

Please write clearly in block capitals.

Centre number

--	--	--	--	--

Candidate number

--	--	--	--

Surname

Forename(s)

Candidate signature

I declare this is my own work.

AS MATHEMATICS

Paper 1

Thursday 15 May 2025

Afternoon

Time allowed: 1 hour 30 minutes

Materials

- You must have the AQA Formulae for A-level Mathematics booklet.
- You should have a graphical or scientific calculator that meets the requirements of the specification.

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer **all** questions.
- You must answer each question in the space provided for that question.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Do **not** write outside the box around each page or on blank pages.
- Show all necessary working; otherwise marks for method may be lost.
- Do all rough work in this book. Cross through any work that you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 80.

Advice

- Unless stated otherwise, you may quote formulae, without proof, from the booklet.
- You do not necessarily need to use all the space provided.

For Examiner's Use	
Question	Mark
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
TOTAL	

J U N 2 5 7 3 5 6 1 0 1

G/LM/Jun25/G4006/V6

tyrionpapers.com

7356/1

Section A

Do not write
outside the
box

Answer **all** questions in the spaces provided.

1 Identify the expression that is equivalent to $\tan x$

Circle your answer.

[1 mark]

$$\sin^2 x + \cos^2 x$$

$$\sin^2 x - \cos^2 x$$

$$\frac{\cos x}{\sin x}$$

$$\frac{\sin x}{\cos x}$$

2 Find the value of $\log_b \frac{1}{b^2}$

Circle your answer.

[1 mark]

-2

$$-\frac{1}{2}$$

$$\frac{1}{2}$$

2

0 2

3 The polynomial $p(x)$ is given by

$$p(x) = 2x^3 - ax^2 + 6x + 2a$$

It is given that $(x - 2)$ is a factor of $p(x)$

Find the value of a by using the factor theorem.

[3 marks]

Turn over for the next question

Turn over ►

4 Solve the equation

$$2\tan 3\theta - 3 = 0$$

for $0^\circ \leq \theta \leq 180^\circ$

Give your answers to the nearest degree.

[3 marks]

5 Jayven claims that for two real numbers a and b

if $a > b$, then it must be true that $\frac{a}{b} > 1$

By using a counter example, show that Jayven is **not** correct.

[2 marks]

6 It is given that $p = \log_2 x$ and $q = \log_2 y$

6 (a) Express

$$\log_2\left(\frac{x^2}{y}\right)$$

in terms of p and q

[2 marks]

6 (b) Express

$$\log_2(16x^3\sqrt{y})$$

in terms of p and q

Give your answer in a form not involving logarithms.

[3 marks]

7 A circle has equation

$$(x - a)^2 + (y - b)^2 = 49$$

7 (a) State the radius of the circle.

