

Radioactive Decay TOPIC QUESTIONS

1. The mass of the beryllium nucleus, Be , is 7.01473 u. What is the binding energy **per nucleon** of this nucleus?

Use the following data:

			mass of proton = 1.00728 u mass of neutron = 1.00867 u1u = 931.3 MeV
А		1.6	MeV
nu	ucleon-1		
В		5.4	MeV
nı	ucleon-1		
С		9.4	MeV
nı	ucleon-1		
D nu	12.5 Me ucleon₁	eV	
EX/	AM		PAPERS PRACTICE

- 2. The fusion of two deuterium nuclei produces a nuclide of helium plus a neutron and liberates 3.27MeV of energy. How does the mass of the two deuterium nuclei compare with the combined mass of the helium nucleus and neutron?
 - **A** It is 5.8×10^{-30} kg greater before fusion.
 - **B** It is 5.8×10^{-30} kg greater after fusion.
 - **C** It is 5.8×10^{-36} kg greater before fusion.
 - **D** It is 5.8×10^{-36} kg greater after fusion.
- 3. The mass of the nuclear fuel in a nuclear reactor decreases at a rate of 1.2 × 10-₅ kg per hour. Assuming 100% efficiency in the reactor what is the power output of the reactor?
 - A 100 MW
 - **B** 150 MW
 - **C** 200 MW
 - **D** 300 MW

- 4. Why is a moderator required in a thermal nuclear reactor?
 - A to prevent overheating of the nuclear core
 - **B** to absorb surplus uranium nuclei
 - **C** to shield the surroundings from gamma radiation
 - **D** to reduce the kinetic energy of fission neutrons

5. The sodium isotope ²⁴₁₁ Na is a radioactive isotope that can be produced by bombarding the aluminium isotope ²⁷₁₃ Al with neutrons. Which line, A to D, in the table correctly represents the production of Na from the aluminium isotope ²⁷₁₃ Al and its subsequent decay?

	production	deca y
Α	${}^{27}_{13}\text{Al} + {}^1_0\text{n} \rightarrow {}^{24}_{11}\text{Na} + {}^4_2\alpha$	$^{24}_{11}Na$ \rightarrow $^{24}_{12}Mg$ + $^{0}_{+1}\beta$ + ν
в	${}^{27}_{13}\text{A1} + {}^1_0\text{n} \rightarrow {}^{24}_{11}\text{Na} + {}^4_2\alpha$	$^{24}_{11}Na \rightarrow ^{24}_{12}Mg + ^{0}_{-1}\beta$ + $\overline{\nu}$
С	$^{27}_{13}\text{Al} + ^{1}_{0}n \rightarrow ^{24}_{11}\text{Na} + ^{3}_{2}\text{He}$	$^{24}_{11}Na \rightarrow ^{24}_{12}Mg + ^0_{+1}\beta + \nu$
D	$^{27}_{13}\text{Al} + ^{1}_{0}\text{n} \rightarrow ^{24}_{11}\text{Na} + ^{3}_{2}\text{He}$	${}^{24}_{11}Na \rightarrow {}^{24}_{12}Mg + {}^{0}_{-1}\beta + \overline{\nu}$

6. What is the binding energy of the nucleus $\frac{238}{92}$ U?

Use the following data:

S PRACTICE mass of a proton =1.00728 u = 1.00867 u mass of a neutron mass of a 92 U nucleus = 238.05076 u1 u = 931.3 MeV 1685 MeV Α 1732 MeV В С 1755 MeV 1802 MeV D

7. A thermal nuclear reactor is shut down by inserting the control rods fully into the core. Which line, A to D, shows correctly the effect of this action on the fission neutrons in the reactor?

	number of fissionneutrons	average kinetic energyof fission neutrons
A B	reduced reduced unchange d	reduced unchange dreduced unchange
D	unchange d	d

- 8. In a thermal reactor, induced fission is caused by the²³⁵U nucleus capturing a neutron, undergoing fission and producing more neutrons. Which one of the following statements is true?
 - **A** To sustain the reaction a large number of neutrons is required per fission.
 - **B** The purpose of the moderator is to absorb all the heat produced.
 - **C** The neutrons required for induced fission of ${}^{235}_{92}$ **U** should be slow neutrons.
 - **D** The purpose of the control rods is to slow down neutrons to thermal speeds.
- 9. Artificial radioactive nuclides are manufactured by placing naturally-occurring nuclides in a nuclearreactor. They are made radioactive in the reactor as a consequence of bombardment by
 - A α particles.
 - **B** β particles.
 - **C** protons.
 - **D** neutrons.

