

Exam Papers Practice

Boost your performance and confidence with these topic-based exam questions

Practice questions created by actual examiners and assessment experts

Detailed mark schemes
Suitable for all boards
Designed to test your ability and thoroughly prepare you

8.2 More About Acids

|B Chemistry - Revision Notes
www.exampaperspractice.co.uk

8.2.1 Acid-base Titrations

Acid-Base Titrations

- The steps involved in performing a titration and titrationcalculation are outlined in Topic 1.2.9 Titrations
- Acid-base titrations follow the same steps and are used to find the unknown concentrations of solutions of acids and bases
- Acid-b ase indicators give information about the change in chemical enviro nment
- They change colour reversiblydepending on the concentration of H^{+}ions in the solution
- Indicators are weak acids and bases where the conjugate bases and acids have a different colour
- Many acid-base indicators are derived from plants, such as litmus

Common Indicators Table

Indicator	Colour in acid	Colour in alkali
Litmus	pink	blue
Methyl orange	red	yellow
Phenolphthalein	colourless	pink

Copyright
A Aood indicator gives a very sharp colour change at the equivalence point

- In titrations is it not always possible to use two colour indicators because of this limitation, so for example litmus cannot be used successfully in a titration
- When phenolphthalein is used, it is usually better to have the base in the burette because it is easier to see the sudden and permanent appearance of a colour (pink in this case) than the change from a coloured solution to a colourless one

(9) Exam Tip

Make sure you learn the colours of the common acid-base indicators

8.2.2 pH \& $[\mathrm{H}+]$

$\mathrm{pH} \&\left[\mathrm{H}^{+}\right]$

- The acidity of an aqueous solution depends on the number of $\mathrm{H}^{+}\left(\mathrm{H}_{3} \mathrm{O}^{+}\right)$ions in solution
- The $\mathbf{p H}$ is defined as:

$$
\mathrm{pH}=-\log _{10}\left[\mathrm{H}^{+}\right]
$$

- where $\left[\mathrm{H}^{+}\right]$is the concentration of H^{+}in moldm ${ }^{-3}$
- The pH scale is a lo garithmic scale with base 10
- This means that each value is 10 times the value below it. For example, pH 5 is 10 times more acidic than pH 6.
- pH values are usually given to 2 decimal places
- The relationship between concentration is easily seen on the following table:

$\mathrm{pH} \&[\mathrm{H}+\mathrm{T}$ Table		
$\left[\mathrm{H}^{+}\right]$	Scientific notation	pH
1.0	10^{0}	0
0.1	10^{-1}	1
0.01	10^{-2}	2
0.001	10^{-3}	3
0.0001	10^{-4}	4
-	10^{-x}	\times

Worked example

$10.0 \mathrm{~cm}^{3}$ of an aqueous solution of nitric acid of $\mathrm{pH}=1.0$ is mixed with $990.0 \mathrm{~cm}^{3}$ of distilled water. What is the pH of the final solution?
A. 1
B. 2
C. 3
D. 10

Answer:

The correct option is \mathbf{C}.

- The total volume after dilution is $1000.0 \mathrm{~cm}^{3}$ so the concentration of H^{+}has been reduced by a factor of 100 or 10^{-2}, which means an increase of 2 pH units
- The final solution is therefore pH 3

- Exam Tip

Make sure you know how to use the antilog (base 10) feature on yo ur calculator. On most calculators it is the 10^{\times}button, but on o thermodels it could be LOG ${ }^{-1}$, ALOG or even a two-button sequence such as INV + LOG

8.2.3 Interpreting pH

Interpreting pH

- The pH scale is a numerical scale that shows how acidic or alkaline a solution is
- The values on the pH scale go from $0-14$ (extremely acidic substances have value of below 0)
- All acids have pH values of below 7 , all alkalis have pH values above 7
- The lower the pH then the more acidic the solution is
- The higher the pH then the more alkaline the solution is