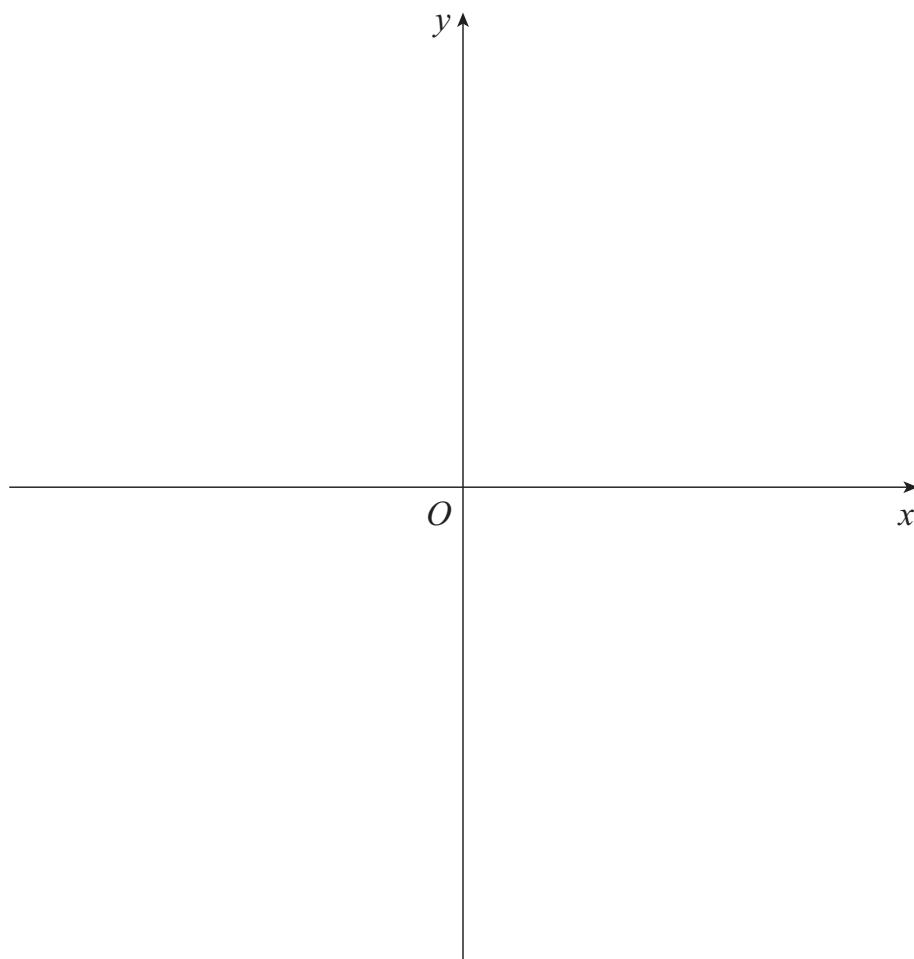
[1 mark]

7 (b) The circle crosses the x -axis at two distinct points.

Find the range of possible values for b

[2 marks]

0 6


8 Sketch the graph of

$$y = (x - k)^2(x + 2k)$$

where k is a positive constant.

Label the coordinates of the points where the graph meets the axes.

[4 marks]

Turn over for the next question

Turn over ►

0 7

Do not write outside the box

9 (a) Find, in ascending powers of x , the first three terms in the expansion of

$$(1 - 5x)^7$$

[3 marks]

9 (b) The coefficient of x^2 in the expansion of

$$(3 + kx)(1 - 5x)^7$$

is 1477

Find the value of k

[3 marks]

Turn over for the next question

Turn over ►

0 9

10

A curve has the equation

$$y = e^{3x}$$

and the point P lies on the curve, as shown in the diagram.

The tangent to the curve at P is parallel to the line with equation $x - 9y = 23$

Find the x -coordinate of P

[5 marks]

1 0

Do not write outside the box

Turn over for the next question

Turn over ►

There are no questions printed on this page

*Do not write
outside the
box*

**DO NOT WRITE ON THIS PAGE
ANSWER IN THE SPACES PROVIDED**

1 2

11 (a) Expand $x(x - 2)(x + 4)$

[1 mark]

