Capacitor Charge \& Discharge TOPIC QUESTIONS

Level	A Level
Subject	Physics
Exam Board	AQA
Paper Type	Multiple Choice

EXAM PAPERS PRACTICE

1. A parallel-plate capacitor has square plates of length l separated by distance d and is filled with a dielectric.

A second capacitor has square plates of length $2 l$ separated by distance $2 d$ and has air as its dielectric.

Both capacitors have the same capacitance.
What is the relative permittivity of the dielectric in the first capacitor?

A $\frac{1}{2}$
B 1

C 2

D 8
2. The graph shows the variation of potential difference (pd) with charge for a capacitor while it ischarging.

Which statement can be deduced from the graph?

A The charging current is constant.

B The energy stored in the capacitor increases uniformly with time.

For more help, please visit www.exampaperspractice.co.uk

C The capacitance of the capacitor is constant.
D The power supply used to charge the capacitor had a constant terminal pd.

3. A capacitor of capacitance $120 \mu \mathrm{~F}$ is charged and then discharged through a $20 \mathrm{k} \Omega$ resistor. What fraction of the original charge remains on the capacitor 4.8 s after the discharge begins?

A 0.14

B 0.37

C 0.63

D 0.86
4. A capacitor consists of two parallel square plates of side l separated by distance d. The capacitance of the arrangement is C.

What is the capacitance of a capacitor with square plates of side $2 l$ separated by a distance $\frac{d}{2}$?

A C

B 2C

C $4 C$

D $8 C$
5. A capacitor of capacitance C has a charge of Q stored on the plates. The potential differencebetween the plates is doubled.

What is the change in the energy stored by the capacitor?

A

$$
\frac{\frac{Q^{2}}{2 C}}{\frac{Q^{2}}{C}}
$$

c $\quad \frac{3 Q^{2}}{2 C}$

D $\frac{2 Q^{2}}{C}$
6. In the circuit shown, the capacitor C is charged to a potential difference V when the switch S is closed.

Which line, A to D, in the table gives a correct pair of graphs showing how the charge and current change with time after S is closed?

	charge	current
A	graph 1	graph 1
B	graph 1	graph 2
C	graph 2	graph 2
D	graph 2	graph 1

7. The graph shows how the charge stored by a capacitor varies with the potential differenceacross it as it is charged from a 6 V battery.

Which one of the following statements is not correct?
A The capacitance of the capacitor is $5.0 \mu \mathrm{~F}$.
B When the potential difference is 2 V the charge stored is $10 \mu \mathrm{C}$.
C When the potential difference is 2 V the energy stored is $10 \mu \mathrm{~J}$.
D When the potential difference is 6 V the energy stored is $180 \mu \mathrm{~J}$.
8. A capacitor of capacitance C discharges through a resistor of resistance R. Which one of the following statements is not true?

A The time constant will increase if R is increased.
B The time constant will decrease if C increased.
C After charging to the same voltage, the initial discharge current will increase if R is decreased.

D After charging to the same voltage, the initial discharge current will be unaffected if C is increased.

EXAM PAPERS PRACTICE
9. A 10 mF capacitor is charged to 10 V and then discharged completely through a small motor.During this process, the motor lifts a weight of mass 0.10 kg . If 10% of the energy stored in the capacitor is used to lift the weight, through what approximate height will the weight be lifted?

A $\quad 0.05 \mathrm{~m}$
B $\quad 0.10 \mathrm{~m}$
C $\quad 0.50 \mathrm{~m}$
D 1.00 m

EXAM PAPERS PRACTICE

EXAM PAPERS PRACTICE
10. A capacitor of capacitance $15 \mu \mathrm{~F}$ is fully charged and the potential difference across its platesis 8.0 V . It is then connected into the circuit as shown.

The switch S is closed at time $t=0$. Which one of the following statements is correct?
A The time constant of the circuit is 6.0 ms .
B The initial charge on the capacitor is $12 \mu \mathrm{C}$.
C After a time equal to twice the time constant, the charge remaining on the capacitor is $Q_{0} \mathrm{e}^{2}$, where Q_{0} is the charge at time $t=0$.