The pH scale showing acidity, neutrality and alkalinity

pH of acids

- Acidic solutions (strong orweak) always have more H^{+}than OH^{-}ions
- Since the concentratio of H^{+}is always greater than the concentration of OH^{-}ions, $\left[\mathrm{H}^{+}\right]$is always greater than $10^{-7} \mathrm{~mol} \mathrm{dm}{ }^{-3}$
- Using the pHformula, this means that the pH of acidic solutions is always below 7
- The higherthe $\left[\mathrm{H}^{+}\right]$of the acid, the lower the pH

pH of bases

- Basic solutions (strong or weak) always have more OH^{-}than H^{+}ions
- Since the concentration of OH^{-}is always greater than the concentration of H^{+}ions, $\left[\mathrm{H}^{+}\right]$is always smaller than 10^{-7} mol dm ${ }^{-3}$
- Using the pH formula, this means that the $\mathbf{p H}$ of \mathbf{b} asic solutions is always above 7
- The higher the $\left[\mathrm{OH}^{-}\right]$of the base, the higherthe pH

ThepH of water

- Water at 298 K has equal amounts of OH^{-}and H^{+}ions with concentrations of $10^{-7} \mathrm{~mol} \mathrm{dm}^{-3}$
- To calculate the pH of water, the following formula should be used:
$\mathrm{pH}=-\log \left[\mathrm{H}^{+}(\mathrm{aq})\right]$
$\left[\mathrm{H}^{+}(\mathrm{aq})\right]=\mathrm{CONCENTRATION}$ OF $\mathrm{H}^{+} / \mathrm{H}_{3} \mathrm{O}^{+}$IONS

$$
\begin{gathered}
\mathrm{pH}=-\log \left(10^{-7}\right) \\
=7
\end{gathered}
$$

- Thus, waterhas a pH of 7 at 298 K

8.2.4 The Ionic Product of Water

The Ionic Product of Water

pH of water

- An equilibrium exists in water where few watermolecules dissociate into proton and hydroxide ions

$$
\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{H}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})
$$

- The equilibrium constant for this reaction is:

Exan P $K_{c}=\frac{\left[H^{+}\right]\left[O H^{-}\right]}{\left[H_{2} O\right]}$
 Copyright

$$
K_{c} \mathrm{x}\left[\mathrm{H}_{2} \mathrm{O}\right]=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]
$$

- Since the concentration the H^{+}and OH^{-}ions is verysmall, the concentration of water is considered to be a constant, such that the expression can be rewritten as:

$$
K_{w}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]
$$

Where K_{w} (ionic product of water) $=K_{c} \times\left[\mathrm{H}_{2} \mathrm{O}\right]$

$$
=10^{-14} \mathrm{~mol}^{2} \mathrm{dm}^{-6} \text { at } 298 \mathrm{~K}
$$

- The product of the two ion concentrations is always $10^{-14} \mathrm{~mol}^{2} \mathrm{dm}^{-6}$
- This makes it straightforward to see the relationship between the two concentrations and the nature of the solution:

$$
\left[\mathrm{H}^{+}\right] \&\left[\mathrm{OH}^{-}\right] \text {Table }
$$

Exam Papers Practice

$\left[\mathrm{H}^{+}\right]$	$\left[\mathrm{OH}^{-}\right]$	Type of solution
0.1	1×10^{-13}	acidic
1×10^{-3}	1×10^{-11}	acidic
1×10^{-5}	1×10^{-9}	acidic
1×10^{-7}	1×10^{-7}	neutral
1×10^{-9}	1×10^{-3}	alkaline
1×10^{-11}	0.1	alkaline
1×10^{-13}		alkaline

Worked example

What is the pH of a solutio n of potassium hydroxide, $\mathrm{KOH}(\mathrm{aq})$ of concentration $1.0 \times 10^{-3} \mathrm{~mol}$ $\mathrm{dm}^{-3} ? K_{\mathrm{w}}=1.0 \times 10^{-14} \mathrm{~mol}^{2} \mathrm{dm}^{-6}$
A. 3
B. 4 ers Practice
C. 10
D. 11

Answer:

The correct option is \mathbf{D}.

- Since $K_{w}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]$, rearranging gives $\left[\mathrm{H}^{+}\right]=\mathrm{K}_{\mathrm{w}} \div\left[\mathrm{OH}^{-}\right]$
- The concentration of $\left[\mathrm{H}^{+}\right]$is $\left(1.0 \times 10^{-14}\right) \div\left(1.0 \times 10^{-3}\right)=1.0 \times 10^{-11} \mathrm{~mol} \mathrm{dm}^{-3}$
- So the $\mathrm{pH}=11$

8.2.5 Acid-Base Calculations

Acid-Base Calculations

- Us ing the relationships between $\mathrm{pH},\left[\mathrm{H}^{+}\right]$and $\left[\mathrm{OH}^{+}\right]$a variety of problems can be solved

$$
\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right] \text {and } \mathrm{K}_{\mathrm{w}}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]
$$

