-14 in the biosphere thousands of years ago
- · Therefore, this makes it difficult to age samples which are very old

Potassium-Argon Dating

- Ancient rocks contain trapped argon gas as a result of the decay of the radioactive isotope of potassium-40
- This happens when a potassium nucleus captures an inner shell electron, also known as electron capture

$$^{40}\text{K} + \text{e}^- \rightarrow ^{40}\text{Ar} + \text{v}_{e}$$

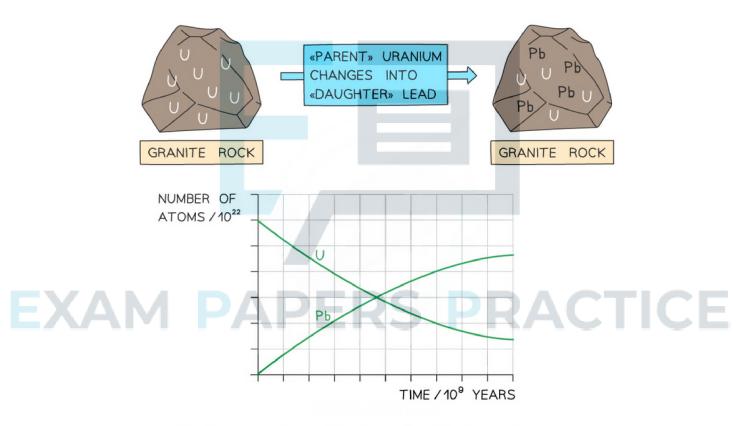
- The potassium isotope can also decay by β^- emission to form calcium-40

$$^{40}\text{K} \rightarrow ^{40}\text{Ca} + \beta^- + \overline{\text{v}} \equiv$$

- The half-life of the potassium-40 is 1.25 billion years
- The age of the rock (when it solidified) can be calculated by measuring the proportion of argon-40 to potassium-40
- This method is accurate for dating rocks up to 100 million years old

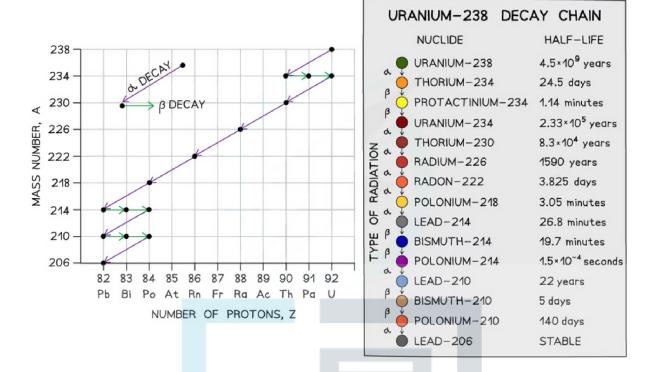
Uranium-Lead Dating

• While the potassium-argon method is best for ageing youngerrocks, the uranium-lead method has been critical in dating geologic events more than 100 million years old



Uranium atoms decay whilst the number of lead atoms increases

- Initially, there is only uranium in the rock, but over time, the uranium decays via a decay chain which ends with lead-206, which is a stable isotope
- Uranium has a half-life of 4.5 billion years and over time, the ratio of lead-206 atoms to uranium-238 atoms increases
 - o This ratio may be used to determine the age of a sample of rock
- Uranium is so well studied that its decay constant is much better known than other isotopes, such as potassium, making the uranium-lead dating technique the most accurate available



Uranium-238 decay chain

Storage of Radioactive Waste

- Radioactive substances can be dangerous and some substances have very long half-lives (even billions of years)
 - This means that they will be emitting harmful radiation well above background radiation for a very long time
- Waste products from nuclear power stations need to be appropriately stored for the remaining time that they are radioactive
- Common methods are water tanks or sealed underground
 - This is to prevent damage to people and the environment now and for many years into the future
 - Sealing them underground means they are less likely to be dislodged or released due to natural disasters