

8.1 Theories & Reactions of Acids & Bases

Mark Schemes

Exam Papers Practice

To be used by all students preparing for DP IB Chemistry HL Students of other boards may also find this useful

The correct answer is A because:

- Acids react with hydrogen carbonates to form a salt, water and carbon dioxide
- Acids react with magnesium to form a salt and hydrogen
- · Copper is too low in the reactivity series to react with dilute acids

Extra info:

Although metals generally react with most acids, copper is an exception. Other familiar metals that would also **not** react with acids are silver, mercury and gold

2

The correct answer is **D** because:

- A Brønsted-Lowry base is defined as a proton (H⁺) acceptor
- The HNO₃ gains a proton to become H₂NO₃⁺ so it must be acting as a
 - base
- In the reverse reaction, the HSO₄⁻ gains a proton to become H₂SO₄ so it must also be acting as a base

A is incorrect as $H_2NO_3^+$ acts as Brønsted-Lowry acid because it is donating a proton to HSO_4^-

B is incorrect as H₂NO₃⁺ acts as Brønsted-Lowry acid because it is donating a proton to HSO₄⁻

C is incorrect as H₂SO₄ acts as Brønsted-Lowry acid because it is donating a proton to HNO₃

5

The correct answer is **D** because:

- A proton is transferred from the HCl to CH₃COOH making the HCl an acid and CH₃COOH a base
- In the back reaction, a proton is transferred from CH₃COOH₂⁺ to Cl⁻ making the CH₃COOH₂⁺ an acid and Cl⁻ a base

A is incorrect as both the acid and base in the reactants and products are the wrong way around

B is incorrect as the acid and base in the reactants are the wrong way around

C is incorrect as the acid and base in the products are the wrong way around

4

The correct answer is C because:

- · You are told that perbromic acid is a strong acid, so by definition it
- must be fully dissociated in solution

A is incorrect as this would be a feature of weak acids, not strong ones

B is incorrect as a strong acid would react with weak or strong bases

D is incorrect as a strong or weak acid would have a pH below 7

The correct answer is **C** because:

- To form a conjugate base, a species must lose a proton
- When K₂HPO₄ loses a proton it forms K₂PO₄⁻
- However, this does not seem to be one of the answers
 - **Remember:** The potassium ion is a spectator ion and positively charged so the anion corresponds to PO_4^{3-} (K₂PO₄⁻ = 2K⁺ + PO_4^{3-})

A is incorrect as this is the conjugate acid of the hydrogen phosphate ion $K_2HPO_4 + H^+ \rightarrow KH_2PO_4$ ($H_2PO_4^-$ is the anion)

B is incorrect as this ion does not make sense

D is incorrect as this is the full formula of the conjugate acid of the hydrogen phosphate ion

6

The correct answer is **D** because:

- To be a Brønsted-Lowry acid, a species must lose a proton
- In the forward reaction, H₃NSO₃, loses protons and in the backward reaction each NH₄⁺ loses a proton

A is incorrect as this is a Brønsted-Lowry acid-base pair

B is incorrect as this is a Brønsted-Lowry acid and a Brønsted-Lowry base, respectively

C is incorrect as this is a Brønsted-Lowry acid-base pair

The correct answer is **D** because:

- · Calcium oxide is classified as a base
- · When an acid reacts with a base a salt and water are formed
- Salts of hydrochloric acid are chlorides

A is incorrect as there is no gas given off in the reaction and water is a missing product

B is incorrect as there is no gas given off in the reaction

C is incorrect as calcium and hydrogen are incorrect products

8

The correct answer is D because:

- The correctly balanced equation is: 2HNO₃ (aq) + Mg(HCO₃)₂ (s) → Mg(NO₃)₂ (aq) + 2H₂O(l) + 2CO₂ (g)
- The sum of the coefficients = 2+1+1+2+2=8

A, B & C are incorrect as as they do not have the right sum of coefficients

It is a favourite examiner's trick to ask for the sum of the coefficients knowing that some candidates will forget that the absence of a number in front of a formula means the coefficient is 1. Don't get caught out!

Page 5

The correct answer is A because:

- · Calcium oxide is classified as a base
- · Only oxides that are acidic can react with calcium oxide
- Sulfur dioxide and nitrogen dioxide are acidic oxides

B is incorrect as nitrogen dioxide reacts with calcium oxide, but potassium oxide does not

C is incorrect as sulfur dioxide and nitrogen dioxide react with calcium oxide, but potassium oxide does not

D is incorrect as potassium oxide does not react with calcium oxide

10

water:

The correct answer is **B** because:

• Neutralisation reactions are always exothermic as there is net bond formation when hydrogen ions react with hydroxide ions to form

 $H^+(aq) + OH^-(aq) \rightarrow H_2O(I)$

· Bond formation is always an exothermic process

A is incorrect as metal displacement reactions are generally exothermic, but they can be either

C is incorrect as combustion is always an exothermic reaction

D is incorrect as melting is an endothermic process as it is a bond breaking process