11 (b) Show that

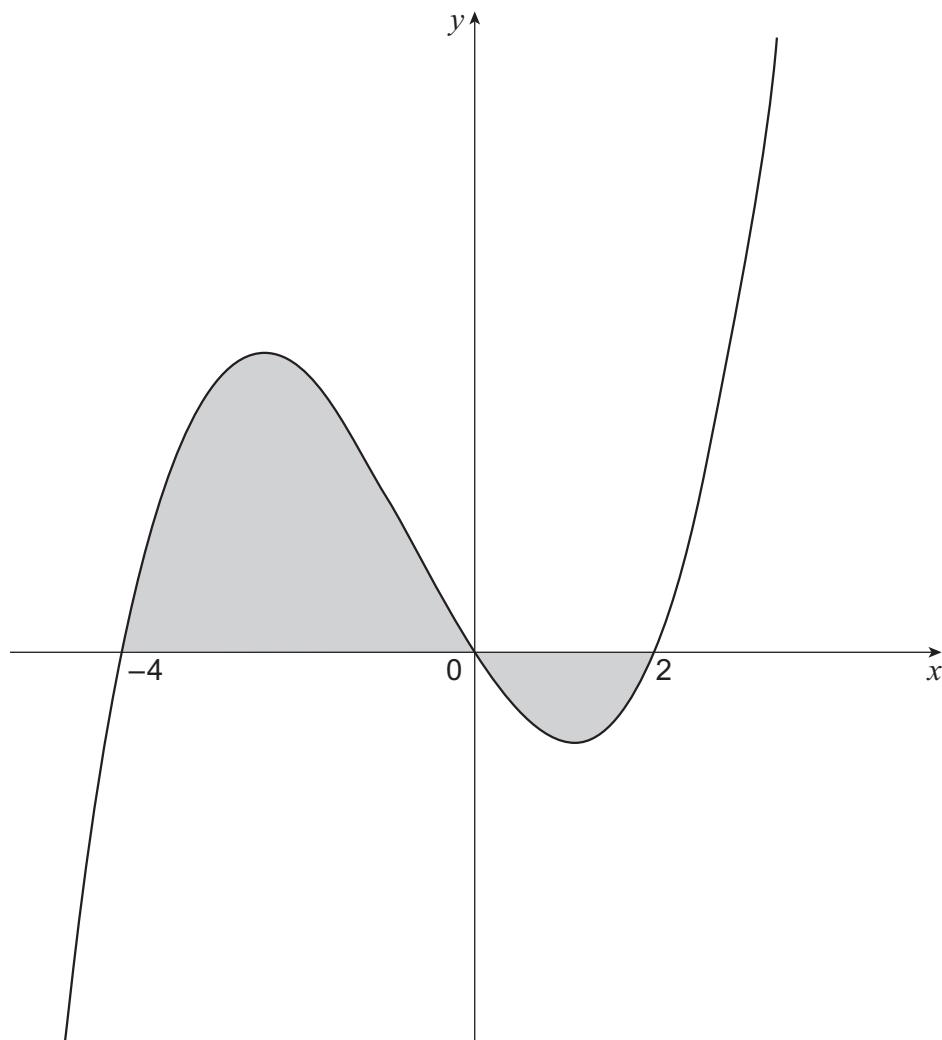
$$\int_{-4}^2 x(x - 2)(x + 4) \, dx = 36$$

Fully justify your answer.

[4 marks]

Question 11 continues on the next page

Turn over ►



1 3

11 (c) The curve C has equation

$$y = x(x - 2)(x + 4)$$

A sketch of C is shown in the diagram.

11 (c) (i) Explain why your answer to part (b) will not give the total area of the shaded region bounded by C and the x-axis.

[1 mark]

1 4

Do not write outside the box

11 (c) (ii) Find the total area of the shaded region bounded by C and the x -axis.

[2 marks]

Turn over for the next question

Turn over ►

12 (a) It is given that

$${}^{40}C_{18} = \frac{40!}{18! p!}$$

Write down the value of p

[1 mark]

12 (b) Use the result from part (a) to show that

$$\frac{{}^{40}C_{18}}{{}^{40}C_{17}} = \frac{23}{q}$$

where q is an integer to be found.

[2 marks]

13 A computer game awards points to a player based on the time taken to complete a level.

The points awarded decrease as the time taken to complete a level increases.

Rebekah believes that the points awarded, P , can be modelled by the equation

$$P = Ae^{kt}$$

where t is the time, in seconds, taken to complete the level and A and k are constants.

13 (a) Explain, in context, the meaning of the value of A

[1 mark]

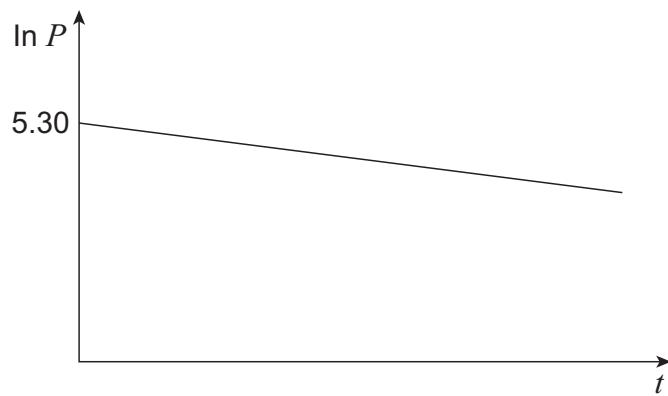
13 (b) Show that

$$\ln P = \ln A + kt$$

[2 marks]

Question 13 continues on the next page

Turn over ►



1 7

13 (c) Rebekah records the points and the time taken for her to complete each level.

