

Magnetic Field TOPIC QUESTIONS

Level	AS Level
Subject	Physics
Exam Board	AQA
Paper Type	Multiple Choice

Time Allowed: 30min

- 1. In which one of the following applications does electromagnetic induction **not** take place?
 - A the generators at a nuclear power station
 - **B** the ac power adapter for a laptop computer
 - **C** the wings of an aircraft cutting through the Earth's magnetic field
 - **D** the back up capacitor of an electric timer

2. When a magnet is dropped through an aluminium ring an emf is induced. A data logger connected to the ring records the variation of the induced emf ε with time *t* as shown below.

In a second experiment, the magnet is dropped from a greater height.

Which one of the following graphs best represents the induced emf in the second experiment?

3. A rectangular coil of area *A* has *N* turns of wire. The coil is in a uniform magnetic field, as shown in the diagram.

When the coil is rotated at a constant frequency f about its axis XY, an alternating emf of peakvalue \mathcal{E}_0 is induced in it.

What is the maximum value of the magnetic flux linkage through the coil?

4. A transformer has 1150 turns on the primary coil and 500 turns on the secondary coil. The primary coil draws a current of 0.26 Å from a 230 V ac supply. The current in the secondarycoil is 0.50 Å. What is the efficiency of the transformer?

42%	
50%	
84%	
100	

5. The diagram shows a vertical square coil whose plane is at right angles to a horizontal uniform magnetic field B. A current, I, is passed through the coil, which is free to rotate about a vertical axis OO'.

Which one of the following statements is correct?

- **A** The forces on the two vertical sides of the coil are equal and opposite.
- **B** A couple acts on the coil.
- **C** No forces act on the horizontal sides of the coil.
- **D** If the coil is turned through a small angle about OO' and released, it will remain in position.

6.

The diagram shows a square coil with its plane parallel to a uniform magnetic field. Which one of the following would induce an emf in the coil?

- A movement of the coil slightly to the left
- B movement of the coil slightly downwards
 For more help, please visit <u>www.exampaperspractice.co.uk</u>

- **C** rotation of the coil about an axis through XY
- **D** rotation of the coil about an axis perpendicular to the plane of the coil through Z

7. Which line, **A** to **D**, correctly describes the trajectory of charged particles which enter, at right angles, (a) a uniform electric field, and (b) a uniform magnetic field?

	(a) uniform electric field	(b) uniform magnetic field
A B	circular circular paraboli c	circular paraboli ccircular paraboli
C D	paraboli c	с

8. The diagram shows a vertical square coil whose plane is at right angles to a horizontal uniform magnetic field B. A current, *I*, flows in the coil, which can rotate about a vertical axis OO'.

Which one of the following statements is correct?

- **A** The forces on the two vertical sides of the coil are equal and opposite.
- **B** A couple acts on the coil.
- **C** No forces act on the horizontal sides of the coil.
- **D** If the coil is turned through a small angle about OO', it will remain in position.

9. An α particle and a β particle both enter the same uniform magnetic field, which is perpendicular to their direction of motion. If the β particle has a speed 15 times that of the α particle, what is the value of the ratio

magnitude of force on β -particle

magnitude of force on α particle ?

A 3.7

B 7.5

C 60

D 112.5

A wire lies perpendicularly across a horizontal uniform magnetic field of flux density 20×10^{-3} T so that 0.30 m of the wire is effectively subjected to the field. If the force exerted on this length of wire due to a current in it is 30×10^{-3} N downward, what is the current in the wire?

- A 0.45 A from P to Q
- B 0.45 A from Q to P
- **C** 5.0 A from P to Q
- D 5.0 A from Q to P
 - 11. The diagram shows a current I in a vertical square coil. The coil can rotate about an axis OO'.

The plane of the coil is at right angles to a uniform horizontal magnetic field of flux density *B*.

Which statement is correct?

A The forces on the vertical sides of the coil are equal in magnitudeand opposite in direction.

For more help, please visit www.exampaperspractice.co.uk

- **B** A non-zero couple acts on the coil.
- **C** No forces act on the horizontal sides of the coil.
- **D** The forces on all sides of the coil act toward the centre of the coil.

12. The diagram shows a small rectangular coil falling between two magnetic poles.

The coil is shown at four instants as it passes through the magnetic field.

At which instant will the induced emf be a maximum?

13. An alternating emf is induced in a coil rotating in a magnetic field.

What is the phase difference between the magnetic flux linkage through the coil and the emf?

A 0
B
$$\frac{\pi}{3}$$
 rad
c $\frac{\pi}{2}$ rad
D π rad

14. The diagram shows the variation with time t of the magnetic flux density B of the field linking acoil.

Which graph shows the variation of induced emf ε in the coil during this time interval?

D

15. A coil **P** is connected to a cell and a switch.

A closed coil **Q** is parallel to **P** and is arranged on the same axis.

Which describes the force acting on **Q** after the switch is closed?

- A steady and directed to the left
- **B** steady and directed to the right

For more help, please visit www.exampaperspractice.co.uk

- C short-lived and directed to the left
- **D** short-lived and directed to the right
- 16. The magnetic flux through a coil of 5 turns changes uniformly from 15×10^{-3} Wb to 7.0 × 10^{-3} Wbin 0.50 s. What is the magnitude of the emf induced in the coil due to this change in flux?
 - A 14 m V
 - B 16 m V
 - C 30 m V
 - D 80 m V

17. Which one of the following statements concerning power losses in a transformer is incorrect?

Power losses can be reduced

by

- A laminating the core.
- B using high resistance

windings.

C using thick wire.

D using a core made of special iron alloys which are easily magnetised.

18. A transformer with 3000 turns in its primary coil is used to change an alternating pd from an rmsvalue of 240 V to an rms value of 12 V.

When a 60 W, 12 V lamp is connected to the secondary coil, the lamp lights at normalbrightness and a rms current of 0.26 A passes through the primary coil.

Which line, A to D, in the table gives correct values for the number of turns on the secondarycoil and for the transformer efficiency?

number of turns on the secondary coil		efficiency
A	150	96%
В	60 000	96%
С	150	90%
D	60 000 90%	

19. A section of current-carrying wire is placed at right angles to a uniform magnetic field of flux density *B*. When the current in the wire is *I*, the magnetic force that acts on this section is *F*.

What force acts when the same section of wire is placed at right angles to a uniform magnetic field of flux density 2B when the current is 0.25 h?

20. A beam of positive ions enters a region of uniform magnetic field, causing the beam tochange direction as shown in the diagram.

perpendicular to it

- *C* in the direction indicated by +*y*
- **D** in the direction indicated by -**y**