

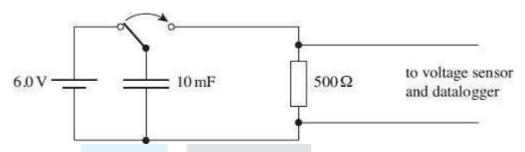
CapacitanceTOPIC QUESTIONS

Level	AS Level
Subject	Physics
Exam Board	AQA
Paper Type	Multiple Choice
Time Allowed: 30min	

- 1. The voltage across a capacitor falls from 10 V to 5 V in 48 ms as it dischargethrough a resistor. What is the time constant of the circuit?
 - A 24 ms
 - B 33 ms
 - C 69 ms
 - D 96 ms
 - 2. An initially uncharged capacitor of capacitance 20 μ F is charged by a constant current of 80 μ A. Which line, A to D, in the table gives the potential difference across, and the energy stored in,

the capacitor after 50 s?

	potential difference / V	energy stored / J
Α	4.0 × 10 ⁻³	2.0 × 10 ⁻³
В	4.0 × 10 ⁻³	4.0 × 10 ⁻¹
С	2.0×10^2	2.0 × 10 ⁻³
D	2. 0 × 10 ²	4.0 × 10 ⁻¹

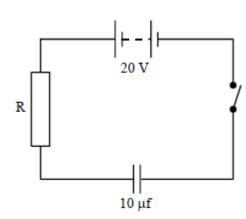

- 3. Which one of the following statements about a parallel plate capacitor is incorrect?
 - A The capacitance of the capacitor is the amount of charge stored by the capacitor when the pd across the plates is 1V.
 - B A uniform electric field exists between the plates of the capacitor.
 - C The charge stored on the capacitor is inversely proportional to the pd across the plates.
 - D The energy stored when the capacitor is fully charged is proportional to the square of the pd across the plates.
- 4. A 1000 μF capacitor and a 10 μF capacitor are charged so that they store the same energy. The pdacross the 1000 μF capacitor is V_1 and the pd across the other capacitor is V_2 .

What is the value of the ratio $\frac{V}{V}$

$$\frac{1}{10}$$

5. A voltage sensor and a datalogger are used to record the discharge of a 10 mF capacitor in series with a 500 Ω resistor from an initial pd of 6.0 V. The datalogger is capable of recording 1000 readings in 10 s. Which line, A to D, in the table gives the pd and the number of readings made after a time equal to the timeconstant of the discharge circuit?

	potential difference/V	number of readings
Α	2.2	50
В	3.8	50
С	3.8	500
D	2.2	500


6. A 1 μ F capacitor is charged using a constant current of 10 μ A for 20 s. What is the energy finallystored by the capacitor?

C
$$4 \times 10^{-2} \text{ J}$$

D
$$4 \times 10^{-1}$$
 J

7.

A capacitor of capacitance 10 μ F is fully charged through a resistor R to a p.d. of 20 V using the circuit shown. Which one of the following statements is **incorrect?**

- A The p.d. across the capacitor is 20 V.
- **B** The p.d. across the resistor is 0 V.
- **C** The energy stored by the capacitor is 2 mJ.
- A The total energy taken from the battery during the charging process is 2 mJ.
 - **8.** A capacitor of capacitance C stores an amount of energy E when the pd across it is V. Which line, A
 - to **D**, gives the correct stored energy and pd when the charge is increased by 50%?

EXAM PAPERS PRACTICE

	energ y	p.d.
Α	1.5 <i>E</i>	1.5 <i>V</i>
В	2.25 <i>E</i>	1.5 <i>V</i>
С	1.5 <i>E</i>	2.25 <i>V</i>
D	2.25 <i>E</i>	2.25 <i>V</i>

9. In experiments to pass a very high current through a gas, a bank of capacitors of total capacitance 50 μ F is charged to 30 kV. If the bank of capacitors could be discharged completely in 5.0 ms whatwould be the mean power delivered?

- **A** 9.0 MW
- **B** 4.5 MW
- **C** 110 kW
- **D** 22 kW

- 10. Which of the following does **not** give a value in seconds?
 - A capacitance × resistance
 - $B = \frac{1}{\text{frequency}}$
 - C half-life
 - D power work
- 11. A 10 μF capacitor stores 4.5 mJ of energy.lt then discharges through a 25 Ω resistor.