D After a time equal to the time constant, the potential difference across the capacitor is 2.9 V .
11. A voltage sensor and a datalogger are used to record the discharge of a 10 mF capacitor in series with a 500Ω resistor from an initial pd of 6.0 V . The datalogger is capable of recording 1000 readings in 10 s .

After a time equal to the time constant of the discharge circuit, which one of the rows gives the pdand the number of readings made?

	Potential difference / V	Number of readings
A	2.2	50

For more help, please visit www.exampaperspractice.co.uk

EXAM PAPERS PRACTICE

B	3.8	50
C	3.8	500
D	2.2	500

12. Initially a charged capacitor stores $1600 \mu \mathrm{~J}$ of energy. When the pd across it decreases by 2.0 V, the
energy stored by it becomes $400 \mu \mathrm{~J}$.
What is the capacitance of this

EXAM PAPERS PRACTICE
13. Switch S in the circuit is held in position 1 , so that the capacitor C becomes fully charged to a pd V
and stores energy E.

The switch is then moved quickly to position 2, allowing C to discharge through the fixed resistor R. It takes 36 ms for the pd across C to fall $\frac{V}{10}$ What period of time must elapse, after theswitch has moved to position 2 , before the energy stored by C has fallen to $\frac{E}{16}$?

A 51 ms
B $\quad 72 \mathrm{~ms}$
C $\quad 432 \mathrm{~ms}$
D 576
ms
14. A nuclear fusion device is required to deliver at least 1 MJ of energy using capacitors. If the largestworkable potential difference is 10 kV , what is the minimum capacitance of the capacitors that should be used?

A $\quad 0.01 \mathrm{~F}$
B $\quad 0.02 \mathrm{~F}$
c 2 F
D 100 F

EXAM PAPERS PRACTICE
15. In the circuit shown the capacitor C charges when switch S is closed.

Which line, A to D, in the table gives a correct pair of graphs showing how the charge on thecapacitor and the current in the circuit change with time after S is closed?

	charge	current
A	graph 1	graph
		1
B	graph 1	graph
		2
C	graph 2	graph
		2
D	graph 2	graph
		1

16. The capacitor in the circuit is initially uncharged.

The switch is closed at time $t=0$

For more help, please visit wwww.exampapeispiactice.co.uk

Which pair of graphs shows how the potential difference V across the capacitor and the current $/$ in the circuit change with time t ?

17. When a parallel-plate capacitor is connected across a battery, the energy stored in the capacitoris W.

The battery remains connected as the distance between the capacitor plates is halved.What is the energy now stored in the capacitor?

A $0.5 W$

B w

C $2 W$

D $4 W$
18. An uncharged capacitor is connected to a power supply which supplies a constant current of $10 \mu \mathrm{~A}$.

After 100 ms , the potential difference across the capacitor is 5.0 kV .What is the capacitance of the capacitor?

A $\quad 2.0 \times 10^{-10} \mathrm{~F}$
B $\quad 4.0 \times 10^{-10} \mathrm{~F}$
C $\quad 2.5 \times 10^{9} \mathrm{~F}$
D $\quad 5.0 \times 10^{9} \mathrm{~F}$
19. A parallel-plate capacitor is made using a sheet of dielectric material between, and in contactwith, two plates.
The properties of four sheets of dielectric material are shown.Which sheet will produce the maximum capacitance?

Sheet	Relative permittivity	Thickness / mm
A	2	0.40
B	3	0.90
C	4	1.0
D	6	1.6

20. A parallel-plate capacitor is made by inserting a sheet of dielectric material between two plates. Both plates are in contact with the sheet.

Which relative permittivity and sheet thickness give the greatest capacitance?

	Relative permittivity	Thickness/mm
A	2	0.40
B	3	0.90
C	4	1.0
D	6	1.6

