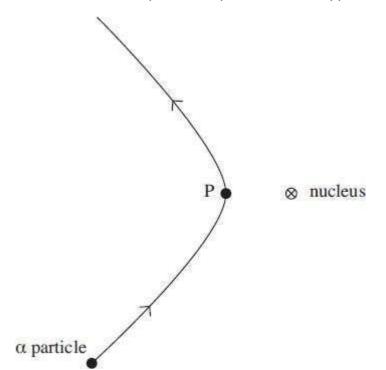

Electric Potential TOPIC QUESTIONS

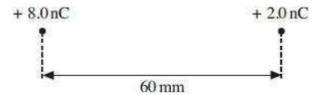
Level	A Level
Subject	Physics
Exam Board	AQA
Paper Type	Multiple Choice

Time Allowed : 30min



1. The force between two point charges is *F* when they are separated by a distance *r*. If the separation is increased to 3*r*, what is the force between the charges?

2. The diagram shows the path of an α particle deflected by the nucleus of an atom. Point P on the path is the point of closest approach of the α particle to the nucleus.

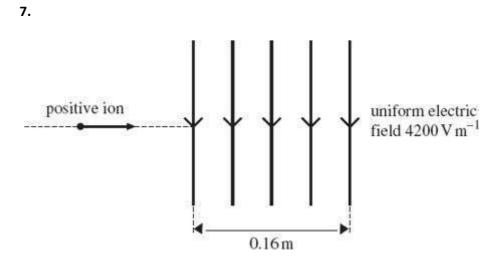

Which one of the following statements about the α particle on this path is correct?

- A Its acceleration is zero at P.
- **B** Its kinetic energy is greatest at P.
- **C** Its speed is least at P.
- **D** Its potential energy is least at P.

- 3. A repulsive force *F* acts between two positive point charges separated by a distance *r*. What will be the force between them if each charge is doubled and the distance between them ishalved?
 - **A** *F*
 - **B** 2F
 - **C** 4F
 - **D** 16F

4. The distance between two point charges of + 8.0 nC and + 2.0 nC is 60 mm.

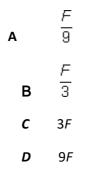
At a point between the charges, on the line joining them, the resultant electric field strength iszero. How far is this point from the + 8.0 nC charge?


- **A** 20 mm
- **B** 25 mm
- **C** 40 mm
- **D** 45 mm

- 5. Which one of the following **cannot** be used as a unit for electric field strength?
 - **A** J m⁻¹ C⁻¹
 - **B** J $A^{-1} s^{-1} m^{-1}$
 - C N A⁻¹ s⁻¹
 - **D** $J C m^{-1}$

- 6. An electron and a proton are 1.0×10^{-10} m apart. In the absence of any other charges, what is the electric potential energy of the electron?
 - A +2.3 × 10⁻¹⁸J
 - **B** -2.3 × 10⁻¹⁸J
 - **C** +2.3 × 10⁻⁸J
 - D -2.3 × 10⁻ ⁸J

An ion carrying a charge of $+4.8 \times 10^{-19}$ C travels horizontally at a speed of 8.0×10^{5} ms⁻¹. It enters a uniform vertical electric field of strength 4200 V m⁻¹, which is directed downwards and acts over a horizontal distance of 0.16m. Which one of the following statements is **not** correct?


- **A** The ion passes through the field in 2.0×10^{-7} s.
- **B** The force on the ion acts vertically downwards at all points in the field.
- **C** The magnitude of the force exerted on the ion by the field is 1.6×10^{-9} N.
- **D** The horizontal component of the velocity of the ion is unaffected by the electric field.

- 8. The electric potential at a distance *r* from a positive point charge is 45 V. The potential increases to 50 V when the distance from the charge decreases by 1.5 m. What is the value of *r*?
 - **A** 1.3 m
 - **B** 1.5 m
 - **C** 7.9 m
 - **D** 15 m

9. The repulsive force between two small negative charges separated by a distance r is F.

What is the force between the charges when the separation is reduce \overline{d} to ?