- Test your understanding on the following worked examples:

Worked example

l. The pH of a solution of phosphoric acid changes from 3 to 5 . Deduce how the hydro gen ion concentrationchanges
2. Waterfrom a pond was analysed and found to have a hydrogen ion concentration of 2.6×10^{-5} moldm ${ }^{-3}$. Calculate the pH of the pond water.
3. Determine the pH of a solution made by diss olving 5.00 g of potassium hydroxide in $250 \mathrm{~cm}^{3}$ of distilled water

Answers:

Answer 1: The initial pH of the phosphoric acid is 3 which corresponds to a hydro gen ion concentration of 1×10^{-3} mol dm^{-3} :

$$
[\mathrm{H}+]=10-\mathrm{pH}
$$

The final pH is 5 , which corresponds to $1 \times 10^{-5} \mathrm{moldm}$
Therefore, the solution has decreased in $\left[\mathrm{H}^{+}\right]$concentration by 10^{2} or 100 times

Answer 2: The pond water has $\left[\mathrm{H}^{+}\right]=2.6 \times 10^{-5} \mathrm{moldm}^{-3}$.

$$
\mathrm{pH}=-\log [\mathrm{H}+]=-\log \left(2.6 \times 10^{-5}\right)=4.58
$$

Answer 3: Potassium hydroxide ($M=56.10 \mathrm{~g} \mathrm{~mol}^{-1}$) is a strong base so the concentration of $\left[\mathrm{OH}^{-}\right]$is the same as the concentration of the solution as it fully dissociates:

$$
\mathrm{KOH}(\mathrm{~s}) \rightarrow \mathrm{K}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})
$$

The concentration of KOH is

$$
\frac{\frac{5.00}{56.10} \times 1000}{250 \mathrm{~cm}^{3}}=0.357 \mathrm{~mol} \mathrm{dm}^{-3}=\left[\mathrm{OH}^{-}\right]
$$

Using $\mathrm{K}_{\mathrm{w}}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]$, and then rearranging $\left[\mathrm{H}^{+}\right]=\mathrm{K}_{\mathrm{w}} /\left[\mathrm{OH}^{-}\right]$

$$
\begin{gathered}
{\left[\mathrm{H}^{+}\right]=\frac{1 \times 10^{-14} \mathrm{~mol}^{2} \mathrm{dm}^{-6}}{0.357 \mathrm{~mol} \mathrm{dm}}{ }^{-3}=2.80 \times 10^{-14} \mathrm{~mol} \mathrm{dm}^{-3}} \\
\mathrm{pH}=-\log \left(2.80 \times 10^{-14}\right)=13.55
\end{gathered}
$$

8.2.6 pH Meters \& Universal Indicator

pH Meters \& Universal Indicator

- The most accurate wayto determine the pH is byreading it off a pHemeter
- The pH meter is connected to the pH electrode which shows the pH value of the solution

The diagram shows a digital pH meter that measures the pH of a solution using a pH electrode

- Aless accurate method is to measure the pH using universal indicator paper
- The universal indicator paperis dipped into a solution of acid upon which the paper changes colour
- The colour is then compared to those on a chart which shows the colours corresponding to different pH values

The diagram shows the change in colour of the universal indicatorpaper when dipped in a strong (HCl) and weak $\left(\mathrm{CH}_{3} \mathrm{COOH}\right)$ acid. The colour chart is used to read off the corresponding pH values which are between 1-2 for HCl and 3-4 for $\mathrm{CH}_{3} \mathrm{COOH}$

8.2.7 Strong \& Weak Acids \& Bases

Strong \& Weak Acids \& Bases

Strong acids

- A strong acid is an acid that dissociates almost completely in aqueous solutions
- HCl (hydrochloric acid), HNO_{3} (nitric acid) and $\mathrm{H}_{2} \mathrm{SO}_{4}$ (sulfuric acid)
- The position of the equilibrium is so far over to the right that you can represent the reaction as an irreversible reaction