- 10. The nuclear fuel, which provides the power output in a nuclear reactor, decreases in mass at a rate of 6.0×10^{-6} kg per hour. What is the maximum possible power output of the reactor?
 - **A** 42 kW
 - **B** 75 MW
 - **C** 150 MW
 - **D** 300 MW
- 11. The number of parent nuclei in a sample of a radioactive element is N at time t. The radioactive element has a half-life $\frac{t_1}{2}$

The rate of decay is proportional to

A N

$\mathbf{E}_{\mathbf{c}}^{\mathbf{B}} \mathbf{A}_{\mathbf{t}}^{t} \mathbf{A}_{\mathbf{t}}^{\mathbf{D}} \mathbf{P}_{\mathbf{t}}^{\mathbf{t}}$

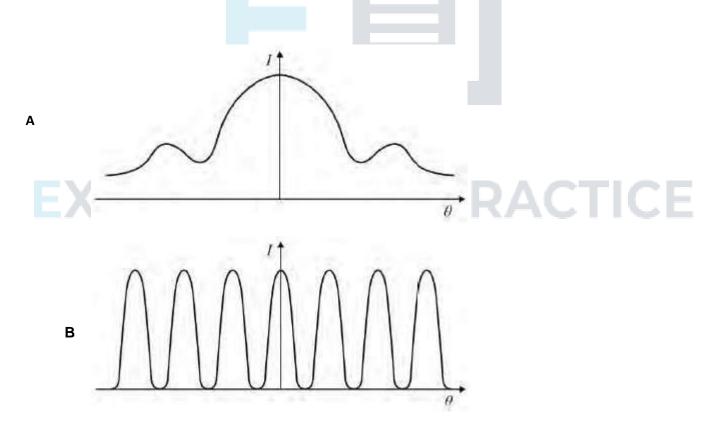
12. A deuterium nucleus and a tritium nucleus fuse together to form a helium nucleus and a particle **X.** The equation for this process is:

$${}^{2}_{1}H + {}^{3}_{1}H \rightarrow {}^{4}_{2}He + X$$

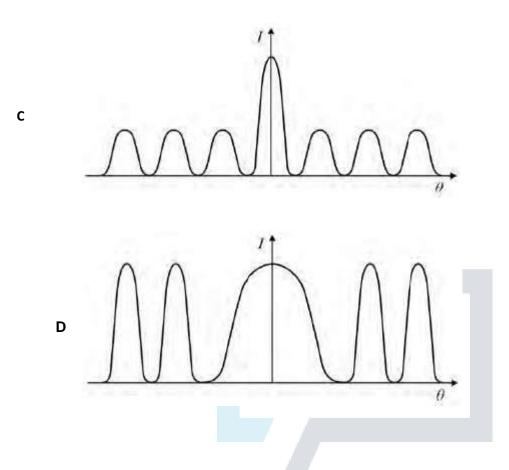
What is X?

- A electron
- **B** neutron

For more help, please visit www.exampaperspractice.co.uk


- **C** positron
- **D** proton

13. What effect are the control rods intended to have on the average kinetic energy and number of fission neutrons in a thermal nuclear reactor?


	Average kinetic energy of fission neutrons	Number of fission neutrons	
A	unchanged	unchanged	
В	reduced	unchanged	
С	unchanged	reduced	
D	increased	reduced	

14. Which graph shows how intensity I varies with angle θ when electrons are diffracted by anucleus?

RS PRACTICE

15. The radius of a uranium $^{238}_{92}$ U nucleus is 7.75 × 10⁻¹⁵ mWhat is

the radius of a ${}^{12}_{6}C$ nucleus?

- **A** 1.10 × 10⁻¹⁸ m
- **B** 3.91 × 10⁻¹⁶ m
- **C** 2.86 × 10^{-15} m
- **D** 3.12 × 10⁻¹⁵ m

16. During a single fission event of uranium-235 in a nuclear reactor the total mass lost is 0.23 u. The reactor is 25% efficient.

How many events per second are required to generate 900 MW of power?

- **A** 1.1 × 10¹⁴
- **B** 6.6 × 10¹⁸
- **C** 1.1×10^{20}
- **D** 4.4×10^{20}

17. Which of the following substances can be used as a moderator in a nuclear reactor?

A Boron		
B Concrete		
C Uranium-238		
D Water		

18. The Rutherford scattering experiment led to

- **A** the discovery of the electron.
- **B** the quark model of hadrons.
- **C** the discovery of the nucleus.
- **D** evidence for wave-particle duality.

19. A Geiger counter is placed near a radioactive source and different materials are placed between the source and the Geiger counter.

The results of the tests are shown in the table.

Material	Count rate of Geiger counter / s ⁻¹
None	1000
Paper	1000
Aluminium foil	250
Thick steel	50

What is the radiation emitted by the source?

- **A** α only
- **B** α and γ
- **C** α and β
- **D** β and γ

20. Nobelium-259 has a half-life of 3500 s.

What is the decay constant of nobelium-259?

- **A** $8.7 \times 10^{-5} \, \text{s}^{-1}$
- **B** $2.0 \times 10^{-4} \, \text{s}^{-1}$
- **C** $1.7 \times 10^{-2} \, \text{s}^{-1}$
- **D** $1.2 \times 10^{-2} \, \text{s}^{-1}$