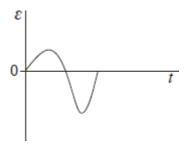
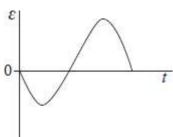


Magnetic Field TOPIC QUESTIONS

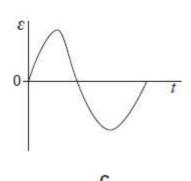
Level	A Level
Subject	Physics
Exam Board	AQA
Paper Type	Multiple Choice

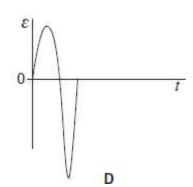

Time Allowed: 30min

- 1. In which one of the following applications does electromagnetic induction **not** take place?
 - **A** the generators at a nuclear power station
 - **B** the ac power adapter for a laptop computer
 - **C** the wings of an aircraft cutting through the Earth's magnetic field
 - **D** the back up capacitor of an electric timer

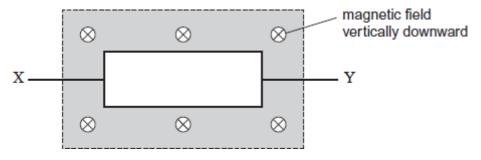


2. When a magnet is dropped through an aluminium ring an emf is induced. A data logger connected to the ring records the variation of the induced emf ε with time t as shown below.


In a second experiment, the magnet is dropped from a greater height.

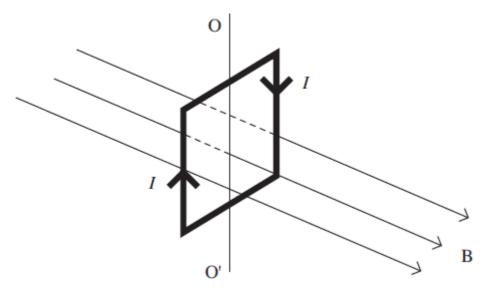

Which one of the following graphs best represents the induced emf in the second experiment?

В



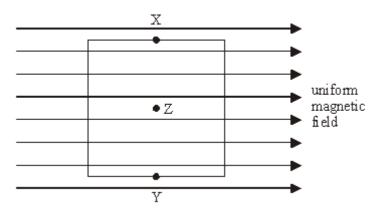
3. A rectangular coil of area A has N turns of wire. The coil is in a uniform magnetic field, as shown in the diagram.

When the coil is rotated at a constant frequency f about its axis XY, an alternating emf of peakvalue \mathcal{E}_0 is induced in it.



What is the maximum value of the magnetic flux linkage through the coil?

- $A = \frac{\varepsilon_0}{2\pi f}$
- $\frac{\varepsilon_0}{\pi f}$
- \mathbf{C} $\pi f \epsilon_{\scriptscriptstyle 0}$
- **D** $2\pi f \epsilon_0$
- 4. A transformer has 1150 turns on the primary coil and 500 turns on the secondary coil. The primary coil draws a current of 0.26 Å from a 230 V ac supply. The current in the secondary coil is 0.50 Å. What is the efficiency of the transformer?
 - **A** 42%
 - **B** 50%
 - **C** 84%
 - D 100


5. The diagram shows a vertical square coil whose plane is at right angles to a horizontal uniform magnetic field B. A current, I, is passed through the coil, which is free to rotate about a vertical axis OO'.

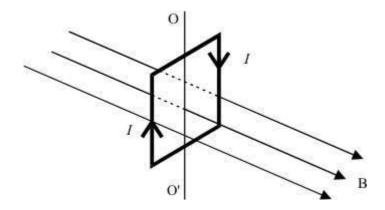
Which one of the following statements is correct?

- A The forces on the two vertical sides of the coil are equal and opposite.
- **B** A couple acts on the coil.
- **C** No forces act on the horizontal sides of the coil.
- **D** If the coil is turned through a small angle about OO' and released, it will remain in position.

6.

The diagram shows a square coil with its plane parallel to a uniform magnetic field. Which one of the following would induce an emf in the coil?

- A movement of the coil slightly to the left
- B movement of the coil slightly downwardsFor more help, please visit <u>www.exampaperspractice.co.uk</u>


- c rotation of the coil about an axis through XY
- **D** rotation of the coil about an axis perpendicular to the plane of the coil through Z

7. Which line, **A** to **D**, correctly describes the trajectory of charged particles which enter, at right angles, (a) a uniform electric field, and (b) a uniform magnetic field?

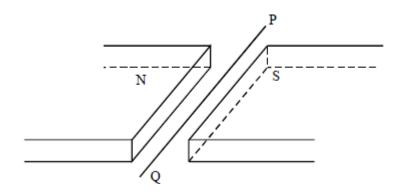
	(a) uniform electric field	(b) uniform magnetic field
		circular paraboli
	paraboli	ccircular paraboli
	paraboli c	C
D		

8. The diagram shows a vertical square coil whose plane is at right angles to a horizontal uniform magnetic field B. A current, *I*, flows in the coil, which can rotate about a vertical axis OO'.

Which one of the following statements is correct?

- A The forces on the two vertical sides of the coil are equal and opposite.
- **B** A couple acts on the coil.
- **C** No forces act on the horizontal sides of the coil.
- **D** If the coil is turned through a small angle about OO', it will remain in position.