The diagram shows the complete dissociation of a strong acid in aqueous solution

- The solution formed is highly acidic due to the high concentration of the $\mathrm{H}^{+} / \mathrm{H}_{3} \mathrm{O}$ + ions
- Since the pH depends on the concentration of $\mathrm{H}^{+} / \mathrm{H}_{3} \mathrm{O}^{+}$ions, the pH can be calculated if the concentration of the strong acid is known

$$
\begin{aligned}
& \mathrm{pH}=-\log \left[\mathrm{H}^{+}(\mathrm{aq})\right] \\
& {\left[\mathrm{H}^{+}(\mathrm{aq})\right]=\text { CONCENTRATION OF } \mathrm{H}^{+} / \mathrm{H}_{3} \mathrm{O}^{+} \mathrm{IONS}}
\end{aligned}
$$

pH is the negative log of the concentration of $\mathrm{H}^{+} / \mathrm{H}_{3} \mathrm{O}^{+}$ions and can be calculated if the concentration of the strong acid is known using the stoichiometry of the reaction

Weakacids

- A weak acid is an acid that partially (orincompletely) dissociates in aqueous solutions
－Eg．most organic acids（ethanoic acid）， HCN （hydrocyanic acid）， $\mathrm{H}_{2} \mathrm{~S}$（hydrogen sulfide）and $\mathrm{H}_{2} \mathrm{CO}_{3}$（carbonic acid）
－The position of the equilibrium is more over to the left and an equilibrium is established

The diagram shows the partial dissociation of a weak acid in aqueous solution
－The solution is less acidic due to the lower concentration of $\mathrm{H}^{+} / \mathrm{H}_{3} \mathrm{O}^{+}$ions
－Finding the pH of a weak acid requires using the acid dis sociation constant， K_{a} but this not required at Standard Level，but only at Higher Level and is covered in Topic 18

Acid \＆Equilibrium Position Table

Copyright
© 2024 Exam Papers Practice

Exam Papers Practice

	Strong Acid	Weak Acid
Position of Equilibrium	Right	Left
Dissociation	Completely (\rightarrow)	Partially (\rightleftharpoons)
H^{+}concentration	High	Low
pH	Use [strong acid] for $\left[\mathrm{H}^{+}\right]$	Use Ka to find $\left[\mathrm{H}^{+}\right]$
Examples	$\mathrm{HCl}^{\mathrm{HNO}}$ $\mathrm{H}_{2} \mathrm{SO}_{4}$ (first ionisation)	Organic acids (ethanoic acid) HCN $\mathrm{H}_{2} \mathrm{~S}$ $\mathrm{H}_{2} \mathrm{CO}_{3}$

Strong bases

- A strong base is a base that dissociates almost completely in aqueous solutions
E.g. group 1 metal hydroxides such as NaOH (sodium hydroxide)
- The position of the equilibrium is so far over to the right that youcan represent the reaction as an irreversible reaction

The diagram shows the complete dissociation of a strong base in aqueous solution

- The solution formed is highlybasic due to the high concentration of the OH^{-}ions

Weakbases

- A weak base is a base that partially (orincompletely) dissociates in aqueous solutions
- NH_{3} (ammonia), amines and some hydroxide of transition metals
- The position of the equilibrium is more to the left and an equilibrium is established

The diagram shows the partial dissociation of a weak base in aqueous solution

Exam Papers Practice

- The solution is less basic due to the lowerconcentration of OH^{-}ions

Base \& Equilibrium Position Table

	Strong Base	Weak Base
Position of Equilibrium	Right	Left
Dissociation	Completely (\rightarrow)	Partially ($\rightleftharpoons)$
OH^{-}concentration	High	Low
Examples	Group 1 metal hydroxides	NH_{3} Amines Some transition metal hydroxides

© 2024 Exam Papers Practice

Conjugate Pairs \& Acid-Base Strength

- The conjugate base of HCl is the chloride ion, Cl^{-}, but since the reverse reaction is virtuallynonexistent the chloride ion must be a veryweak conjugate base

$$
\begin{aligned}
& \mathrm{HCl}(\mathrm{~g}) \rightarrow \mathrm{H}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq}) \\
& \text { acid } \quad \text { conjugate base }
\end{aligned}
$$

- In general strong acids produce weak conjugate bases and weak acids produce strong conjugate bases
- A strong base is also fullyionized and is a good proton acceptor
- For example the hydroxide ion is a strong base and readily accepts protons:

$$
\mathrm{OH}^{-}(\mathrm{aq})+\mathrm{H}^{+}(\mathrm{aq}) \rightleftharpoons \mathrm{H}_{2} \mathrm{O}(\mathrm{I})
$$

- The conjugate acid of the hydroxide ion is water, which is a weak conjugate acid
- In general strong bases pro duce weak conjugate acids