What is the maximum current during the discharge of the capacitor?

- **A** 1.2 A
- **B** 18 A
- **C** 30 A
- D 36 A PAPERS PRACTICE
- 12. A 1.0 μF capacitor is charged for 20 s using a constant current of 10 μA .

What is the charge collected by the sphere each second?

- **A** $5.0 \times 10^{-3} \text{ J}$
- **B** $1.0 \times 10^{-2} \text{ J}$
- **C** $2.0 \times 10^{-2} \text{ J}$
- **D** $4.0 \times 10^{-2} \text{ J}$
- 13. A 1.0 μF capacitor initially stores 15 μC of charge. It then discharges through a 25 Ω resistor.

What is the maximum current during the discharge of the capacitor?

A 0.60 mA

For more help, please visit www.exampaperspractice.co.uk

- **B** 1.2 mA
- **C** 0.60 A
- **D** 1.2 A

14. The initial potential difference across a capacitor is V_0 . The capacitor discharges through a circuitof time constant T. The base of natural logarithms is e.

What is the potential difference across the capacitor after time *T*?

$$\Delta \frac{V_0}{e}$$

$$\frac{V_0}{e}$$

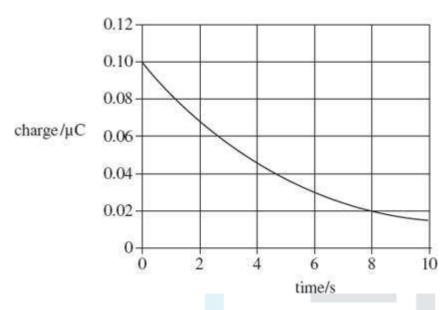
- \mathbf{C} V_0 e
- **D** $V_0 \ln 2$
- 15. An air-filled parallel-plate capacitor is charged from a source of emf. The electric field has a strength *E* between the plates. The capacitor is disconnected from the source of emf and the separation between the isolated plates is doubled.

What is the final electric field between the plates?

- \mathbf{A} 2E
- **EXAM PAPERS PRACTICE**
 - $C \frac{E}{2}$
 - $D \frac{E}{4}$
- 16. A capacitor of capacitance *C* stores an amount of energy *E* when the pd across it is *V*. Whichline, A to D, in the table gives the correct stored energy and pd when the charge is increased by 50%?

	energy	pd
Α	1.5 <i>E</i>	1.5 <i>V</i>
В	1.5 <i>E</i>	2.25 V
С	2.25 <i>E</i>	1.5 <i>V</i>
D	2.25 <i>E</i>	2.25 V

17. A capacitor of capacitance C discharges through a resistor of resistance R.

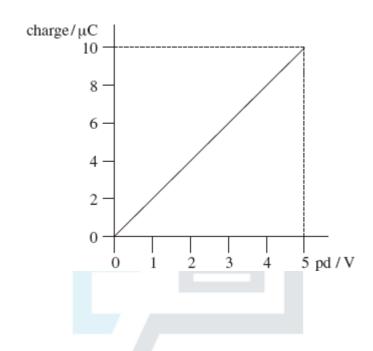

Which one of the following statements is not true?

- A The time constant will decrease if *C* is increased.
- B The time constant will increase if *R* is increased.
 - C After charging to the same voltage, the initial discharge current will increase if *R* is decreased.
 - D After charging to the same voltage, the initial discharge current will be unaffected if *C* is increased.

18. The graph shows how the charge on a capacitor varies with time as it is discharged through a resistor.

What is the time constant for the

circuit?


A 3.0 s

B 4.0 s PAPERS PRACTICE
C 5.0 s

D 8.0 s

19. The graph shows how the charge stored by a capacitor varies with the pd applied across it.

Which line, A to D, in the table gives the capacitance and the energy stored when the potential difference is $5.0\ V$?

VI F	capacitance/μ F	energy stored/µJ
A	2.0	25
В	2.0	50
С	10.0	25
D	10.0	50

- 20. A 10 mF capacitor is charged to 10 V and then discharged completely through a smallmotor. During the process, the motor lifts a weight of mass 0.10 kg. If 10% of the energy stored in the capacitor is used to lift the weight, through what approximate height will the weight be lifted?
 - A 0.05 m
 - B 0.10 m
 - C 0.50 m
 - D 1.00 m