- 10. What is the acceleration of an electron at a point in an electric field where the field strength is 1.5×10^5 V m⁻¹?
 - A $1.2 \times 10^6 \text{ m s}^{-2}$
 - **B** $1.4 \times 10^{13} \text{ m s}^{-2}$
 - **C** $2.7 \times 10^{15} \text{ m s}^{-2}$
 - **D** $2.6 \times 10^{16} \text{ m s}^{-2}$

11. At a distance L from a fixed point charge, the electric field strength is E and the electric potentialis V.

	Electric field strength	Electric potential
A	$\frac{E}{3}$	$\frac{V}{9}$
В	$\frac{E}{3}$	$\frac{V}{3}$
С	<u>E</u> 9	$\frac{V}{3}$
D	<u>E</u> 9	$\frac{V}{9}$

12. The diagram shows a particle with charge +Q and a particle with charge -Q separated by adistance d.

The particles exert a force F on each other.

An additional charge of +2Q is then given to each particle and their separation is increased to 2d.

What is the force that now acts between the particles?

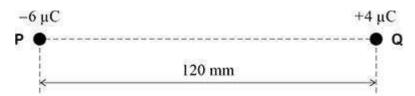
 $\frac{3}{4}F$


- **A** an attractive force of $\frac{9}{2}F$ **B** an attractive force of $\frac{9}{4}F$
- **C** a repulsive force of $\frac{3}{2}F$
- **D** a repulsive force of
- 13. Two protons are separated by distance *r*. The electrostatic force between the two protons is **X** times the gravitational force between them.

What is the best estimate for X?

- **A** 10²⁰
- **B** 10²⁸
- **C** 10³⁶
- **D** 10⁴²

14. Two parallel metal plates separated by a distance d have a potential difference V across them. A particle with charge Q is placed midway between the plates.

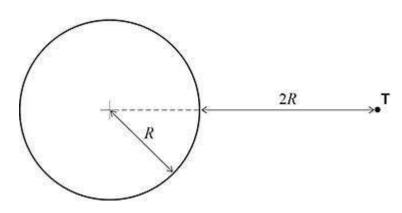


What is the magnitude of the electrostatic force acting on the particle?

A zero

 $\frac{QV}{2d}$

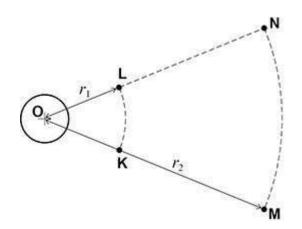
- В
- $c \quad \frac{QV}{d}$ $D \quad \frac{2QV}{d}$
- 15. Two charged particles P and Q are separated by a distance of 120 mm.X is a point on the line between P and Q where the electric potential is zero.


What is the distance from P to X?

- **A** 40 mm
- **B** 48 mm
- **C** 60 mm
- **D** 72 mm

16. An isolated spherical conductor is charged.

The conductor has a radius R and an electric potential V. The electric field strength at its surface is E.

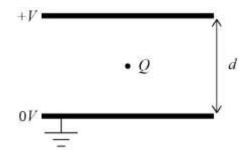


Point **T** is a distance 2R from the surface.

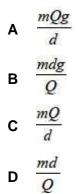
	Electric field strength	Electric potential
A	$\frac{E}{2}$	$\frac{V}{4}$
в	$\frac{E}{3}$	<u>V</u> 9
с	$\frac{E}{4}$	$\frac{V}{2}$
D	<u>E</u> 9	$\frac{V}{3}$

What are the electric field strength and electric potential at T?

17. **O** is the centre of a negatively charged sphere.



K and **L** are two points at a distance r_1 from **O**.**M** and **N** are two points at a distance r_2 from **O**.



Which statement is true?

- **C** No work is done moving an electron from **M** to **N**.
- **D** No work is done moving a positron from **L** to **N**.
- 18. A small object of mass m has a charge Q. The object remains stationary in an evacuated space between two horizontal plates. The plates are separated by a distance d and the potential difference between the plates is V.

What is V?

19. mJ of work is done when a charge of 30 μC is moved between two points, \bm{M} and $\bm{N},$ in anelectric field.

What is the potential difference between **M** and **N**?

A 20 mV B 20 V C 45 V D 50 V

20. A parallel-plate capacitor is fully charged and then disconnected from the power supply. A dielectric is then inserted between the plates.

Which row correctly identifies the charge on the plates and the electric field strength between theplates?

	Charge	Electric field strength
A	Stays the same	Increases
в	Increases	Decreases
С	Increases	Increases
D	Stays the same	Decreases