

8.1 Metabolism

Question Paper

Exam Papers Practice

To be used by all students preparing for DP IB Biology HL Students of other boards may also find this useful

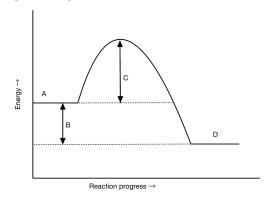
Which of the following statements about metabolism are correct?

- I. Metabolism involves chemicals called metabolites.
- II. Metabolism involves reactions in a linear chain.
- III. Metabolism involves reactions in a cycle.
- IV. Metabolism involves only the breakdown of molecules.
- A. I and IV only
- B. II and III
- C. All of the statements
- D. I, II and III

[1 mark]

Question 2

Which of the following is **not** a correct description of the "transition state" in enzyme-controlled reactions?


- A. The enzyme-substrate complex, prior to the products being formed, can be said to be in the transition state.
- B. The enzyme-product complex, prior to the products being released, can be said to be in the transition state.
- C. The transition state occurs when a substrate binds to the enzyme's active site.
- D. Transition state is a temporary state

[1 mark]

Exam Papers Practice

The graph below shows the energy changes during a reaction.

What effect would adding an enzyme have on the energy changes of the reaction?

- A. Reduction in energy at A
- B. Reduction in energy at B
- C. Reduction in energy at C
- D. Reduction in energy at D

[1 mark]

Question 4

What is the difference between a competitive and non-competitive inhibitor?

	Competitive inhibitor	Non-competitive inhibitor
Α	Interferes with active site	Interferes with an alternative site
В	Interferes with an alternative site	Interferes with the active site
С	Changes the active site	Changes the substrate
D	Changes the substrate	Changes the active site

[1 mark]

Cyanide ions are an example of an allosteric inhibitor that targets the enzyme cytochrome c oxidase in aerobic respiration.

Which row best describes the action of cyanide ions?

	Can bind to an alternative site	Can bind to the active site
Α	Yes	Yes
В	Yes	No
С	No	Yes
D	No	No

[1 mark]

Question 6

Isoleucine can be described as an end-product inhibitor.

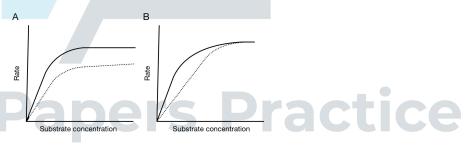
Which statement best describes the action of isoleucine?

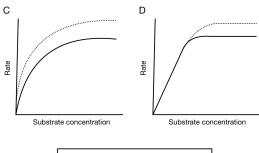
- B. It acts as a competitive inhibitor to threonine and it binds to the active site on threonine deaminase.
- C. It acts as a non-competitive inhibitor to threonine and it binds to an active site on threonine deaminase.
- D. It acts as a non-competitive inhibitor to threonine and it binds to an allosteric site on threonine deaminase.

The protein sequence of an enzyme involved in the *Plasmodium* parasite's metabolism has been identified in order to support research into anti-malarial drugs.

Which terms best fill the gaps in the sentence about *Plasmodium* parasite research below?

Bioinformatics can be used to screenI..... against a database of chemicals to identify potentialII..........


	I	II
Α	Enzymes	Enzyme inhibitors
В	Proteomes	Products
С	Enzymes	Active sites
D	Proteomes	Substrates


[1 mark]

Question 8

Which graph shows the rate of a reaction taking place in the presence of a competitive inhibitor compared to the rate of a reaction in the absence of an inhibitor?

Possible competitive inhibitor

[1 mark]

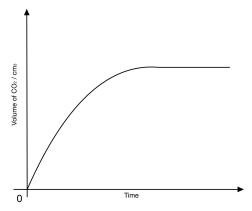


The table below gives information on the rates of several enzyme-catalysed reactions.

Rate of reaction / product formed sec ⁻¹	Enzyme
1.0 x 106	Citrate synthase
5.2×10³	Aconitase
9.2×10 ⁴	Fumarase
3.7 x 10 ⁷	Malate dehydrogenase

Which enzyme catalyses the reaction with the fastest rate of product formation?

- A. Citrate synthase
- B. Aconitase
- C. Fumarase
- D. Malate dehydrogenase



[1 mark]

Exam Papers Practice

Which statement best describes how to calculate the initial rate of a reaction from a graph such as the one below?

- A. Draw a tangent that crosses the origin and that corresponds to the first part of the curve, calculate the rate by dividing change in volume by change in time.
- B. Draw a tangent that corresponds to an area part way along the curve, calculate the rate by dividing change in volume by change in time.
- C. Draw a tangent that crosses the origin and that corresponds to the first part of the curve, calculate the rate by dividing change in time by change in volume.
- D. Draw a tangent that corresponds to an area part way along the curve, calculate the rate by dividing change in time by change in volume

[1 mark]

Exam Papers Practice