She plots the values of $\ln P$ against t

Rebekah obtains a straight-line graph with a gradient of -0.08 and a vertical intercept of 5.30 , as shown in the diagram.

Find the value of A and the value of k

[3 marks]

13 (d) Rebekah scores 20 points for completing a particular level.

Find, to the nearest second, the time taken to complete this level.

[3 marks]

Do not write outside the box

END OF SECTION A

Turn over for Section B

Turn over ►

Section B

*Do not write
outside the
box*

Answer **all** questions in the spaces provided.

14 A particle of mass 2 kg is moving on a smooth horizontal surface under the action of a single horizontal force of 5 N

Find the acceleration of the particle.

Circle your answer.

[1 mark]

0.4 m s^{-2}

2.5 m s^{-2}

10 m s^{-2}

24.5 m s^{-2}

2 0

15 Three forces \mathbf{F}_1 , \mathbf{F}_2 and \mathbf{F}_3 are given by:

$$\mathbf{F}_1 = (-2\mathbf{i} + 4\mathbf{j}) \text{ N}$$

$$\mathbf{F}_2 = (-3\mathbf{i} + 6\mathbf{j}) \text{ N}$$

$$\mathbf{F}_3 = (-6\mathbf{i} + 9\mathbf{j}) \text{ N}$$

One of the following statements is true.

Identify the correct statement.

Tick (✓) **one** box.

[1 mark]

\mathbf{F}_1 and \mathbf{F}_2 are parallel forces.

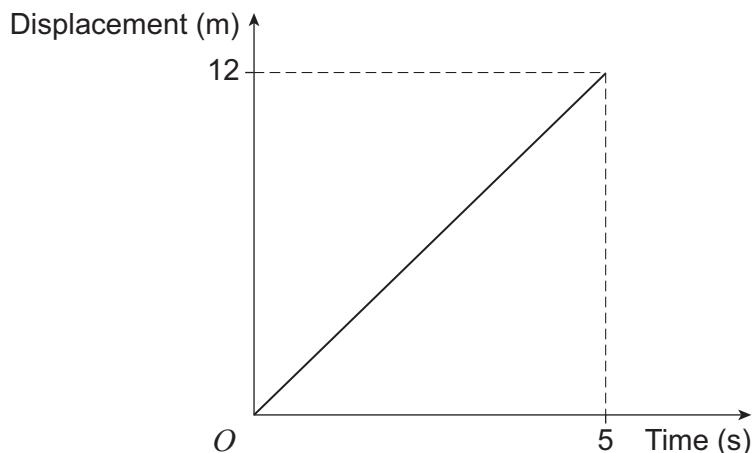
\mathbf{F}_1 and \mathbf{F}_3 are parallel forces.

\mathbf{F}_2 and \mathbf{F}_3 are parallel forces.

None of the forces \mathbf{F}_1 , \mathbf{F}_2 and \mathbf{F}_3 are parallel.

Turn over for the next question

Turn over ►



2 1

16

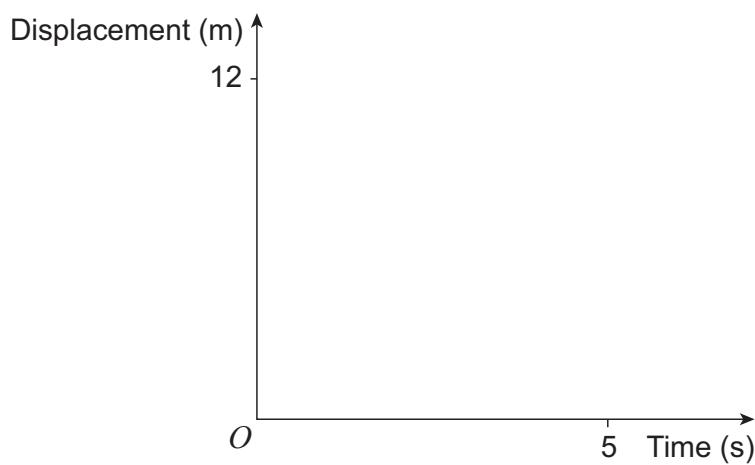
The displacement–time graph, **Figure 1**, shows the first 5 seconds of the motion of a car which starts from rest and travels 12 metres.