O Exam Tip

Hydrogen ions in aqueous solutions can be written as either as $\mathrm{H}_{3} \mathrm{O}^{+}$or as H^{+}however, if $\mathrm{H}_{3} \mathrm{O}^{+}$is used, $\mathrm{H}_{2} \mathrm{O}$ should be included in the chemical equation: $\mathrm{HCl}(\mathrm{g}) \rightarrow \mathrm{H}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq}) \mathrm{OR} \mathrm{HCl}(\mathrm{g})+$ $\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq})$ So me acids contain two replaceable protons (called 'dibasic') - for example, $\mathrm{H}_{2} \mathrm{SO}_{4}$ (sulfuric acid) has two ionisations: $\mathrm{H}_{2} \mathrm{SO}_{4}$ acts as a strong acid: $\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathbf{H}^{+}+$ $\mathrm{SO}_{4}-\mathrm{HSO}_{4}^{-}$acts as a weak acid: $\mathrm{HSO}_{4}{ }^{-} \rightleftharpoons \mathrm{H}^{+}+\mathrm{SO}_{4}{ }^{2-}$ The second io nis ation is only partial which is why the concentration of $1 \mathrm{moldm} \mathrm{m}^{-3}$ sulfuric acid is not $2 \mathrm{moldm}^{-3}$ in H^{+}ions Also, don't forget that the terms strong and weak acids and bases are related to the degree of dissociation and not the concentration. The appropriate terms to use when describing concentration are dilute and concentrated.

8.2.8 Comparing Strong \& Weak Acids

Comparing Strong \& Weak Acids

- Strong and weak acids can be distinguished fromeach other by their:
- pH value (using a pH meteroruniversal indicator)
- Electrical conductivity
- Reactivity

pH value

- An acid dissociates into H^{+}in solution according to:

$$
\mathrm{HA} \rightarrow \mathrm{H}^{+}+\mathrm{A}^{-}
$$

- The stronger the acid, the greater the concentration of H^{+}and therefore the lower the pH
pH value of a Strong Acid \& Weak Acid Table

	pH of 0.1 mol dm solution
Acid	1
HCl (strong)	2.9
$\mathrm{CH}_{3} \mathrm{COOH}$ (weak)	

Electrical conductivity

- Since a stronger acid has a higher concentration of H^{+}it conducts electricity better
- Stronger acids therefore have a greater electrical conductivity
- The electrical conductivity can be determined byusing a conductivity meter
- Like the pH meter, the conductivitymeter is connected to an electrode
- The conductivity of the solution can be read off the meter

The diagram shows a digital conductivity meter that measures the electrical conductivity of a solution using an electrode

Reactivity

- Strong and weak acids of the same concent rations react differently with reactive metals
- This is because the concentration of H^{+}is greaterin strong acids compared to weak acids
- The greater H^{+}concentration means that more H_{2} gas is produced in a shorter time

$$
\mathrm{Mg}(\mathrm{~s})+2 \mathrm{HCl}(\mathrm{aq}) \longrightarrow \mathrm{MgCl}_{2}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})
$$

The diagram shows the reaction of $0.1 \mathrm{~mol} \mathrm{dm}^{-3}$ of a strong acid (HCl) with Mg . The reaction produces a lot of bubbles and hydrogen gas due to the high concentration of H^{+}present in solution

$$
\mathrm{Mg}(\mathrm{~s})+2 \mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq}) \longrightarrow \mathrm{Mg}^{\left(\mathrm{CH}_{3} \mathrm{COO}_{2}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})\right.}
$$

The diagram shows the reaction of $0.1 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ of a weak acid $\left(\mathrm{CH}_{3} \mathrm{COOH}\right)$ with Mg . The reaction produces fewer bubbles of hydrogen gas due to the lower concentration of H^{+}present in solution

- Similar observations would be made in the reaction between strong and weak acids with carbonates and hydrogencarbonates, although the gas given off this time is carbon dioxide
- With oxides and hydroxides, there may not be a lot of visible changes although it is likely that they would dissolve faster in a strong acid than in a weak acid
- These reactions are also likely to produce larger enthalpy changes which could be seen in higher temperaturerises

(-) Exam Tip

The above-mentioned properties of strong and weak acids depend on their ability to dissociate and form H^{+}ions.Stro ngeracids dissociate more, producing a greater concentration of H^{+}ions and therefore showing lowerpH values, greater electrical conductivity and more vigorous reactions with reactive metals.