9. An α particle and a β - particle both enter the same uniform magnetic field, which is perpendicular to their direction of motion. If the β - particle has a speed 15 times that of the α particle, what is the value of the ratio

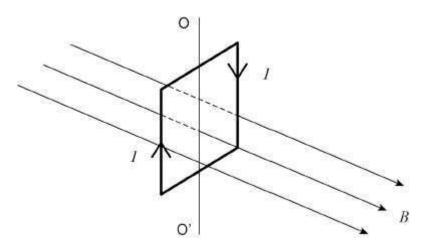

magnitude of force on β-particle magnitude of force on α particle ?

- **A** 3.7
- **B** 7.5
- **C** 60
- **D** 112.5

10.

A wire lies perpendicularly across a horizontal uniform magnetic field of flux density 20×10^{-3} T so that 0.30 m of the wire is effectively subjected to the field. If the force exerted on this length of wire due to a current in it is 30×10^{-3} N downward, what is the current in the wire?

A 0.45 A from P to Q


B 0.45 A from Q to P

C 5.0 A from P to Q

D 5.0 A from Q to P

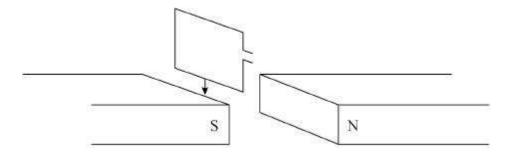
11. The diagram shows a current *I* in a vertical square coil. The coil can rotate about an axis OO'.

The plane of the coil is at right angles to a uniform horizontal magnetic field of flux density *B*.

Which statement is correct?

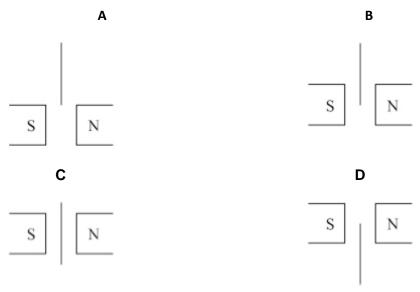
A The forces on the vertical sides of the coil are equal in magnitude and opposite in direction.

For more help, please visit www.exampaperspractice.co.uk



A non-zero couple acts on the co

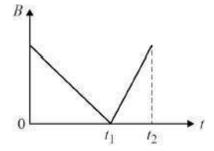
- **C** No forces act on the horizontal sides of the coil.
- **D** The forces on all sides of the coil act toward the centre of the coil.



12. The diagram shows a small rectangular coil falling between two magnetic poles.

The coil is shown at four instants as it passes through the magnetic field.

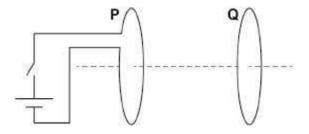
At which instant will the induced emf be a maximum?


13. An alternating emf is induced in a coil rotating in a magnetic field.

What is the phase difference between the magnetic flux linkage through the coil and the emf?

- **A** 0
- B $\frac{\pi}{3}$ rad
- $c = \frac{\pi}{2} rad$
- \mathbf{D} π rad


14. The diagram shows the variation with time t of the magnetic flux density B of the field linking acoil.



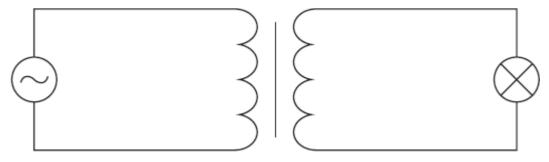
Which graph shows the variation of induced emf ε in the coil during this time interval?

15. A coil P is connected to a cell and a switch.
A closed coil Q is parallel to P and is arranged on the same axis.

Which describes the force acting on **Q** after the switch is closed?

- A steady and directed to the left
- B steady and directed to the right

For more help, please visit www.exampaperspractice.co.uk


C short-lived and directed to the left

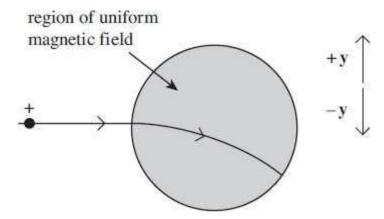
5. The 10 ⁻³ flux?	magnetic flux through a coil of 5 turns changes uniformly from 15×10^{-3} Wb to 7.0×10^{-3} Wb to $7.$
Α	14 m V
В	16 m V
С	30 m V
D	80 m V
Po	ower losses can be reduced
Pc by	ower losses can be reduced
Po by A	laminating the core.
Po by A B	laminating the core. using high resistance
Po by A B	ower losses can be reduced laminating the core.

18. A transformer with 3000 turns in its primary coil is used to change an alternating pd from an rmsvalue of 240 V to an rms value of 12 V.

When a 60 W, 12 V lamp is connected to the secondary coil, the lamp lights at normalbrightness and a rms current of 0.26 A passes through the primary coil.

Which line, A to D, in the table gives correct values for the number of turns on the secondarycoil and for the transformer efficiency?

nur	efficiency	
Α	150	96%
В	60 000	96%
С	150	90%
D	60 000 90%	


19. A section of current-carrying wire is placed at right angles to a uniform magnetic field of flux density *B*. When the current in the wire is *I*, the magnetic force that acts on this section is *F*.

What force acts when the same section of wire is placed at right angles to a uniform magnetic field of flux density 2B when the current is 0.25 ?

- $A = \frac{F}{4}$
 - F
- в <u>7</u>
- C F
- D 2F

20. A beam of positive ions enters a region of uniform magnetic field, causing the beam tochange direction as shown in the diagram.

What is the direction of the

magnetic field?

A out of the page and

perpendicular to it

B into the page and

perpendicular to it

- C in the direction indicated by +y
- D in the direction indicated by -y