Do not write
outside the
box

Figure 1

16 (a) Find the speed of the car.

[1 mark]



16 (b) On **Figure 2**, draw a more realistic displacement–time graph to show the first 5 seconds of motion of the car.

[1 mark]

Figure 2

2 2

17 In this question use $g = 9.8 \text{ m s}^{-2}$

Lamic has mass 60 kg.

He is standing on the floor of a lift.

The lift is accelerating upwards at 1.2 m s^{-2}

The reaction of the floor on Lamic is R newtons.

Find the value of R

[2 marks]

Turn over for the next question

Turn over ►

18 In this question use $g = 10 \text{ m s}^{-2}$

A ball is thrown vertically upwards from a height of 1.8 metres above the ground.

The initial velocity of the ball is 12 m s^{-1}

The greatest height reached by the ball above the ground is h metres.

Find the value of h

[3 marks]

19 A force \mathbf{F} is $\begin{bmatrix} p \\ -0.5 \end{bmatrix}$ newtons, where p is a constant.

Given that the magnitude of \mathbf{F} is 1.3 newtons, find the possible values of p

[3 marks]

Turn over for the next question

Turn over ►

20 A sports scientist is modelling the speed of an athlete who ran a 100-metre race.

The speed, v m s $^{-1}$, of the athlete at time t seconds after the start of the 100-metre race is given by

$$v = 1.8 + 3.8t - 0.25t^2$$

20 (a) State the initial speed of the athlete according to the model.

[1 mark]

20 (b) (i) Find an expression, in terms of t , for the acceleration of the athlete.

[2 marks]

2 6

20 (b) (ii) Hence find the maximum speed of the athlete.

Fully justify your answer.

[4 marks]

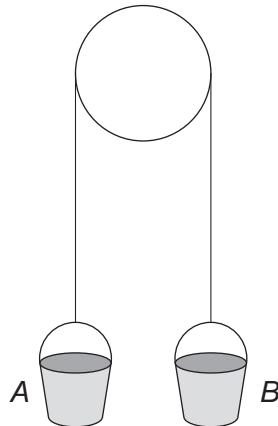
20 (c) The official maximum speed recorded, by the scientist, for the athlete was 12.4 m s^{-1}

Evaluate the accuracy of the model used by the scientist.

[1 mark]

Turn over for the next question

Turn over ►


21

Two buckets, A and B , each have mass 0.5 kg

Each bucket is attached to one end of a light inextensible rope.

The rope is hung over a smooth fixed pulley.

The system is in equilibrium with both buckets hanging freely at rest, as shown in the diagram.

A builder then places a brick of mass 3 kg inside bucket A

Bucket A , with the brick inside, then moves vertically downwards.

During the subsequent motion, the magnitude of the acceleration of each bucket is $a \text{ m s}^{-2}$ and the magnitude of the tension in the rope is $T \text{ N}$

Assume the buckets and brick can be modelled as particles.

21 (a) Find a and T , leaving your answers in terms of g

Fully justify your answer.

[6 marks]

2 8

Do not write outside the box

21 (b) Explain a limitation of modelling the buckets as particles.

[1 mark]

END OF QUESTIONS

There are no questions printed on this page

*Do not write
outside the
box*

**DO NOT WRITE ON THIS PAGE
ANSWER IN THE SPACES PROVIDED**

3 0

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

3 2

2 5 6 A 7 3 5 6 / 1
tyronnepapers.com

G/Jun25/7356/1